The bidirectional convergence of artificial intelligence and nanophotonics drives photonic technologies toward unprecedented levels of intelligence and efficiency,fundamentally reshaping their design paradigms and app...The bidirectional convergence of artificial intelligence and nanophotonics drives photonic technologies toward unprecedented levels of intelligence and efficiency,fundamentally reshaping their design paradigms and application boundaries.With its powerful data-driven and nonlinear optimization capabilities,artificial intelligence has become a powerful tool for optical design,enabling the inverse design of nanophotonics devices while accelerating the forward computation of electromagnetic responses.Conversely,nanophotonics provides a wave-based computational platform,giving rise to novel optical neural networks that achieve high-speed parallel computing and efficient information processing.This paper reviews the latest progress in the bidirectional field of artificial intelligence and nanophotonics,analyzes the basic principles of various applications from a universal perspective,comprehensively evaluates the advantages and limitations of different research methods,and makes a forwardlooking outlook on the bidirectional integration of artificial intelligence and nanophotonics,focusing on analyzing future development trends,potential applications,and challenges.The deep integration of artificial intelligence and nanophotonics is ushering in a new era for photonic technologies,offering unparalleled opportunities for fundamental research and industrial applications.展开更多
The field of silicon nanophotonics has attracted considerable attention in the past decade because of its unique advantages,including complementary metal–oxide–semiconductor(CMOS) compatibility and the ability to ...The field of silicon nanophotonics has attracted considerable attention in the past decade because of its unique advantages,including complementary metal–oxide–semiconductor(CMOS) compatibility and the ability to achieve an ultra-high integration density. In particular, silicon nanophotonic integrated devices for on-chip light manipulation have been developed successfully and have played very import roles in various applications. In this paper, we review the recent progress of silicon nanophotonic devices for on-chip light manipulation, including the static type and the dynamic type. Static onchip light manipulation focuses on polarization/mode manipulation, as well as light nanofocusing, while dynamic on-chip light manipulation focuses on optical modulation/switching. The challenges and prospects of high-performance silicon nanophotonic integrated devices for on-chip light manipulation are discussed.展开更多
A two-part Notional Synthesis on Nanophotonics Fundamentals is being carried out: On the one hand, a rather novel depiction of the Fermionic Quantum Causality is being attempted. On the other hand, a Nanophotonic Resp...A two-part Notional Synthesis on Nanophotonics Fundamentals is being carried out: On the one hand, a rather novel depiction of the Fermionic Quantum Causality is being attempted. On the other hand, a Nanophotonic Response Encoder is being devised: Illuminated Electrons are the original Protagonists.展开更多
High-Q nanophotonic devices hold great importance in both fundamental research and engineering applications.Their ability to provide high spectral resolution and enhanced light-matter interactions makes them promising...High-Q nanophotonic devices hold great importance in both fundamental research and engineering applications.Their ability to provide high spectral resolution and enhanced light-matter interactions makes them promising in various fields such as sensing,filters,lasing,nonlinear optics,photodetection,coherent thermal emission,and laser stealth.While Q-factors as large as 109 have been achieved experimentally in on-chip microresonators,these modes are excited through near-field coupling of optical fibers.Exciting high-Q modes via free-space light presents a significant challenge primarily due to the larger fabrication area and more lossy channels associated with free-space nanophotonic devices.This Review provides a comprehensive overview of the methods employed to achieve high-Q modes,highlights recent research progress and applications,and discusses the existing challenges as well as the prospects in the field of free-space high-Q nanophotonics.展开更多
Thanks to their record high refractive index and giant optical anisotropy,van der Waals(vdW)materials have accelerated the development of nanophotonics.However,traditional high refractive index materials,such as titan...Thanks to their record high refractive index and giant optical anisotropy,van der Waals(vdW)materials have accelerated the development of nanophotonics.However,traditional high refractive index materials,such as titanium dioxide(TiO_(2)),still dominate in the most important visible range.This is due to the current lack of transparent vdW materials across the entire visible spectrum.In this context,we propose that germanium disulfide(GeS_(2))could offer a significant breakthrough.With its high refractive index,negligible losses,and biaxial optical anisotropy across the whole visible range,GeS_(2)has the potential to complement TiO2 and close the application gap of vdW materials in the visible spectrum.The addition of GeS_(2)could have a profound impact on the design of van der Waals nanophotonic circuits for any operation wavelength from ultraviolet to infrared,emphasizing the significance of the potential impact of GeS_(2)on the field of nanophotonics.展开更多
Artificial neural networks have dramatically improved the performance of many machine-learning applications such as image recognition and natural language processing. However, the electronic hardware implementations o...Artificial neural networks have dramatically improved the performance of many machine-learning applications such as image recognition and natural language processing. However, the electronic hardware implementations of the above-mentioned tasks are facing performance ceiling because Moore’s Law is slowing down. In this article, we propose an optical neural network architecture based on optical scattering units to implement deep learning tasks with fast speed, low power consumption and small footprint.The optical scattering units allow light to scatter back and forward within a small region and can be optimized through an inverse design method. The optical scattering units can implement high-precision stochastic matrix multiplication with mean squared error < 10-4 and a mere 4*4 um2 footprint.Furthermore, an optical neural network framework based on optical scattering units is constructed by introducing "Kernel Matrix", which can achieve 97.1% accuracy on the classic image classification dataset MNIST.展开更多
