Classical molecular dynamics(MD)simulation method is employed to study the uniaxial tensile deformation of nanocrystalline magnesium(Mg)of varying grain size levels.The mean grain size of the sample is varied from 6.4...Classical molecular dynamics(MD)simulation method is employed to study the uniaxial tensile deformation of nanocrystalline magnesium(Mg)of varying grain size levels.The mean grain size of the sample is varied from 6.4 nm to 45 nm,with each sample containing about 43 million atoms in the modeling system.The deformation nanomechanics reveals two distinct deformation mechanisms.For larger grain-sized samples,dislocation dominated deformation is observed while,in smaller grain-sized samples,grain boundary-based mechanisms such as grain boundary sliding,grain boundary rotation are observed.The transition of normal and inverse Hall-Petch relation occurs at around lOnm.Dislocation density quantification shows that the dislocation density in the sample drastically reduces with decreasing grain size.Elastic modulus of nanocrystalline Mg with mean grain size above 20 nm remains comparable to that of the coarse-grained polycrystalline bulk,followed by a rapid reduction below that grain size.The present work reveals the nanomechanics of nanocrystalline Mg,facilitating the design and development of Mg-based nanostructured alloys with superior mechanical properties.展开更多
Property characterization of nanomaterials is challenged by the small size of the structure be-cause of the difficulties in manipulation Here we demonstrate a novel approach that allows a direct measurement of the mec...Property characterization of nanomaterials is challenged by the small size of the structure be-cause of the difficulties in manipulation Here we demonstrate a novel approach that allows a direct measurement of the mechanical properties of individual nanotube-like structures by in-situ transmission electron microscopy (TEM). The technique is powerful in a way that it can directly correlate the atomic-scale microstructure of the carbon nanotube with its physical properties, providing a one-to-one correspondence in structure-property characterization Applications of the technique will be demonstrated on mechanical properties, the electron field emission and the ballistic quantum conductance in individual nanotubes.展开更多
Introduction Scaling down to the micro- and nanoscale is a strong current trend in the development of science and technology. 'Small is energy efficient and cost effective' has long been for the motto of the semico...Introduction Scaling down to the micro- and nanoscale is a strong current trend in the development of science and technology. 'Small is energy efficient and cost effective' has long been for the motto of the semiconductor industry, including micro- and nanoelectronics, micro-electro-mechanical systems (MEMS) and nanoelectro-mechanical systems (NEMS).展开更多
The advancement of electron microscopy technology has driven the development of electron microscopes that can apply mechanical loading while observing samples,providing a valuable tool for In-Situ mechanical character...The advancement of electron microscopy technology has driven the development of electron microscopes that can apply mechanical loading while observing samples,providing a valuable tool for In-Situ mechanical characterization of materials.In response to the need to characterize the evolution of the mechanical behavior of structural materials,such as aerospace materials,in real cryogenic service environments,and to provide an experimental basis for improving their macroscopic cryogenic mechanical properties,the advancement of In-Situ characterization techniques capable of offering both cryogenic environments and mechanical loading has become imperative.There have been scholars using this technique to carry out cryogenic mechanical In-Situ studies of related materials,with experimental studies dominating in general,and a few reviews of mechanical characterization techniques mentioning cryogenic temperatures.In order to make it easier to conduct research using such characterization techniques and to further promote the development of related characterization techniques,this review compiles the previous work and summarizes the electron microscope-based In-Situ characterization techniques for cryogenic micro-and nanomechanics.These techniques primarily include transmission electron microscopy-based cryogenic tensile and indentation methods,as well as scanning electron microscopy-based cryogenic tensile,indentation,compression,and bending methods.Furthermore,the review outlines the prospective future development of In-Situ characterization techniques for cryogenic micro-and nanomechanics.展开更多
The excellent mechanical properties make graphene promising for realizing nanomechanical resonators with high resonant frequencies,large quality factors,strong nonlinearities,and the capability to efectively interface...The excellent mechanical properties make graphene promising for realizing nanomechanical resonators with high resonant frequencies,large quality factors,strong nonlinearities,and the capability to efectively interface with various physical systems.Equipped with gate electrodes,it has been demonstrated that these exceptional device properties can be electrically manipulated,leading to a variety of nanomechanical/acoustic applications.Here,we review the recent progress of graphene nanomechanical resonators with a focus on their electrical tunability.First,we provide an overview of diferent graphene nanomechanical resonators,including their device structures,fabrication methods,and measurement setups.Then,the key mechanical properties of these devices,for example,resonant frequencies,nonlinearities,dissipations,and mode coupling mechanisms,are discussed,with their behaviors upon electrical gating being highlighted.After that,various potential classical/quantum applications based on these graphene nanomechanical resonators are reviewed.Finally,we briefy discuss challenges and opportunities in this feld to ofer future prospects for the ongoing studies on graphene nanomechanical resonators.展开更多
