期刊文献+
共找到296篇文章
< 1 2 15 >
每页显示 20 50 100
Mechanical softening of lunar olivine probed via nanoindentation and high-pressure X-ray diffraction measurements
1
作者 P.Grèbol-Tomàs J.Ibáñez-Insa +10 位作者 J.M.Trigo-Rodríguez E.Peña-Asensio R.Oliva D.Díaz-Anichtchenko P.Botella J.Sánchez-Martín R.Turnbull D.Errandonea A.Liang C.Popescu J.Sort 《Geoscience Frontiers》 2025年第5期167-179,共13页
The mechanical properties of minerals in planetary materials are not only interesting from a fundamental point of view but also critical to the development of future space missions.Here we present nanoindentation expe... The mechanical properties of minerals in planetary materials are not only interesting from a fundamental point of view but also critical to the development of future space missions.Here we present nanoindentation experiments to evaluate the hardness and reduced elastic modulus of olivine,(Mg,Fe)_(2)SiO_(4),in meteorite NWA 12008,a lunar basalt.Our experiments suggest that the olivine grains in this lunaite are softer and more elastic than their terrestrial counterparts.Also,we have performed synchrotron-based high-pressure X-ray diffraction(HP-XRD)measurements to probe the compressibility properties of olivine in this meteorite and,for comparison purposes,of three ordinary chondrites.The HP-XRD results suggest that the axial compressibility of the orthorhombic b lattice parameter of olivine relative to terrestrial olivine is higher in NWA 12008 and also in the highly-shocked Chelyabinsk meteorite.The origin of the observed differences is discussed.A simple model combining the results of both our nanoindentation and HP-XRD measurements allows us to describe the contribution of macroscopic and chemical-bond related effects,both of which are necessary to reproduce the observed elastic modulus softening.Such joint analysis of the mechanical and elastic properties of meteorites and returned samples opens up a new avenue for characterizing these highly interesting materials. 展开更多
关键词 Planetary materials Lunar rocks CHONDRITES Mechanical properties Elasticity nanoindentation Diamond anvil cell
在线阅读 下载PDF
On uncertainty of elastic modulus measurements via nanoindentation mechanical testing and conventional triaxial testing
2
作者 Zhidi Wu Eric Edelman +2 位作者 Kathleen Ritterbush Yanbo Wang Brian McPherson 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期4700-4714,共15页
Geomechanical properties of rocks vary across different measurement scales,primarily due to heterogeneity.Micro-scale geomechanical tests,including micro-scale“scratch tests”and nano-scale nanoindentation tests,are ... Geomechanical properties of rocks vary across different measurement scales,primarily due to heterogeneity.Micro-scale geomechanical tests,including micro-scale“scratch tests”and nano-scale nanoindentation tests,are attractive at different scales.Each method requires minimal sample volume,is low cost,and includes a relatively rapid measurement turnaround time.However,recent micro-scale test results–including scratch test results and nanoindentation results–exhibit tangible variance and uncertainty,suggesting a need to correlate mineral composition mapping to elastic modulus mapping to isolate the relative impact of specific minerals.Different research labs often utilize different interpretation methods,and it is clear that future micro-mechanical tests may benefit from standardized testing and interpretation procedures.The objectives of this study are to seek options for standardized testing and interpretation procedures,through two specific objectives:(1)Quantify chemical and physical controls on micro-mechanical properties and(2)Quantify the source of uncertainties associated with nanoindentation measurements.To reach these goals,we conducted mechanical tests on three different scales:triaxial compression tests,scratch tests,and nanoindentation tests.We found that mineral phase weight percentage is highly correlated with nanoindentation elastic modulus distribution.Finally,we conclude that nanoindentation testing is a mineralogy and microstructure-based method and generally yields significant uncertainty and overestimation.The uncertainty of the testing method is largely associated with not mapping pore space a priori.Lastly,the uncertainty can be reduced by combining phase mapping and modulus mapping with substantial and random data sampling. 展开更多
关键词 Elastic modulus nanoindentation test Triaxial test Scratch test Uncertainty source Uncertainty quantification Pore space