Applying intelligence algorithms to conceive nanoscale meta-devices becomes a flourishing and extremely active scientific topic over the past few years.Inverse design of functional nanostructures is at the heart of th...Applying intelligence algorithms to conceive nanoscale meta-devices becomes a flourishing and extremely active scientific topic over the past few years.Inverse design of functional nanostructures is at the heart of this topic,in which artificial intelligence(AI)furnishes various optimization toolboxes to speed up prototyping of photonic layouts with enhanced performance.In this review,we offer a systemic view on recent advancements in nanophotonic components designed by intelligence algorithms,manifesting a development trend from performance optimizations towards inverse creations of novel designs.To illustrate interplays between two fields,AI and photonics,we take meta-atom spectral manipulation as a case study to introduce algorithm operational principles,and subsequently review their manifold usages among a set of popular meta-elements.As arranged from levels of individual optimized piece to practical system,we discuss algorithm-assisted nanophotonic designs to examine their mutual benefits.We further comment on a set of open questions including reasonable applications of advanced algorithms,expensive data issue,and algorithm benchmarking,etc.Overall,we envision mounting photonic-targeted methodologies to substantially push forward functional artificial meta-devices to profit both fields.展开更多
The major purpose of this paper is to present a brief overview of the history and the current status of nanophotonics research in China, and to highlight some research results in the past years made by the Chinese nan...The major purpose of this paper is to present a brief overview of the history and the current status of nanophotonics research in China, and to highlight some research results in the past years made by the Chinese nanophotonics communities. I will first briefly introduce the principles of nanophotonics and several of its major disciplines including photonic crystals, plasmonics and metamaterials, and related artificial acoustic structures. Then I will highlight some major progresses made by Chinese research groups in these areas with the selection made merely based on my personal taste. The aim is to let these results better known and appreciated by researchers in the Chinese communities of nanophotonics and related areas, and provide better opportunities of researchers in different areas to have more communications. I also hope that this brief introduction will help to make a better bridge to connect Chinese nanophotonics communities with the broader communities in the world.展开更多
An analysis of light–matter interactions based on symmetries can provide valuable insight,particularly because it reveals which quantities are conserved and which ones can be transformed within a physical system.In t...An analysis of light–matter interactions based on symmetries can provide valuable insight,particularly because it reveals which quantities are conserved and which ones can be transformed within a physical system.In this context,helicity can be a useful addition to more commonly considered observables such as angular momentum.The question arises how to treat helicity,the projection of the total angular momentum onto the linear momentum direction,in practical experiments.In this paper,we put forward a simple but versatile experimental treatment of helicity.We then apply the proposed method to the scattering of light by isolated cylindrical nanoapertures in a gold film.This allows us to study the helicity transformation taking place during the interaction of focused light with the nanoapertures.In particular,we observe from the transmitted light that the scaling of the helicity transformed component with the aperture size is very different to the direct helicity component.展开更多
The "International Symposium on Photonics, Biophotonics, and Nanophotonics’2005", sponsored by Chinese Optical Society (COS), State University of New York at Buffalo (SUNY at Buffalo), and Southeast Univers...The "International Symposium on Photonics, Biophotonics, and Nanophotonics’2005", sponsored by Chinese Optical Society (COS), State University of New York at Buffalo (SUNY at Buffalo), and Southeast University (SEU), will be held on May 14 - 18, 2005 at Nanjing, China. This conference will provide an international forum for the most recent and advanced issues concerning photonics, biophotonics, and nanophotonics. There will be a number of invited talks presented by pioneers and leading scientists in the fields of photonics, biophotonics, and nanophotonics. In particular, a tutorial session will be presented by Prof. Paras N. Prasad to discuss biophotonics and nanophotonics.展开更多
This Special Topic Issue has grown out of research that has been highlighted at the Nanophotonics Conference series held in China for the past three years. The fourteen papers appearing in this issue are a small sampl...This Special Topic Issue has grown out of research that has been highlighted at the Nanophotonics Conference series held in China for the past three years. The fourteen papers appearing in this issue are a small sampling of the total scope of the Conference. Broadly speaking, the subjects covered by the contributing authors include quantum properties using semiconductor materials, nanocharacterization especially with applications to medical fields, photonic crystals and fibers, and plasmonics.展开更多
Semiconductor optoelectronics devices,capable of converting electrical power into light or conversely light into electrical power in a compact and highly efficient manner represent one of the most advanced technologie...Semiconductor optoelectronics devices,capable of converting electrical power into light or conversely light into electrical power in a compact and highly efficient manner represent one of the most advanced technologies ever developed,which has profoundly reshaped the modern life with a wide range of applications.In recent decades,semiconductor technology has rapidly evolved from first-generation narrow bandgap materials(Si,Ge)to the latest fourth-generation ultra-wide bandgap semiconductor(GaO,diamond,AlN)with enhanced performance to meet growing demands.Additionally,merging semiconductor devices with other techniques,such as computer assisted design,state-of-the-art micro/nano fabrications,novel epitaxial growth,have significantly accelerated the development of semiconductor optoelectronics devices.Among them,integrating metasurfaces with semiconductor optoelectronic devices have opened new frontiers for on-chip control of their electromagnetic response,providing access to previously inaccessible degrees of freedom.We review the recent advances in on-chip control of a variety of semiconductor optoelectronic devices using integrated metasurfaces,including semiconductor lasers,semiconductor light emitting devices,semiconductor photodetectors,and low dimensional semiconductors.The integration of metasurfaces with semiconductors offers wafer-level ultracompact solutions for manipulating the functionalities of semiconductor devices,while also providing a practical platform for implementing cuttingedge metasurface technology in real-world applications.展开更多