This study delves into the pivotal role of sulfur vulcanization in defining the mechanical characteristics of natural rubber(NR)latex-dipped products.Utilizing sulfur vulcanization,known for its operational simplicity...This study delves into the pivotal role of sulfur vulcanization in defining the mechanical characteristics of natural rubber(NR)latex-dipped products.Utilizing sulfur vulcanization,known for its operational simplicity and cost-effectiveness,we examine its ability to enhance product elasticity and mechanical strength through various sulfidic bond formations such as mono-,di-,and polysulfidic bonds.Different vulcanization systems and sulfur contents were evaluated for their influence on the mechanical attributes of latex films,employing three types of NR latex,namely concentrated NR(CNR),deproteinized NR(DPNR),and small rubber particle NR(SRP),each representing distinct non-rubber components(NRCs).The study utilized advanced atomic force microscopy(AFM)equipped with PeakForce Quantitative Nanomechanical Mapping(QNM)to visualize and measure Young’s modulus distribution across the film of pre-vulcanized latex.Our findings reveal that films by CNR processed using the conventional vulcanization(CV)system exhibited enhanced tensile strength and elongation at break.It even showed a lower crosslink density than those processed using the efficient vulcanization(EV)system.Interestingly,DPNR films showed a more uniform distribution of Young’s modulus,correlating well with their superior mechanical strength.In contrast,SRP films showed excessive network structure formation in the particles due to accelerated vulcanization rates,hampering subsequent post-vulcanization interparticle crosslinking in film formation and remaining more rigid.The overall results Illustrate clearly that the ultimate mechanical properties of the latex films are strongly dependent on the type of sulfidic bonds formed.This research reveals further the very intricate relationship between the vulcanization methods,sulfur content,and latex type in optimizing the mechanical performance of NR latex products.It provides valuable insights for industry practices aimed at improving the quality and performance of latex-dipped goods.展开更多
As an ultrathin wide-bandgap(WBG)material,CaNb_(2)O_(6)exhibits excellent optical and electrical properties.Particularly,its highly asymmetric crystal structure provides new opportunities for designing novel nanodevic...As an ultrathin wide-bandgap(WBG)material,CaNb_(2)O_(6)exhibits excellent optical and electrical properties.Particularly,its highly asymmetric crystal structure provides new opportunities for designing novel nanodevices with directional functionality.However,due to the significant challenges in applying conventional techniques to nanoscale samples,the in-plane anisotropy of CaNb_(2)O_(6)has still remained unexplored.Here,we leverage the resonant nanoelectromechanical systems(NEMS)platform to successfully quantify both the mechanical and thermal anisotropies in such an ultrathin WBG crystal.Specifically,by measuring the dynamic response in both spectral and spatial domains,we determine the anisotropic Young’s modulus of CaNb_(2)O_(6)as E_(Y(a))=70.42 GPa and EY(b)=116.2 GPa.By further expanding this technique to cryogenic temperatures,we unveil the anisotropy in thermal expansion coefficients as α_((a))=13.4 ppm·K^(-1),α(b)=2.9 ppm·K^(-1).Interestingly,through thermal strain engineering,we successfully modulate the mode sequence and achieve a crossing of(1×2)-(2×1)modes with perfect degeneracy.Our study provides guidelines for future CaNb_(2)O_(6)nanodevices with additional degrees of freedom and new device functions.展开更多
It is one of the big bottleneck problems for graphene to be uniformly distributed in ceramic matrix composites. A two-step approach was applied to prepare Graphene Nanoplatelets/Yt tria-Stabilized Zirconia(GNPs/YSZ) c...It is one of the big bottleneck problems for graphene to be uniformly distributed in ceramic matrix composites. A two-step approach was applied to prepare Graphene Nanoplatelets/Yt tria-Stabilized Zirconia(GNPs/YSZ) composites. Initially, GNPs were combined with YSZ through nanoparticle regranulation technology to obtain uniformly dispersed powders. Subsequently, the prepared powders were sintered by Spark Plasma Sintering(SPS). Systematic investigation was carried out to examine how GNPs regulate the phase, microstructures, and nanomechanical properties of GNPs/YSZ composite ceramics with different sintering temperatures.Results show that the GNPs can inhibit the coalescence of adjacent grains in YSZ ceramics. Herein,we propose that the intensity ratio of 2D peak to G peak of GNPs in Raman spectrum serves as a key indicator to assess the nanomechanical properties of GNPs/YSZ composites. When the intensity ratio of 2D peak to G peak is 0.5–0.6, the GNPs/YSZ composites obtained in the sintering temperature range of 1 200–1 250.C exhibit excellent nanomechanical properties such as hardness,elastic modulus, wear and creep resistance.展开更多
Wurtzite aluminum nitride(AlN) films were deposited on Si(100) wafers under various sputtering pressures by radio-frequency(RF) reactive magnetron sputtering. The film properties were investigated by XRD, SEM, A...Wurtzite aluminum nitride(AlN) films were deposited on Si(100) wafers under various sputtering pressures by radio-frequency(RF) reactive magnetron sputtering. The film properties were investigated by XRD, SEM, AFM, XPS and nanoindenter techniques. It is suggested from the XRD patterns that highly c-axis oriented films grow preferentially at low pressures and the growth of(100) planes are preferred at higher pressures. The SEM and AFM images both reveal that the deposition rate and the surface roughness decrease while the average grain size increases with increasing the sputtering pressure. XPS results show that lowering the sputtering pressure is a useful way to minimize the incorporation of oxygen atoms into the AlN films and hence a film with closer stoichiometric composition is obtained. From the measurement of nanomechanical properties of AlN thin films, the largest hardness and elastic modulus are obtained at 0.30 Pa.展开更多
By means of a comprehensive theory of elasticity, namely, a nonlocal strain gradient continuum theory, size-dependent nonlinear axial instability characteristics of cylindrical nanoshells made of functionally graded m...By means of a comprehensive theory of elasticity, namely, a nonlocal strain gradient continuum theory, size-dependent nonlinear axial instability characteristics of cylindrical nanoshells made of functionally graded material(FGM) are examined. To take small scale effects into consideration in a more accurate way, a nonlocal stress field parameter and an internal length scale parameter are incorporated simultaneously into an exponential shear deformation shell theory. The variation of material properties associated with FGM nanoshells is supposed along the shell thickness, and it is modeled based on the Mori-Tanaka homogenization scheme. With a boundary layer theory of shell buckling and a perturbation-based solving process, the nonlocal strain gradient load-deflection and load-shortening stability paths are derived explicitly. It is observed that the strain gradient size effect causes to the increases of both the critical axial buckling load and the width of snap-through phenomenon related to the postbuckling regime, while the nonlocal size dependency leads to the decreases of them. Moreover, the influence of the nonlocal type of small scale effect on the axial instability characteristics of FGM nanoshells is more than that of the strain gradient one.展开更多