在线阅读 下载PDF
Abnormally enhanced displacement burst at elevated temperatures of AZ31 magnesium alloy during nanoindentation
3
作者 Song-Yu Yan Zhang-Jie Wang Zhi-Wei Shan 《Journal of Materials Science & Technology》 2025年第8期171-178,共8页
The unveiling of temperature effects on the deformation behaviors of wrought magnesium(Mg)alloys is beneficial for optimizing the hot forming parameters of these alloys with limited room temperature(RT)formability.In ... The unveiling of temperature effects on the deformation behaviors of wrought magnesium(Mg)alloys is beneficial for optimizing the hot forming parameters of these alloys with limited room temperature(RT)formability.In the present work,we performed nanoindentations on individual grains of textured wrought AZ31 alloy along the normal direction(ND)from RT to 300℃to investigate the intrinsic non-basal dislocation behaviors at various temperatures.Interestingly,we observed abnormally enhanced nanoindentation displacement bursts(pop-ins)at elevated temperatures ranging from 150 to 250℃,which is beyond the general scenario that higher temperatures typically result in smoother plastic flow.The bursts exhibited Gaussian-like statistics,which differ from the well-reported bursts with power-law size distributions resulting from the destruction of jammed dislocation configurations.Through transmission electron microscopy(TEM)examination of the microstructure beneath the indentation just after the burst,we found that the abnormal displacement bursts originated from the heterogeneous nucleation of prismatic screw(a)dislocations due to the exhaustion of dislocation sources within the specified temperature range. 展开更多
关键词 nanoindentation POP-IN Gaussian-like distribution Dislocation nucleation Prismatic slip
原文传递
Molecular Dynamics Simulations of Micromechanical Behaviours for AlCoCrFeNi_(2.1)High Entropy Alloy during Nanoindentation
4
作者 Ji-Peng Yang Hai-Feng Zhang +1 位作者 Hong-Chao Ji Nan Jia 《Acta Metallurgica Sinica(English Letters)》 2025年第2期218-232,共15页
Eutectic high entropy alloys are noted for their excellent castability and comprehensive mechanical properties.The excellent mechanical properties are closely related to the activation and evolution of deformation mec... Eutectic high entropy alloys are noted for their excellent castability and comprehensive mechanical properties.The excellent mechanical properties are closely related to the activation and evolution of deformation mechanisms at the atomic scale.In this work,AlCoCrFeNi2.1 alloy is taken as the research object.The mechanical behaviors and deformation mechanisms of the FCC and B2 single crystals with different orientations and the FCC/B2 composites with K-S orientation relationship during nanoindentation processes are systematically studied by molecular dynamics simulations.The results show that the mechanical behaviors of FCC single crystals are significantly orientation-dependent,meanwhile,the indentation force of[110]single crystal is the lowest at the elastic-plastic transition point,and that for[100]single crystal is the lowest in plastic deformation stage.Compared with FCC,the stress for B2 single crystals at the elastic-plastic transition point is higher.However,more deformation systems such as stacking faults,twins and dislocation loops are activated in FCC single crystal during the plastic deformation process,resulting in higher indentation force.For composites,the flow stress increases with the increase of B2 phase thickness during the initial stage of deformation.When indenter penetrates heterogeneous interface,the significantly increased deformation system in FCC phase leads to a significant increase in indentation force.The mechanical behaviors and deformation mechanisms depend on the component single crystal.When the thickness of the component layer is less than 15 nm,the heterogeneous interfaces fail to prevent the dislocation slip and improve the indentation force.The results will enrich the plastic deformation mechanisms of multi-principal eutectic alloys and provide guidance for the design of nanocrystalline metallic materials. 展开更多
关键词 High entropy alloy Mechanical behavior Plastic deformation mechanism nanoindentation Molecular dynamics simulation
原文传递
Shale weak cementation model and elastic modulus prediction based on nanoindentation experiment
5
作者 Jian-Bo Wang Yang-Yang Zhang +4 位作者 Jian-Tong Liu Xiao-Di Li Bo Zhou Yuan-Kai Zhang Bao-Xing Liang 《Petroleum Science》 2025年第5期2123-2141,共19页