Meta-devices have significantly revitalized the study of nonlinear optical phenomena.At the nanoscale,the detrimental effects of phase mismatching between fundamental and harmonic waves can be substantially reduced.Th...Meta-devices have significantly revitalized the study of nonlinear optical phenomena.At the nanoscale,the detrimental effects of phase mismatching between fundamental and harmonic waves can be substantially reduced.This review analyzes the theoretical frameworks of how plasmonic and dielectric materials induce nonlinear optical properties.Plasmonic and dielectric nonlinear meta-devices that can excite strong resonant modes for efficiency enhancement are explored.We outline different strategies designed to shape the radiation pattern in order to increase the collection capability of nonlinear signals emitted from meta-devices.In addition,we discuss how nonlinear phase manipulation in meta-devices can integrate the benefits of efficiency enhancement and radiation shaping,not only boosting the energy density of the nonlinear signal but also facilitating a wide range of applications.Finally,potential research directions within this field are discussed.展开更多
The growing demand for electronic devices, smart devices, and the Internet of Things constitutes the primary driving force for marching down the path of decreased critical dimension and increased circuit intricacy of ...The growing demand for electronic devices, smart devices, and the Internet of Things constitutes the primary driving force for marching down the path of decreased critical dimension and increased circuit intricacy of integrated circuits. However, as sub-10 nm high-volume manufacturing is becoming the mainstream, there is greater awareness that defects introduced by original equipment manufacturer components impact yield and manufacturing costs. The identification, positioning, and classification of these defects, including random particles and systematic defects, are becoming more and more challenging at the 10 nm node and beyond.Very recently, the combination of conventional optical defect inspection with emerging techniques such as nanophotonics, optical vortices, computational imaging, quantitative phase imaging, and deep learning is giving the field a new possibility. Hence, it is extremely necessary to make a thorough review for disclosing new perspectives and exciting trends, on the foundation of former great reviews in the field of defect inspection methods. In this article, we give a comprehensive review of the emerging topics in the past decade with a focus on three specific areas:(a) the defect detectability evaluation,(b) the diverse optical inspection systems,and(c) the post-processing algorithms. We hope, this work can be of importance to both new entrants in the field and people who are seeking to use it in interdisciplinary work.展开更多
Nonlinear frequency conversion is one of the most fundamental processes in nonlinear optics.It has a wide range of applications in our daily lives,including novel light sources,sensing,and information processing.It is...Nonlinear frequency conversion is one of the most fundamental processes in nonlinear optics.It has a wide range of applications in our daily lives,including novel light sources,sensing,and information processing.It is usually assumed that nonlinear frequency conversion requires large crystals that gradually accumulate a strong effect.However,the large size of nonlinear crystals is not compatible with the miniaturisation of modern photonic and optoelectronic systems.Therefore,shrinking the nonlinear structures down to the nanoscale,while keeping favourable conversion efficiencies,is of great importance for future photonics applications.In the last decade,researchers have studied the strategies for enhancing the nonlinear efficiencies at the nanoscale,e.g.by employing different nonlinear materials,resonant couplings and hybridization techniques.In this paper,we provide a compact review of the nanomaterials-based efforts,ranging from metal to dielectric and semiconductor nanostructures,including their relevant nanofabrication techniques.展开更多
Highly ordered nanocomposite arrays of Rh6G-Au-AAO are formed by filling anodized aluminum oxide (AAO) with Rhodamine 6G (Rh6G) and gold nanoparticles. The optical properties of Rh6G-Au-AAO are studied by visible ...Highly ordered nanocomposite arrays of Rh6G-Au-AAO are formed by filling anodized aluminum oxide (AAO) with Rhodamine 6G (Rh6G) and gold nanoparticles. The optical properties of Rh6G-Au-AAO are studied by visible absorptive and fluorescent spectroscopy. Compared with the fluorescence spectra of Rh6G-Au in the solution environment, the fluo- rescence peak intensities of Rh6G-Au-AAO are significantly enhanced, the maximum enhancement rate is 5.5, and a constant blue shift of-12 nm of peak positions is presented. The effects come from the spatial confinement of AAO and the inhibition of the fluorescence quenching effect induced by gold nanoparticles. The results show that the nanocomposite structures of fluorescence molecules-metal nanoparticles-AAO have a considerable potential in engineering molecular assemblies and creating functional materials of superior properties for future nanoDhotonics.展开更多