Diamond,as an ultra-wide bandgap semiconductor,has become a promising candidate for next-generation microelec-tronics and optoelectronics due to its numerous advantages over conventional semiconductors,including ultra...Diamond,as an ultra-wide bandgap semiconductor,has become a promising candidate for next-generation microelec-tronics and optoelectronics due to its numerous advantages over conventional semiconductors,including ultrahigh carrier mo-bility and thermal conductivity,low thermal expansion coefficient,and ultra-high breakdown voltage,etc.Despite these ex-traordinary properties,diamond also faces various challenges before being practically used in the semiconductor industry.This review begins with a brief summary of previous efforts to model and construct diamond-based high-voltage switching diodes,high-power/high-frequency field-effect transistors,MEMS/NEMS,and devices operating at high temperatures.Following that,we will discuss recent developments to address scalable diamond device applications,emphasizing the synthesis of large-area,high-quality CVD diamond films and difficulties in diamond doping.Lastly,we show potential solutions to modulate diamond’s electronic properties by the“elastic strain engineering”strategy,which sheds light on the future development of diamond-based electronics,photonics and quantum systems.展开更多
The nanomechanical behaviors of (110) and (111 ) CdZnTe crystals were investigated by nanoindentation. It was found that the indenter tip was adhered by the removed materials in scanning testing area although the ...The nanomechanical behaviors of (110) and (111 ) CdZnTe crystals were investigated by nanoindentation. It was found that the indenter tip was adhered by the removed materials in scanning testing area although the scanning force on the tested surface was very small (1000 nN), which would affect the testing result of nanoindentation, so the indenter was clean before nanoindentation test. The experimemtal results showed that the hardness and Young's modulus decreased with the increase of indentation loads on the same plane. Because of the anisotropy of the CdZnTe crystal, the average hardness of (110) plane is 35% lower than that of (111) plane, and there are about 30% difference of the hardness along different crystallographic directions on the same plane. The hardness in 0° and 120° testing directions was the same due to the threefold symmetry of a Berkovich indenter. And the anisotropy affected the surface quality during machining of CdZnTe crystal.展开更多
According to National Science Foundation (NSF) Director A. Bement, ‘Transformative research is... research driven by ideas that stand a reasonable chance of radically changing our understanding of an important exis...According to National Science Foundation (NSF) Director A. Bement, ‘Transformative research is... research driven by ideas that stand a reasonable chance of radically changing our understanding of an important existing scientific concept or leading to the creation of a new paradigm or field of science is also characterized by its challenge to current understanding or its pathway to new frontiers.' Nanotechnology is one of such frontiers. It is the creation of new materials, devices and systems at the molecular level--phenomena associated with atomic and molecular interactions strongly influence macroscopic material properties with significantly improved mechanical, optical, chemical, electrical... properties. Former NSF Director Rita Colwell in 2002 declared, ‘nanoscale technology will have an impact equal to the Industrial Revolution'. The transcendent technologies include nanotechnology, microelectronics, information technology and biotechnology as well as the enabling and supporting mechanical and civil infrastructure systems and materials. These technologies are the primary drivers of the twenty first century and the new economy. Mechanics is an essential eleraent in all of the transcendent technologies. Research opportunities, education and challenges in mechanics, including experimental, numerical and analytical methods in nanomechanics, carbon nano-tubes, bio-inspired materials, fuel cells, as well as improved engineering and design of materials are presented and discussed in this paper.展开更多
Involved in various neurodegenerative diseases, amyloid fibrils and plaques feature a hierarchical structure, ranging from the atomistic to the micrometer scale.At the atomistic level,a dense and organized hydrogen bo...Involved in various neurodegenerative diseases, amyloid fibrils and plaques feature a hierarchical structure, ranging from the atomistic to the micrometer scale.At the atomistic level,a dense and organized hydrogen bond network is resembled in a beta-sheet rich secondary structure, which drives a remarkable stiffness in the range of 10-20GPa,larger than many other biological nanofibrils, a result confirmed by both experiment and theory.However, the understanding of how these exceptional mechanical properties transfer from the atomistic to the nanoscale remains unknown.Here we report a multiscale analysis that, from the atomistic-level structure of a single fibril,extends to the mesoscale level,reaching size scales of hundreds of nanometers.We use parameters directly derived from full atomistic simulations of Aβ(1-40) amyloid fibrils to parameterize a mesoscopic coarse-grained model,which is used to reproduce the elastic properties of amyloid fibrils.We then apply our mesoscopic model in an analysis of the buckling behavior of amyloid fibrils with different lengths and report a comparison with predictions from continuum beam theory. An important implication of our results is a severe reduction of the effective modulus due to buckling,an effect that could be important to interpret experimental results of ultralong amyloid fibrils.Our model represents a powerful tool to mechanically characterize molecular structures on the order of hundreds of nanometers to micrometers on the basis of the underlying atomistic behavior.The work provides insight into structural and mechanical properties of amyloid fibrils and may enable further analysis of larger-scale assemblies such as amyloidogenic bundles or plaques as found in disease states.展开更多