The successful development of shale oil and gas reservoirs is the biggest technological revolution in the oil and gas industry.Its key technologies are horizontal well drilling and fracturing,which are based on unders... The successful development of shale oil and gas reservoirs is the biggest technological revolution in the oil and gas industry.Its key technologies are horizontal well drilling and fracturing,which are based on understanding the mechanical properties of reservoir rocks.Therefore,it is critical to obtain the reservoir mechanical parameters quickly,efficiently,and inexpensively.In this study,shale samples were collected from three basins in Southwest China,and the elastic modulus of shale in the indentation depth range of 0-5000 nm was obtained by nanoindentation experiments.Experimental results showed that different indentation depths had different physical characteristics.The shallower depths had the mechanical properties of single minerals,while the deeper depths had the mechanical properties of a multi-mineral composite.The difference between the two represented the cementation strength between the mineral particles.The error between the calculation results of the existing equivalent medium theoretical model and experimental data reached 324%.In this study,a weak cementation model was adopted,and three parameters obtained by nanoindentation experiments were considered:the soft component volume content,intergranular cementation strength,and mineral particle size.This solved the problem of assuming rather than calculating the values of some parameters in the existing model and realized the prediction of the macroscopic mechanical parameters of shale.The calculation error was reduced to less than 20%,and the test method and calculation model can be popularized and applied in engineering. 展开更多
关键词 SHALE nanoindentation Multiscale Weak cementation model Elastic modulus
原文传递
Orientation-dependence of incipient plasticity in a coarse-grained Mg revealed by nanoindentation pop-ins
6
作者 Moein Imani Foumani Syed Taha Khursheed +1 位作者 Yushun Liu Guo-zhen Zhu 《Journal of Magnesium and Alloys》 2025年第6期2554-2564,共11页
The nanoindentation pop-in behaviors of 13 grains with diverse crystallographic orientations were analysed using a coarse-grained Mg-2 wt.% Gd alloy.Within nanoscale stressed volumes within all grains,the converted sh... The nanoindentation pop-in behaviors of 13 grains with diverse crystallographic orientations were analysed using a coarse-grained Mg-2 wt.% Gd alloy.Within nanoscale stressed volumes within all grains,the converted shear stresses for the first pop-in,calculated using the indentation Schmid factor,ranged from 1 to 1.3 GPa,consistent with theoretical predictions for dislocation nucleation in Mg.The estimated activation volume of the first pop-in was approximately 27–40 A3(involving about ~2 atoms),aligning with reported atomistic simulations of the surface dislocation semi-loop nucleation.While indented near the -axis,grains exhibit higher first pop-in loads and successive pop-ins,implying the possibility of a cross-slip nucleation mechanism to accommodate -axis deformation. 展开更多
关键词 Incipient plasticity Dislocation nucleation MAGNESIUM nanoindentation
在线阅读 下载PDF
Nanoindentation behavior in T-carbon thin films:a molecular dynamics study
7
作者 Runhua Zhou Changjin Huang +2 位作者 Narasimalu Srikanth Lichun Bai Mao See Wu 《Acta Mechanica Sinica》 2025年第5期1-12,共12页
T-carbon is a new allotrope of carbon materials,and it displays high hardness and low density.Nevertheless,the hardening mechanisms of T-carbon thin films under nanoindentation remain elusive.This work utilizes molecu... T-carbon is a new allotrope of carbon materials,and it displays high hardness and low density.Nevertheless,the hardening mechanisms of T-carbon thin films under nanoindentation remain elusive.This work utilizes molecular dynamics simulation to explore the hardening mechanisms of T-carbon thin films under nanoindentation with variations of loading velocities and temperatures.The results reveal that a loading velocity increase at a given temperature raises the nanoindentation force.The increase in nanoindentation force is due to graphitization,which is related to the fracture of tetrahedral structures in T-carbon thin films.However,increased graphitization caused by an increased temperature lowers the nanoindentation force at a given loading velocity.The increased graphitization is influenced by both the fractured tetrahedrons and the deformation of inter-tetrahedron bond angles.This is attributed to the loss of thermal stability and the lower density of T-carbon thin films as the temperature increases.These findings have significant implications for the design of nanodevices for specific application requirements. 展开更多