Optical imaging systems have greatly extended human visual capabilities,enabling the observation and understanding of diverse phenomena.Imaging technologies span a broad spectrum of wavelengths from x-ray to radio fre...Optical imaging systems have greatly extended human visual capabilities,enabling the observation and understanding of diverse phenomena.Imaging technologies span a broad spectrum of wavelengths from x-ray to radio frequencies and impact research activities and our daily lives.Traditional glass lenses are fabricated through a series of complex processes,while polymers offer versatility and ease of production.However,modern applications often require complex lens assemblies,driving the need for miniaturization and advanced designs with micro-and nanoscale features to surpass the capabilities of traditional fabrication methods.Three-dimensional(3D)printing,or additive manufacturing,presents a solution to these challenges with benefits of rapid prototyping,customized geometries,and efficient production,particularly suited for miniaturized optical imaging devices.Various 3D printing methods have demonstrated advantages over traditional counterparts,yet challenges remain in achieving nanoscale resolutions.Two-photon polymerization lithography(TPL),a nanoscale 3D printing technique,enables the fabrication of intricate structures beyond the optical diffraction limit via the nonlinear process of two-photon absorption within liquid resin.It offers unprecedented abilities,e.g.alignment-free fabrication,micro-and nanoscale capabilities,and rapid prototyping of almost arbitrary complex 3D nanostructures.In this review,we emphasize the importance of the criteria for optical performance evaluation of imaging devices,discuss material properties relevant to TPL,fabrication techniques,and highlight the application of TPL in optical imaging.As the first panoramic review on this topic,it will equip researchers with foundational knowledge and recent advancements of TPL for imaging optics,promoting a deeper understanding of the field.By leveraging on its high-resolution capability,extensive material range,and true 3D processing,alongside advances in materials,fabrication,and design,we envisage disruptive solutions to current challenges and a promising incorporation of TPL in future optical imaging applications.展开更多
Photolu min esce nee in clud ing fluoresce nee plays a great role in a wide variety of applicati ons from biomedical sensing and imag ing to optoelectr on ics.Therefore,the enhan ceme nt and con trol of photolu min es...Photolu min esce nee in clud ing fluoresce nee plays a great role in a wide variety of applicati ons from biomedical sensing and imag ing to optoelectr on ics.Therefore,the enhan ceme nt and con trol of photolu min esce nee has imme nse impact on both fun dame ntal scie ntific research and aforeme nti oned applicati ons.Among various nano phot tonic schemes and nanostructures to enhance the photoluminescence,we focus on a certain type of nanostructures,hyperbolic metamaterials(HMMs).HMMs are highly ani sotropic metamaterials,which produce intense localized electric fields.Therefore,HMMs n aturally boost photolu min esce nee from dye molecules,qua ntum dots,n itroge n-vaca ncy cen ters in diam on ds,perovskites and tra nsiti on metal dichalcoge nides.We provide an overview of various con figuratio ns of HMMs,i nclud ing metal-dielectric multilayers,trenches,metallic nanowires,and cavity structures fabricated with the use of noble metals,transparent conductive oxides,and refractory metals as plasmonic elements.We also discuss lasing action realized with HMMs.展开更多
Modification of reduced graphene oxide in a controllable manner provides a promising material platform for producinggraphene based devices. Its fusion with direct laser writing methods has enabled cost-effective and s...Modification of reduced graphene oxide in a controllable manner provides a promising material platform for producinggraphene based devices. Its fusion with direct laser writing methods has enabled cost-effective and scalable production for advanced applications based on tailored optical and electronic properties in the conductivity, the fluorescence and the refractive index during the reduction process. This mini-review summarizes the state-of-the-art status of the mechanisms of reduction of graphene oxides by direct laser writing techniques as well as appealing optical diffractive applications including planar lenses, information storage and holographic displays. Owing to its versatility and up-scalability, the laser reduction method holds enormous potentials for graphene based diffractive photonic devices with diverse functionalities.展开更多
基金supported by the National Key R&D Program of China(Grant No.2024YFB3614600)the National Natural Science Foundation of China(Grant No.52402185)+1 种基金Guangzhou Basic and Applied Basic Research Foundation(Grant No.2025A1515011800)Shenzhen Science and Technology Program(Grant No.JCYJ20241202123712017)。
文摘The bidirectional convergence of artificial intelligence and nanophotonics drives photonic technologies toward unprecedented levels of intelligence and efficiency,fundamentally reshaping their design paradigms and application boundaries.With its powerful data-driven and nonlinear optimization capabilities,artificial intelligence has become a powerful tool for optical design,enabling the inverse design of nanophotonics devices while accelerating the forward computation of electromagnetic responses.Conversely,nanophotonics provides a wave-based computational platform,giving rise to novel optical neural networks that achieve high-speed parallel computing and efficient information processing.This paper reviews the latest progress in the bidirectional field of artificial intelligence and nanophotonics,analyzes the basic principles of various applications from a universal perspective,comprehensively evaluates the advantages and limitations of different research methods,and makes a forwardlooking outlook on the bidirectional integration of artificial intelligence and nanophotonics,focusing on analyzing future development trends,potential applications,and challenges.The deep integration of artificial intelligence and nanophotonics is ushering in a new era for photonic technologies,offering unparalleled opportunities for fundamental research and industrial applications.
基金Project supported by the National Natural Science Foundation for Distinguished Young Scholars(Grant No.61725503)Zhejiang Provincial Natural Science Foundation(Grant No.Z18F050002)+1 种基金the National Natural Science Foundation of China(Grant Nos.61431166001 and 11861121002)the National Major Research and Development Program of China(Grant No.2016YFB0402502)
文摘The field of silicon nanophotonics has attracted considerable attention in the past decade because of its unique advantages,including complementary metal–oxide–semiconductor(CMOS) compatibility and the ability to achieve an ultra-high integration density. In particular, silicon nanophotonic integrated devices for on-chip light manipulation have been developed successfully and have played very import roles in various applications. In this paper, we review the recent progress of silicon nanophotonic devices for on-chip light manipulation, including the static type and the dynamic type. Static onchip light manipulation focuses on polarization/mode manipulation, as well as light nanofocusing, while dynamic on-chip light manipulation focuses on optical modulation/switching. The challenges and prospects of high-performance silicon nanophotonic integrated devices for on-chip light manipulation are discussed.