Despite being strong with many outstanding physical properties,tungsten is inherently brittle at room temperature,restricting its structural and functional applications at small scales.Here,a facile strategy has been ...Despite being strong with many outstanding physical properties,tungsten is inherently brittle at room temperature,restricting its structural and functional applications at small scales.Here,a facile strategy has been adopted,to introduce high-density dislocations while reducing grain boundaries,through electron backscatter diffraction(EBSD)-guided microfabrication of cold-drawn bulk tungsten wires.The designed tungsten microwire attains an ultralarge uniform tensile elongation of~10.6%,while retains a high yield strength of~2.4 GPa.in situ TEM tensile testing reveals that the large uniform elongation of tungsten microwires originates from the motion of pre-existing high-density dislocations,while the subsequent ductile fracture is attributed to crack-tip plasticity and the inhibition of grain boundary cracking.This work demonstrates the application potential of tungsten microcomponents with superior ductility and workability for micro/nanoscale mechanical,electronic,and energy systems.展开更多
This paper has successfully addressed three critical but overlooked issues in nonlocal elastic stress field theory for nanobeams: (i) why does the presence of increasing nonlocal effects induce reduced nanostructur...This paper has successfully addressed three critical but overlooked issues in nonlocal elastic stress field theory for nanobeams: (i) why does the presence of increasing nonlocal effects induce reduced nanostructural stiffness in many, but not consistently for all, cases of study, i.e., increasing static deflection, decreasing natural frequency and decreasing buckling load, although physical intuition according to the nonlocal elasticity field theory first established by Eringen tells otherwise? (ii) the intriguing conclusion that nanoscale effects are missing in the solutions in many exemplary cases of study, e.g., bending deflection of a cantilever nanobeam with a point load at its tip; and (iii) the non-existence of additional higher-order boundary conditions for a higher-order governing differential equation. Applying the nonlocal elasticity field theory in nanomechanics and an exact variational principal approach, we derive the new equilibrium conditions, do- main governing differential equation and boundary conditions for bending of nanobeams. These equations and conditions involve essential higher-order differential terms which are opposite in sign with respect to the previously studies in the statics and dynamics of nonlocal nano-structures. The difference in higher-order terms results in reverse trends of nanoscale effects with respect to the conclusion of this paper. Effectively, this paper reports new equilibrium conditions, governing differential equation and boundary condi- tions and the true basic static responses for bending of nanobeams. It is also concluded that the widely accepted equilibrium conditions of nonlocal nanostructures are in fact not in equilibrium, but they can be made perfect should the nonlocal bending moment be replaced by an effective nonlocal bending moment. These conclusions are substantiated, in a general sense, by other approaches in nanostructural models such as strain gradient theory, modified couple stress models and experiments.展开更多
The present study investigated the microstructure,nanomechanics,and corrosion behavior of AlCoCuFeNi high entropy alloys fabricated by selective laser melting(SLM)and laser metal deposition(LMD).The microstructure of ...The present study investigated the microstructure,nanomechanics,and corrosion behavior of AlCoCuFeNi high entropy alloys fabricated by selective laser melting(SLM)and laser metal deposition(LMD).The microstructure of SLM-processed specimens was mainly composed of columnar-grained BCC matrix(^90μm in width)and Cu-rich twinned FCC phase.The columnar grains grew epitaxially along the building direction and exhibited a strong{001}texture.In comparison,a coarse columnar-grained BCC matrix(^150μm in width)with a stronger<001>texture,rod-like B2 precipitates,and large core-shell structured FCC phases were formed in the LMD-processed specimens due to the higher heat accumulation effect.Consequently,the LMD-processed specimens showed a lower hardness,wear resistance,and corrosion resistance,but higher creep resistance and reduced Young's modulus than the SLM-processed specimens.Hot cracks occurred in both types of specimens,which could not be completely suppressed due to Cu segregation.展开更多
Capacitive nano-switches have been of great interest as replacements for conventional semiconductor switches. Accurate determination of the pull-in voltage is critical in the design process. In the present investigati...Capacitive nano-switches have been of great interest as replacements for conventional semiconductor switches. Accurate determination of the pull-in voltage is critical in the design process. In the present investigation, pull-in instability of nano-switches made of two parallel plates subjected to electrostatic force is studied. For this purpose, two parallel rectangular nanoplates with opposite charges are modeled based on molecular dynamics (MD) technique. Different initial gaps between nanoplates and its effect on pull-in phenomena are studied in addition to taking different values of geometrical and physical parameters into account to evaluate pull-in voltages. Here molecular dynamic simulations as an atomic interaction approach are employed for modeling of nano-switches in order to study pull-in instability considering atomic interaction and surface tension. Boundary conditions and also the van der Waals force are considered as important parameters to investigate their effects on pull-in voltage values.展开更多
Non invasive ultrasound-based imaging systems are being more commonly used in clinical bio-microscopy applications for both ex vivo and in vivo analysis of tissue pathological and physiological states. These modalitie...Non invasive ultrasound-based imaging systems are being more commonly used in clinical bio-microscopy applications for both ex vivo and in vivo analysis of tissue pathological and physiological states. These modalities usually employ high-frequency ultrasound systems to overcome spatial resolution limits of conventional clinical diagnostic approaches. Biological tissues are non continuous, non homogeneous and exhibit a multiscale organization from the sub-cellular level (£1 mm) to the organ level (31 cm). When the ultrasonic wavelength used to probe the tissues becomes comparable with the tissue's microstructure scale, the propagation and reflection of ultrasound waves cannot be fully interpreted employing classical models developed within the continuum assumption. In this study, we present a multiscale model for analyzing the mechanical response of a non-continuum double-layer system exposed to an ultrasound source. The model is developed within the framework of the Doublet Mechanics theory and can be applied to the non-invasive analysis of complex biological tissues.展开更多
基金This work was performed under the auspices of startup funds from the San Diego State University(SDSU)the support of the US National Science of Foundation,Division of Materials Research,under Award No.1900876.