文摘A two-part Notional Synthesis on Nanophotonics Fundamentals is being carried out: On the one hand, a rather novel depiction of the Fermionic Quantum Causality is being attempted. On the other hand, a Nanophotonic Response Encoder is being devised: Illuminated Electrons are the original Protagonists.
基金supported by the National Natural Science Foundation of China(U2341225 and 62375242).
文摘High-Q nanophotonic devices hold great importance in both fundamental research and engineering applications.Their ability to provide high spectral resolution and enhanced light-matter interactions makes them promising in various fields such as sensing,filters,lasing,nonlinear optics,photodetection,coherent thermal emission,and laser stealth.While Q-factors as large as 109 have been achieved experimentally in on-chip microresonators,these modes are excited through near-field coupling of optical fibers.Exciting high-Q modes via free-space light presents a significant challenge primarily due to the larger fabrication area and more lossy channels associated with free-space nanophotonic devices.This Review provides a comprehensive overview of the methods employed to achieve high-Q modes,highlights recent research progress and applications,and discusses the existing challenges as well as the prospects in the field of free-space high-Q nanophotonics.
基金K.S.N.acknowledges support from the Ministry of Education,Singapore(Research Centre of Excellence award to the Institute for Functional Intelligent Materials,I-FIM,project No.EDUNC-33-18-279-V12)the National Research Foundation,Singapore under its AI Singapore Programme(AISG Award No:AISG3-RP-2022-028)the Royal Society(UK,grant number RSRP\R\190000).
文摘Thanks to their record high refractive index and giant optical anisotropy,van der Waals(vdW)materials have accelerated the development of nanophotonics.However,traditional high refractive index materials,such as titanium dioxide(TiO_(2)),still dominate in the most important visible range.This is due to the current lack of transparent vdW materials across the entire visible spectrum.In this context,we propose that germanium disulfide(GeS_(2))could offer a significant breakthrough.With its high refractive index,negligible losses,and biaxial optical anisotropy across the whole visible range,GeS_(2)has the potential to complement TiO2 and close the application gap of vdW materials in the visible spectrum.The addition of GeS_(2)could have a profound impact on the design of van der Waals nanophotonic circuits for any operation wavelength from ultraviolet to infrared,emphasizing the significance of the potential impact of GeS_(2)on the field of nanophotonics.
基金This work was supported by the National Key Research and Development Program of China(2017YFA0205700)the National Natural Science Foundation of China(61927820)Yurui Qu was supported by Zhejiang Lab’s International Talent Fund for Young Professionals.
文摘Artificial neural networks have dramatically improved the performance of many machine-learning applications such as image recognition and natural language processing. However, the electronic hardware implementations of the above-mentioned tasks are facing performance ceiling because Moore’s Law is slowing down. In this article, we propose an optical neural network architecture based on optical scattering units to implement deep learning tasks with fast speed, low power consumption and small footprint.The optical scattering units allow light to scatter back and forward within a small region and can be optimized through an inverse design method. The optical scattering units can implement high-precision stochastic matrix multiplication with mean squared error < 10-4 and a mere 4*4 um2 footprint.Furthermore, an optical neural network framework based on optical scattering units is constructed by introducing "Kernel Matrix", which can achieve 97.1% accuracy on the classic image classification dataset MNIST.
基金National Natural Science Foundation of China(No.62005224,61927820)National Key Research and Development Program of China(2017YFA0205700)。
文摘Applying intelligence algorithms to conceive nanoscale meta-devices becomes a flourishing and extremely active scientific topic over the past few years.Inverse design of functional nanostructures is at the heart of this topic,in which artificial intelligence(AI)furnishes various optimization toolboxes to speed up prototyping of photonic layouts with enhanced performance.In this review,we offer a systemic view on recent advancements in nanophotonic components designed by intelligence algorithms,manifesting a development trend from performance optimizations towards inverse creations of novel designs.To illustrate interplays between two fields,AI and photonics,we take meta-atom spectral manipulation as a case study to introduce algorithm operational principles,and subsequently review their manifold usages among a set of popular meta-elements.As arranged from levels of individual optimized piece to practical system,we discuss algorithm-assisted nanophotonic designs to examine their mutual benefits.We further comment on a set of open questions including reasonable applications of advanced algorithms,expensive data issue,and algorithm benchmarking,etc.Overall,we envision mounting photonic-targeted methodologies to substantially push forward functional artificial meta-devices to profit both fields.