文摘Classical molecular dynamics(MD)simulation method is employed to study the uniaxial tensile deformation of nanocrystalline magnesium(Mg)of varying grain size levels.The mean grain size of the sample is varied from 6.4 nm to 45 nm,with each sample containing about 43 million atoms in the modeling system.The deformation nanomechanics reveals two distinct deformation mechanisms.For larger grain-sized samples,dislocation dominated deformation is observed while,in smaller grain-sized samples,grain boundary-based mechanisms such as grain boundary sliding,grain boundary rotation are observed.The transition of normal and inverse Hall-Petch relation occurs at around lOnm.Dislocation density quantification shows that the dislocation density in the sample drastically reduces with decreasing grain size.Elastic modulus of nanocrystalline Mg with mean grain size above 20 nm remains comparable to that of the coarse-grained polycrystalline bulk,followed by a rapid reduction below that grain size.The present work reveals the nanomechanics of nanocrystalline Mg,facilitating the design and development of Mg-based nanostructured alloys with superior mechanical properties.
文摘Property characterization of nanomaterials is challenged by the small size of the structure be-cause of the difficulties in manipulation Here we demonstrate a novel approach that allows a direct measurement of the mechanical properties of individual nanotube-like structures by in-situ transmission electron microscopy (TEM). The technique is powerful in a way that it can directly correlate the atomic-scale microstructure of the carbon nanotube with its physical properties, providing a one-to-one correspondence in structure-property characterization Applications of the technique will be demonstrated on mechanical properties, the electron field emission and the ballistic quantum conductance in individual nanotubes.
文摘Introduction Scaling down to the micro- and nanoscale is a strong current trend in the development of science and technology. 'Small is energy efficient and cost effective' has long been for the motto of the semiconductor industry, including micro- and nanoelectronics, micro-electro-mechanical systems (MEMS) and nanoelectro-mechanical systems (NEMS).
基金supported by the National Natural Science Foundation of China(52301177)。
文摘The advancement of electron microscopy technology has driven the development of electron microscopes that can apply mechanical loading while observing samples,providing a valuable tool for In-Situ mechanical characterization of materials.In response to the need to characterize the evolution of the mechanical behavior of structural materials,such as aerospace materials,in real cryogenic service environments,and to provide an experimental basis for improving their macroscopic cryogenic mechanical properties,the advancement of In-Situ characterization techniques capable of offering both cryogenic environments and mechanical loading has become imperative.There have been scholars using this technique to carry out cryogenic mechanical In-Situ studies of related materials,with experimental studies dominating in general,and a few reviews of mechanical characterization techniques mentioning cryogenic temperatures.In order to make it easier to conduct research using such characterization techniques and to further promote the development of related characterization techniques,this review compiles the previous work and summarizes the electron microscope-based In-Situ characterization techniques for cryogenic micro-and nanomechanics.These techniques primarily include transmission electron microscopy-based cryogenic tensile and indentation methods,as well as scanning electron microscopy-based cryogenic tensile,indentation,compression,and bending methods.Furthermore,the review outlines the prospective future development of In-Situ characterization techniques for cryogenic micro-and nanomechanics.
基金supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20240123)the National Key Research and Development Program of China(Grant No.2022YFA1405900)the National Natural Science Foundation of China(Grant Nos.12274397,12274401,and 12034018)。
文摘The excellent mechanical properties make graphene promising for realizing nanomechanical resonators with high resonant frequencies,large quality factors,strong nonlinearities,and the capability to efectively interface with various physical systems.Equipped with gate electrodes,it has been demonstrated that these exceptional device properties can be electrically manipulated,leading to a variety of nanomechanical/acoustic applications.Here,we review the recent progress of graphene nanomechanical resonators with a focus on their electrical tunability.First,we provide an overview of diferent graphene nanomechanical resonators,including their device structures,fabrication methods,and measurement setups.Then,the key mechanical properties of these devices,for example,resonant frequencies,nonlinearities,dissipations,and mode coupling mechanisms,are discussed,with their behaviors upon electrical gating being highlighted.After that,various potential classical/quantum applications based on these graphene nanomechanical resonators are reviewed.Finally,we briefy discuss challenges and opportunities in this feld to ofer future prospects for the ongoing studies on graphene nanomechanical resonators.