基金Acknowledgements I would like to thank my friends and colleagues from many domestic universities and institutes. Without their enthusiasms and warm-hearted supports, this paper would not be possible, or at least cannot provide a comprehensive and balanced introduction to their excellent research works. I must sincerely thank the extensive financial support from National Natural Science Foundation, Ministry of Science and Technology, and Chinese Academy of Sciences. Without these supports, our works would not be possible and I will not be able to write this overview paper. I also wish to thank the colleagues and students in my research group in IoP, CAS. Senior and young colleagues, Dao-Zhong Zhang, Bing-Ying Cheng (who passed away in 2007), Zhao-Lin Li, Hong-Lian Cuo, Jia-Fang Li, Wei Ding, Rong-Juan Liu, and Lin Gan, have contributed their best times and wisdoms to make innovations in the platform of nanophotonics. My special acknowledgment goes to Prof. Dao-Zhong Zhang, the senior scientist who made the first contribution in China to study photonic crystal back in early 1990s. I need to mention generations of young students studying, training and working in this research group. They have contributed much to pushing forward our cause of making innova- tive researches in photonic crystals and plamsonics through their genuine thinking and hard working. Prof. Cong-Jun Jin and Prof. Yi-Quan Wang made significant contributions to the early works on quasiperiodic photonic crystals. Dr. Jie Tian, Dr. Hai-Hua Tao, Dr. Cheng Ren, Dr. Ya-Zhao Liu, Dr. Lin Can, Dr. Chang-Zhu Zhou, Mr. Chen Wang, and Mr. Zhe Shi have done good jobs on silicon photonic crystals. Dr. Pei-Gen Ni, Dr. Bo-Qin Ma, Dr. Yan Sheng, Dr. Jing-Juan Li, Dr. Ming-Liang Ren, and Miss Bao-Qin Chen did excellent works on ferroelectric QPM nonlinear photonic crystals. Dr. Pei-Gen Ni, Prof. Xiao-Yong Hu, Dr. Yuan-Hao Liu, Dr. Ye Liu, Dr. Fei Qin, and Dr. Zi-Ming Meng made considerable contribution on polymer Kerr nonlinear photonic crystals. Dr. Mei Sun, Dr. Kun Ren, Dr. Rong-Juan Liu, Dr. Yi-Lei Hua, Dr. Jiang- Yan Li, Dr. Jin-Xin Fu, Dr. Fei Zhou, Miss Su-Ya Du, Dr. Lin Ling, Miss Si-Yun Liu, Miss Lu Huang, Mr. Ben-Li Wang, and Miss Xiao-Lan Zhong have done excellent works on plasmonics. Finally, Dr. Zhi-Fang Feng, Dr. Shuai Feng, and Dr. Rong-Juan Liu have done good jobs on microwave photonic crystals. I am deeply grateful for their excellent contributions to the growth of this research group.
文摘The major purpose of this paper is to present a brief overview of the history and the current status of nanophotonics research in China, and to highlight some research results in the past years made by the Chinese nanophotonics communities. I will first briefly introduce the principles of nanophotonics and several of its major disciplines including photonic crystals, plasmonics and metamaterials, and related artificial acoustic structures. Then I will highlight some major progresses made by Chinese research groups in these areas with the selection made merely based on my personal taste. The aim is to let these results better known and appreciated by researchers in the Chinese communities of nanophotonics and related areas, and provide better opportunities of researchers in different areas to have more communications. I also hope that this brief introduction will help to make a better bridge to connect Chinese nanophotonics communities with the broader communities in the world.
基金This work was funded by the Centre of Excellence for Engineered Quantum SystemsGM-T is also funded by the Future Fellowship program
文摘An analysis of light–matter interactions based on symmetries can provide valuable insight,particularly because it reveals which quantities are conserved and which ones can be transformed within a physical system.In this context,helicity can be a useful addition to more commonly considered observables such as angular momentum.The question arises how to treat helicity,the projection of the total angular momentum onto the linear momentum direction,in practical experiments.In this paper,we put forward a simple but versatile experimental treatment of helicity.We then apply the proposed method to the scattering of light by isolated cylindrical nanoapertures in a gold film.This allows us to study the helicity transformation taking place during the interaction of focused light with the nanoapertures.In particular,we observe from the transmitted light that the scaling of the helicity transformed component with the aperture size is very different to the direct helicity component.
文摘The "International Symposium on Photonics, Biophotonics, and Nanophotonics’2005", sponsored by Chinese Optical Society (COS), State University of New York at Buffalo (SUNY at Buffalo), and Southeast University (SEU), will be held on May 14 - 18, 2005 at Nanjing, China. This conference will provide an international forum for the most recent and advanced issues concerning photonics, biophotonics, and nanophotonics. There will be a number of invited talks presented by pioneers and leading scientists in the fields of photonics, biophotonics, and nanophotonics. In particular, a tutorial session will be presented by Prof. Paras N. Prasad to discuss biophotonics and nanophotonics.
文摘This Special Topic Issue has grown out of research that has been highlighted at the Nanophotonics Conference series held in China for the past three years. The fourteen papers appearing in this issue are a small sampling of the total scope of the Conference. Broadly speaking, the subjects covered by the contributing authors include quantum properties using semiconductor materials, nanocharacterization especially with applications to medical fields, photonic crystals and fibers, and plasmonics.
基金supported by the National Natural Science Foundation of China(62374150)Natural Science Foundation of Henan(242300421216)+3 种基金C.Zheng acknowledges the support of China Postdoctoral Science Foundation(Grant No.2023TQ0296)the Postdoctoral Fellowship Program of CPSF(Grant No.GZC20232389)Y.Xie acknowledges the support of National Natural Science Foundation of China(62074011,62134008)Beijing Outstanding Young Scientist Program(JWZQ20240102009).