基金supported by Mahidol University(Fundamental Fund:fiscal year 2024 by the National Science Research and Innovation Fund(NSRF),FF-078/2567)Academy of Tropical Agricultural Sciences for Science and Technology Innovation Team of National Tropical Agricultural Science Center(No.CATASCXTD202401)the National Research Council of Thailand(NRCT)via the Royal Golden Jubilee Ph.D.Program(No.PHD/0150/2560)。
文摘This study delves into the pivotal role of sulfur vulcanization in defining the mechanical characteristics of natural rubber(NR)latex-dipped products.Utilizing sulfur vulcanization,known for its operational simplicity and cost-effectiveness,we examine its ability to enhance product elasticity and mechanical strength through various sulfidic bond formations such as mono-,di-,and polysulfidic bonds.Different vulcanization systems and sulfur contents were evaluated for their influence on the mechanical attributes of latex films,employing three types of NR latex,namely concentrated NR(CNR),deproteinized NR(DPNR),and small rubber particle NR(SRP),each representing distinct non-rubber components(NRCs).The study utilized advanced atomic force microscopy(AFM)equipped with PeakForce Quantitative Nanomechanical Mapping(QNM)to visualize and measure Young’s modulus distribution across the film of pre-vulcanized latex.Our findings reveal that films by CNR processed using the conventional vulcanization(CV)system exhibited enhanced tensile strength and elongation at break.It even showed a lower crosslink density than those processed using the efficient vulcanization(EV)system.Interestingly,DPNR films showed a more uniform distribution of Young’s modulus,correlating well with their superior mechanical strength.In contrast,SRP films showed excessive network structure formation in the particles due to accelerated vulcanization rates,hampering subsequent post-vulcanization interparticle crosslinking in film formation and remaining more rigid.The overall results Illustrate clearly that the ultimate mechanical properties of the latex films are strongly dependent on the type of sulfidic bonds formed.This research reveals further the very intricate relationship between the vulcanization methods,sulfur content,and latex type in optimizing the mechanical performance of NR latex products.It provides valuable insights for industry practices aimed at improving the quality and performance of latex-dipped goods.
基金supported by the National Key R&D Program of China(2022YFB3203600)the National Natural Science Foundation of China(Grant Nos.T2325007,62450003,62401104,62404029,U21A20459,62250073,61774029,and U23A20570)+1 种基金the China Postdoctoral Science Foundation(Grant Nos.GZB20230107 and GZB20240109)the Natural Science Foundation of Sichuan Province(Grant Nos.2024NSFSC1430 and 2024NSFSC1408).
文摘As an ultrathin wide-bandgap(WBG)material,CaNb_(2)O_(6)exhibits excellent optical and electrical properties.Particularly,its highly asymmetric crystal structure provides new opportunities for designing novel nanodevices with directional functionality.However,due to the significant challenges in applying conventional techniques to nanoscale samples,the in-plane anisotropy of CaNb_(2)O_(6)has still remained unexplored.Here,we leverage the resonant nanoelectromechanical systems(NEMS)platform to successfully quantify both the mechanical and thermal anisotropies in such an ultrathin WBG crystal.Specifically,by measuring the dynamic response in both spectral and spatial domains,we determine the anisotropic Young’s modulus of CaNb_(2)O_(6)as E_(Y(a))=70.42 GPa and EY(b)=116.2 GPa.By further expanding this technique to cryogenic temperatures,we unveil the anisotropy in thermal expansion coefficients as α_((a))=13.4 ppm·K^(-1),α(b)=2.9 ppm·K^(-1).Interestingly,through thermal strain engineering,we successfully modulate the mode sequence and achieve a crossing of(1×2)-(2×1)modes with perfect degeneracy.Our study provides guidelines for future CaNb_(2)O_(6)nanodevices with additional degrees of freedom and new device functions.
基金supported from the National Natural Science Foundation of China(No.52371062)the Open Foundation from National Key Laboratory of Materials Behavior and Evaluation Technology in Space Environments,China,the National Key Research and Development Program of China(No.2020YFB2007900)the National Major Science and Technology Projects of China(No.2017-VI-0020-0093).
文摘It is one of the big bottleneck problems for graphene to be uniformly distributed in ceramic matrix composites. A two-step approach was applied to prepare Graphene Nanoplatelets/Yt tria-Stabilized Zirconia(GNPs/YSZ) composites. Initially, GNPs were combined with YSZ through nanoparticle regranulation technology to obtain uniformly dispersed powders. Subsequently, the prepared powders were sintered by Spark Plasma Sintering(SPS). Systematic investigation was carried out to examine how GNPs regulate the phase, microstructures, and nanomechanical properties of GNPs/YSZ composite ceramics with different sintering temperatures.Results show that the GNPs can inhibit the coalescence of adjacent grains in YSZ ceramics. Herein,we propose that the intensity ratio of 2D peak to G peak of GNPs in Raman spectrum serves as a key indicator to assess the nanomechanical properties of GNPs/YSZ composites. When the intensity ratio of 2D peak to G peak is 0.5–0.6, the GNPs/YSZ composites obtained in the sintering temperature range of 1 200–1 250.C exhibit excellent nanomechanical properties such as hardness,elastic modulus, wear and creep resistance.
基金Project(21271188)supported by the National Natural Science Foundation of ChinaProject(2012M521541)supported by the China Postdoctoral Science Foundation+2 种基金Project(2012QNZT002)supported by the Fundamental Research Funds for the Central South Universities,ChinaProject(20110933K)supported by the State Key Laboratory of Powder Metallurgy,ChinaProject(CSU2012024)supported by the Open-End Fund for Valuable and Precision Instruments of Central South University,China
文摘Wurtzite aluminum nitride(AlN) films were deposited on Si(100) wafers under various sputtering pressures by radio-frequency(RF) reactive magnetron sputtering. The film properties were investigated by XRD, SEM, AFM, XPS and nanoindenter techniques. It is suggested from the XRD patterns that highly c-axis oriented films grow preferentially at low pressures and the growth of(100) planes are preferred at higher pressures. The SEM and AFM images both reveal that the deposition rate and the surface roughness decrease while the average grain size increases with increasing the sputtering pressure. XPS results show that lowering the sputtering pressure is a useful way to minimize the incorporation of oxygen atoms into the AlN films and hence a film with closer stoichiometric composition is obtained. From the measurement of nanomechanical properties of AlN thin films, the largest hardness and elastic modulus are obtained at 0.30 Pa.
文摘By means of a comprehensive theory of elasticity, namely, a nonlocal strain gradient continuum theory, size-dependent nonlinear axial instability characteristics of cylindrical nanoshells made of functionally graded material(FGM) are examined. To take small scale effects into consideration in a more accurate way, a nonlocal stress field parameter and an internal length scale parameter are incorporated simultaneously into an exponential shear deformation shell theory. The variation of material properties associated with FGM nanoshells is supposed along the shell thickness, and it is modeled based on the Mori-Tanaka homogenization scheme. With a boundary layer theory of shell buckling and a perturbation-based solving process, the nonlocal strain gradient load-deflection and load-shortening stability paths are derived explicitly. It is observed that the strain gradient size effect causes to the increases of both the critical axial buckling load and the width of snap-through phenomenon related to the postbuckling regime, while the nonlocal size dependency leads to the decreases of them. Moreover, the influence of the nonlocal type of small scale effect on the axial instability characteristics of FGM nanoshells is more than that of the strain gradient one.
基金the support from the Research Grants Council of the Hong Kong Special Administrative Region,China(Grant RFS2021-1S05)the National Natural Science Foundation of China(Grant 11922215)+1 种基金the funding from the National Natural Science Foundation of China(Grant 11902200)the Science and Technology Commission of Shanghai Municipality(Grant19YF1433600)。
文摘Diamond,as an ultra-wide bandgap semiconductor,has become a promising candidate for next-generation microelec-tronics and optoelectronics due to its numerous advantages over conventional semiconductors,including ultrahigh carrier mo-bility and thermal conductivity,low thermal expansion coefficient,and ultra-high breakdown voltage,etc.Despite these ex-traordinary properties,diamond also faces various challenges before being practically used in the semiconductor industry.This review begins with a brief summary of previous efforts to model and construct diamond-based high-voltage switching diodes,high-power/high-frequency field-effect transistors,MEMS/NEMS,and devices operating at high temperatures.Following that,we will discuss recent developments to address scalable diamond device applications,emphasizing the synthesis of large-area,high-quality CVD diamond films and difficulties in diamond doping.Lastly,we show potential solutions to modulate diamond’s electronic properties by the“elastic strain engineering”strategy,which sheds light on the future development of diamond-based electronics,photonics and quantum systems.
基金supported by the Key Project of National Natural Science Foundation of China (No.50535020)
文摘The nanomechanical behaviors of (110) and (111 ) CdZnTe crystals were investigated by nanoindentation. It was found that the indenter tip was adhered by the removed materials in scanning testing area although the scanning force on the tested surface was very small (1000 nN), which would affect the testing result of nanoindentation, so the indenter was clean before nanoindentation test. The experimemtal results showed that the hardness and Young's modulus decreased with the increase of indentation loads on the same plane. Because of the anisotropy of the CdZnTe crystal, the average hardness of (110) plane is 35% lower than that of (111) plane, and there are about 30% difference of the hardness along different crystallographic directions on the same plane. The hardness in 0° and 120° testing directions was the same due to the threefold symmetry of a Berkovich indenter. And the anisotropy affected the surface quality during machining of CdZnTe crystal.
文摘According to National Science Foundation (NSF) Director A. Bement, ‘Transformative research is... research driven by ideas that stand a reasonable chance of radically changing our understanding of an important existing scientific concept or leading to the creation of a new paradigm or field of science is also characterized by its challenge to current understanding or its pathway to new frontiers.' Nanotechnology is one of such frontiers. It is the creation of new materials, devices and systems at the molecular level--phenomena associated with atomic and molecular interactions strongly influence macroscopic material properties with significantly improved mechanical, optical, chemical, electrical... properties. Former NSF Director Rita Colwell in 2002 declared, ‘nanoscale technology will have an impact equal to the Industrial Revolution'. The transcendent technologies include nanotechnology, microelectronics, information technology and biotechnology as well as the enabling and supporting mechanical and civil infrastructure systems and materials. These technologies are the primary drivers of the twenty first century and the new economy. Mechanics is an essential eleraent in all of the transcendent technologies. Research opportunities, education and challenges in mechanics, including experimental, numerical and analytical methods in nanomechanics, carbon nano-tubes, bio-inspired materials, fuel cells, as well as improved engineering and design of materials are presented and discussed in this paper.
基金supported by the Office of Naval Research (NN00014-08-1-0844)NSF-MRSEC(DMR-0819762).
文摘Involved in various neurodegenerative diseases, amyloid fibrils and plaques feature a hierarchical structure, ranging from the atomistic to the micrometer scale.At the atomistic level,a dense and organized hydrogen bond network is resembled in a beta-sheet rich secondary structure, which drives a remarkable stiffness in the range of 10-20GPa,larger than many other biological nanofibrils, a result confirmed by both experiment and theory.However, the understanding of how these exceptional mechanical properties transfer from the atomistic to the nanoscale remains unknown.Here we report a multiscale analysis that, from the atomistic-level structure of a single fibril,extends to the mesoscale level,reaching size scales of hundreds of nanometers.We use parameters directly derived from full atomistic simulations of Aβ(1-40) amyloid fibrils to parameterize a mesoscopic coarse-grained model,which is used to reproduce the elastic properties of amyloid fibrils.We then apply our mesoscopic model in an analysis of the buckling behavior of amyloid fibrils with different lengths and report a comparison with predictions from continuum beam theory. An important implication of our results is a severe reduction of the effective modulus due to buckling,an effect that could be important to interpret experimental results of ultralong amyloid fibrils.Our model represents a powerful tool to mechanically characterize molecular structures on the order of hundreds of nanometers to micrometers on the basis of the underlying atomistic behavior.The work provides insight into structural and mechanical properties of amyloid fibrils and may enable further analysis of larger-scale assemblies such as amyloidogenic bundles or plaques as found in disease states.