文摘Semiconductor optoelectronics devices,capable of converting electrical power into light or conversely light into electrical power in a compact and highly efficient manner represent one of the most advanced technologies ever developed,which has profoundly reshaped the modern life with a wide range of applications.In recent decades,semiconductor technology has rapidly evolved from first-generation narrow bandgap materials(Si,Ge)to the latest fourth-generation ultra-wide bandgap semiconductor(GaO,diamond,AlN)with enhanced performance to meet growing demands.Additionally,merging semiconductor devices with other techniques,such as computer assisted design,state-of-the-art micro/nano fabrications,novel epitaxial growth,have significantly accelerated the development of semiconductor optoelectronics devices.Among them,integrating metasurfaces with semiconductor optoelectronic devices have opened new frontiers for on-chip control of their electromagnetic response,providing access to previously inaccessible degrees of freedom.We review the recent advances in on-chip control of a variety of semiconductor optoelectronic devices using integrated metasurfaces,including semiconductor lasers,semiconductor light emitting devices,semiconductor photodetectors,and low dimensional semiconductors.The integration of metasurfaces with semiconductors offers wafer-level ultracompact solutions for manipulating the functionalities of semiconductor devices,while also providing a practical platform for implementing cuttingedge metasurface technology in real-world applications.
基金supported by the University Grants Committee/Research Grants Council of the Hong Kong Special Administrative Region,China(AoE/P-502/20,C1015-21E,C5031-22G,CityU15303521,CityU11305223,CityU11310522,CityU11300123,and G-CityU 101/22)the City University of Hong Kong(9380131 and 7005867)the National Natural Science Foundation of China(62375232).
文摘Meta-devices have significantly revitalized the study of nonlinear optical phenomena.At the nanoscale,the detrimental effects of phase mismatching between fundamental and harmonic waves can be substantially reduced.This review analyzes the theoretical frameworks of how plasmonic and dielectric materials induce nonlinear optical properties.Plasmonic and dielectric nonlinear meta-devices that can excite strong resonant modes for efficiency enhancement are explored.We outline different strategies designed to shape the radiation pattern in order to increase the collection capability of nonlinear signals emitted from meta-devices.In addition,we discuss how nonlinear phase manipulation in meta-devices can integrate the benefits of efficiency enhancement and radiation shaping,not only boosting the energy density of the nonlinear signal but also facilitating a wide range of applications.Finally,potential research directions within this field are discussed.
基金funded by the National Natural Science Foundation of China(Grant Nos.52175509 and 52130504)the National Key Research and Development Program of China(2017YFF0204705)+1 种基金the Key Research and Development Plan of Hubei Province(2021BAA013)the National Science and Technology Major Project(2017ZX02101006-004)。
文摘The growing demand for electronic devices, smart devices, and the Internet of Things constitutes the primary driving force for marching down the path of decreased critical dimension and increased circuit intricacy of integrated circuits. However, as sub-10 nm high-volume manufacturing is becoming the mainstream, there is greater awareness that defects introduced by original equipment manufacturer components impact yield and manufacturing costs. The identification, positioning, and classification of these defects, including random particles and systematic defects, are becoming more and more challenging at the 10 nm node and beyond.Very recently, the combination of conventional optical defect inspection with emerging techniques such as nanophotonics, optical vortices, computational imaging, quantitative phase imaging, and deep learning is giving the field a new possibility. Hence, it is extremely necessary to make a thorough review for disclosing new perspectives and exciting trends, on the foundation of former great reviews in the field of defect inspection methods. In this article, we give a comprehensive review of the emerging topics in the past decade with a focus on three specific areas:(a) the defect detectability evaluation,(b) the diverse optical inspection systems,and(c) the post-processing algorithms. We hope, this work can be of importance to both new entrants in the field and people who are seeking to use it in interdisciplinary work.
文摘Nonlinear frequency conversion is one of the most fundamental processes in nonlinear optics.It has a wide range of applications in our daily lives,including novel light sources,sensing,and information processing.It is usually assumed that nonlinear frequency conversion requires large crystals that gradually accumulate a strong effect.However,the large size of nonlinear crystals is not compatible with the miniaturisation of modern photonic and optoelectronic systems.Therefore,shrinking the nonlinear structures down to the nanoscale,while keeping favourable conversion efficiencies,is of great importance for future photonics applications.In the last decade,researchers have studied the strategies for enhancing the nonlinear efficiencies at the nanoscale,e.g.by employing different nonlinear materials,resonant couplings and hybridization techniques.In this paper,we provide a compact review of the nanomaterials-based efforts,ranging from metal to dielectric and semiconductor nanostructures,including their relevant nanofabrication techniques.
基金supported by the National Natural Science Foundation of China (No.60978020)the Key International S&T Cooperation Project (No.2005DFA10170)+3 种基金the National "973 Project" (No.2007CB307001)the National Natural Science Foundation of China (No.60408006)the Natural Science Fund of Tianjin (No.06TXTJJC13500)Program for Changjiang Scholars and Innovative Research Team in Nankai University, and the Cultivation Fund of the Key Scientific and Technical Innovation Project
文摘Highly ordered nanocomposite arrays of Rh6G-Au-AAO are formed by filling anodized aluminum oxide (AAO) with Rhodamine 6G (Rh6G) and gold nanoparticles. The optical properties of Rh6G-Au-AAO are studied by visible absorptive and fluorescent spectroscopy. Compared with the fluorescence spectra of Rh6G-Au in the solution environment, the fluo- rescence peak intensities of Rh6G-Au-AAO are significantly enhanced, the maximum enhancement rate is 5.5, and a constant blue shift of-12 nm of peak positions is presented. The effects come from the spatial confinement of AAO and the inhibition of the fluorescence quenching effect induced by gold nanoparticles. The results show that the nanocomposite structures of fluorescence molecules-metal nanoparticles-AAO have a considerable potential in engineering molecular assemblies and creating functional materials of superior properties for future nanoDhotonics.