基金supported by the Hong Kong Research Grant Council(RGC)under projects City U11207416National Natural Science Foundation of China(NSFC)under grant 11922215City University of Hong Kong under grant 7005234 and 9667194。
文摘Despite being strong with many outstanding physical properties,tungsten is inherently brittle at room temperature,restricting its structural and functional applications at small scales.Here,a facile strategy has been adopted,to introduce high-density dislocations while reducing grain boundaries,through electron backscatter diffraction(EBSD)-guided microfabrication of cold-drawn bulk tungsten wires.The designed tungsten microwire attains an ultralarge uniform tensile elongation of~10.6%,while retains a high yield strength of~2.4 GPa.in situ TEM tensile testing reveals that the large uniform elongation of tungsten microwires originates from the motion of pre-existing high-density dislocations,while the subsequent ductile fracture is attributed to crack-tip plasticity and the inhibition of grain boundary cracking.This work demonstrates the application potential of tungsten microcomponents with superior ductility and workability for micro/nanoscale mechanical,electronic,and energy systems.
基金supported by a grant from Research Grants Council of the Hong Kong Special Administrative Region (No. CityU 117406)
文摘This paper has successfully addressed three critical but overlooked issues in nonlocal elastic stress field theory for nanobeams: (i) why does the presence of increasing nonlocal effects induce reduced nanostructural stiffness in many, but not consistently for all, cases of study, i.e., increasing static deflection, decreasing natural frequency and decreasing buckling load, although physical intuition according to the nonlocal elasticity field theory first established by Eringen tells otherwise? (ii) the intriguing conclusion that nanoscale effects are missing in the solutions in many exemplary cases of study, e.g., bending deflection of a cantilever nanobeam with a point load at its tip; and (iii) the non-existence of additional higher-order boundary conditions for a higher-order governing differential equation. Applying the nonlocal elasticity field theory in nanomechanics and an exact variational principal approach, we derive the new equilibrium conditions, do- main governing differential equation and boundary conditions for bending of nanobeams. These equations and conditions involve essential higher-order differential terms which are opposite in sign with respect to the previously studies in the statics and dynamics of nonlocal nano-structures. The difference in higher-order terms results in reverse trends of nanoscale effects with respect to the conclusion of this paper. Effectively, this paper reports new equilibrium conditions, governing differential equation and boundary condi- tions and the true basic static responses for bending of nanobeams. It is also concluded that the widely accepted equilibrium conditions of nonlocal nanostructures are in fact not in equilibrium, but they can be made perfect should the nonlocal bending moment be replaced by an effective nonlocal bending moment. These conclusions are substantiated, in a general sense, by other approaches in nanostructural models such as strain gradient theory, modified couple stress models and experiments.
基金financially supported by the National Natural Science Foundation of China(Nos.52111530193 and 52020105013)the Key Research and Development Program of Hunan Province(No.2022SK2006)+1 种基金the Fundamental Research Funds for the Central University of Central South University(No.2021ZZTS0098)the HK Research Grants Council(ECS 25202719 and GRF 15227121)。
文摘The present study investigated the microstructure,nanomechanics,and corrosion behavior of AlCoCuFeNi high entropy alloys fabricated by selective laser melting(SLM)and laser metal deposition(LMD).The microstructure of SLM-processed specimens was mainly composed of columnar-grained BCC matrix(^90μm in width)and Cu-rich twinned FCC phase.The columnar grains grew epitaxially along the building direction and exhibited a strong{001}texture.In comparison,a coarse columnar-grained BCC matrix(^150μm in width)with a stronger<001>texture,rod-like B2 precipitates,and large core-shell structured FCC phases were formed in the LMD-processed specimens due to the higher heat accumulation effect.Consequently,the LMD-processed specimens showed a lower hardness,wear resistance,and corrosion resistance,but higher creep resistance and reduced Young's modulus than the SLM-processed specimens.Hot cracks occurred in both types of specimens,which could not be completely suppressed due to Cu segregation.
文摘Capacitive nano-switches have been of great interest as replacements for conventional semiconductor switches. Accurate determination of the pull-in voltage is critical in the design process. In the present investigation, pull-in instability of nano-switches made of two parallel plates subjected to electrostatic force is studied. For this purpose, two parallel rectangular nanoplates with opposite charges are modeled based on molecular dynamics (MD) technique. Different initial gaps between nanoplates and its effect on pull-in phenomena are studied in addition to taking different values of geometrical and physical parameters into account to evaluate pull-in voltages. Here molecular dynamic simulations as an atomic interaction approach are employed for modeling of nano-switches in order to study pull-in instability considering atomic interaction and surface tension. Boundary conditions and also the van der Waals force are considered as important parameters to investigate their effects on pull-in voltage values.
文摘Non invasive ultrasound-based imaging systems are being more commonly used in clinical bio-microscopy applications for both ex vivo and in vivo analysis of tissue pathological and physiological states. These modalities usually employ high-frequency ultrasound systems to overcome spatial resolution limits of conventional clinical diagnostic approaches. Biological tissues are non continuous, non homogeneous and exhibit a multiscale organization from the sub-cellular level (£1 mm) to the organ level (31 cm). When the ultrasonic wavelength used to probe the tissues becomes comparable with the tissue's microstructure scale, the propagation and reflection of ultrasound waves cannot be fully interpreted employing classical models developed within the continuum assumption. In this study, we present a multiscale model for analyzing the mechanical response of a non-continuum double-layer system exposed to an ultrasound source. The model is developed within the framework of the Doublet Mechanics theory and can be applied to the non-invasive analysis of complex biological tissues.