基金support from the National Research Foundation (NRF) Singapore, under its Competitive Research Programme Award NRF-CRP20-20170004 and NRF Investigatorship Award NRF-NRFI06-20200005MTC Programmatic Grant M21J9b0085, as well as the Lite-On Project RS-INDUS-00090+5 种基金support from Australian Research Council (DE220101085, DP220102152)grants from German Research Foundation (SCHM2655/15-1, SCHM2655/21-1)Lee-Lucas Chair in Physics and funding by the Australian Research Council DP220102152financial support from the National Natural Science Foundation of China (Grant No. 62275078)Natural Science Foundation of Hunan Province of China (Grant No. 2022JJ20020)Shenzhen Science and Technology Program (Grant No. JCYJ20220530160405013)
文摘Optical imaging systems have greatly extended human visual capabilities,enabling the observation and understanding of diverse phenomena.Imaging technologies span a broad spectrum of wavelengths from x-ray to radio frequencies and impact research activities and our daily lives.Traditional glass lenses are fabricated through a series of complex processes,while polymers offer versatility and ease of production.However,modern applications often require complex lens assemblies,driving the need for miniaturization and advanced designs with micro-and nanoscale features to surpass the capabilities of traditional fabrication methods.Three-dimensional(3D)printing,or additive manufacturing,presents a solution to these challenges with benefits of rapid prototyping,customized geometries,and efficient production,particularly suited for miniaturized optical imaging devices.Various 3D printing methods have demonstrated advantages over traditional counterparts,yet challenges remain in achieving nanoscale resolutions.Two-photon polymerization lithography(TPL),a nanoscale 3D printing technique,enables the fabrication of intricate structures beyond the optical diffraction limit via the nonlinear process of two-photon absorption within liquid resin.It offers unprecedented abilities,e.g.alignment-free fabrication,micro-and nanoscale capabilities,and rapid prototyping of almost arbitrary complex 3D nanostructures.In this review,we emphasize the importance of the criteria for optical performance evaluation of imaging devices,discuss material properties relevant to TPL,fabrication techniques,and highlight the application of TPL in optical imaging.As the first panoramic review on this topic,it will equip researchers with foundational knowledge and recent advancements of TPL for imaging optics,promoting a deeper understanding of the field.By leveraging on its high-resolution capability,extensive material range,and true 3D processing,alongside advances in materials,fabrication,and design,we envisage disruptive solutions to current challenges and a promising incorporation of TPL in future optical imaging applications.
基金L.Y.Beliaev,O.Takayama and A.V.Lavrinenko acknowledge the financial support from Independent Research Fund Denmark(DFF)(Research Project 2,8022-00387B)Denmark.PM acknowledges that the publication was prepared within the framework of Academic Fund Program at the HSE University in 2021(grant No 21-04-056).
文摘Photolu min esce nee in clud ing fluoresce nee plays a great role in a wide variety of applicati ons from biomedical sensing and imag ing to optoelectr on ics.Therefore,the enhan ceme nt and con trol of photolu min esce nee has imme nse impact on both fun dame ntal scie ntific research and aforeme nti oned applicati ons.Among various nano phot tonic schemes and nanostructures to enhance the photoluminescence,we focus on a certain type of nanostructures,hyperbolic metamaterials(HMMs).HMMs are highly ani sotropic metamaterials,which produce intense localized electric fields.Therefore,HMMs n aturally boost photolu min esce nee from dye molecules,qua ntum dots,n itroge n-vaca ncy cen ters in diam on ds,perovskites and tra nsiti on metal dichalcoge nides.We provide an overview of various con figuratio ns of HMMs,i nclud ing metal-dielectric multilayers,trenches,metallic nanowires,and cavity structures fabricated with the use of noble metals,transparent conductive oxides,and refractory metals as plasmonic elements.We also discuss lasing action realized with HMMs.
基金The authors thank National Natural Science Foundation of China (61522504, 61420106014, 61432007, 11604123) and Guangdong Provincial Innovation and Entrepreneurship Project (2016ZT06D081) for funding supports. M Gu acknowledges the supports from the Australian Research Council (ARC) through the Discovery Project (DP140100849) and Laureate Fellowship Scheme (FL100100099).
文摘Modification of reduced graphene oxide in a controllable manner provides a promising material platform for producinggraphene based devices. Its fusion with direct laser writing methods has enabled cost-effective and scalable production for advanced applications based on tailored optical and electronic properties in the conductivity, the fluorescence and the refractive index during the reduction process. This mini-review summarizes the state-of-the-art status of the mechanisms of reduction of graphene oxides by direct laser writing techniques as well as appealing optical diffractive applications including planar lenses, information storage and holographic displays. Owing to its versatility and up-scalability, the laser reduction method holds enormous potentials for graphene based diffractive photonic devices with diverse functionalities.