关键词 T-carbon thin films Molecular dynamics nanoindentation Hardening mechanisms
原文传递
Quantitative characterization of the multiscale mechanical properties of low‑permeability sandstone roofs of coal seams based on nanoindentation and triaxial tests and its implications for CO_(2) geological sequestration
8
作者 Feng Cao Jianhua He +5 位作者 Hongxiu Cao Hucheng Deng Andrew D.La Croix Rui Jiang Ruixue Li Jiarun Li 《International Journal of Coal Science & Technology》 2025年第1期125-151,共27页
Microstructural heterogeneity of low-permeability sandstone roofs of deep unmineable coal seams due to diagenesis significantly affects rock mechanical behavior,greatly impacting the sealing potential of in situ CO_(2... Microstructural heterogeneity of low-permeability sandstone roofs of deep unmineable coal seams due to diagenesis significantly affects rock mechanical behavior,greatly impacting the sealing potential of in situ CO_(2) sequestration and the structural stability of the geological formation.However,little is known about how the microstructure of different mineral groups influences the multiscale mechanical behavior of deep sandstone.This study proposes a new method for quantitatively characterizing the multiscale mechanical properties of low-permeability sandstone and shows the mechanisms responsible for mechanical failure at the micro-,meso-,and macroscale.Triaxial compression tests and targeted nanoindentation tests were conducted to assess the micro-and macroscale mechanical properties of different types of sandstone.The micro-and macroscale experiments were coupled with numerical simulations of compression using a unified cohesive model based on Voronoi polygons to clarify the multiscale mechanical behavior.The results indicate that quartz,the primary mineral component of the sandstones examined,exhibits the strongest micromechanical properties,followed by feldspar,calcite,and clay minerals.Compared to polycrystalline quartz,monocrystalline quartz has a more stable microstructure and is mechanically stronger.The macro-mechanical properties of tight sandstone samples are weakened by increased microstructural inhomogeneity and larger grain size.This leads to a higher likelihood of splitting damage,characterized by a high degree of discrete and weak stress sensitivity.The major conclusion is that the positive rhythm lithofacies of medium-grained sandstone to siltstone are the most favorable for efficient CO_(2) sequestration in deep unmineable coal seams. 展开更多
关键词 Low-permeability sandstone roofs of coal seams Triaxial test nanoindentation test Mechanical properties Fracture mechanical behavior CO_(2)sequestration
在线阅读 下载PDF
Atomistic simulation of nanoindentation behavior of amorphous/crystalline dual-phase high entropy alloys 被引量:2
9
作者 R.C.Han H.Y.Song +1 位作者 S.Li T.Guo 《Journal of Materials Science & Technology》 CSCD 2024年第30期46-56,共11页
High-entropy alloys(HEAs)are a new type of multi-principal metal materials that exhibit excellent me-chanical properties.However,the strength-ductility balance in the HEAs remains a challenge that needs to be addresse... High-entropy alloys(HEAs)are a new type of multi-principal metal materials that exhibit excellent me-chanical properties.However,the strength-ductility balance in the HEAs remains a challenge that needs to be addressed.The amorphous/crystalline(A/C)structure is a new design strategy to achieve high strength and excellent ductility of the HEAs.Here,the influences of amorphous layer spacing,indenter velocity,and indenter radius on the mechanical properties and microstructure evolution of the A/C dual-phase CoCrFeMnNi HEAs under nanoindentation were investigated by molecular dynamics(MD)simula-tion.The results indicate that the plastic deformation mechanism of the monocrystalline HEAs is mainly dominated by the nucleation and slip of dislocations,while the plastic deformation mechanism of the dual-phase HEAs is mainly dominated by the interaction between dislocations and amorphous phases.The results show that the average indentation force of the dual-phase HEAs increases with the increase of the amorphous layer spacing.The amorphous layer in the HEAs can hinder the expansion of disloca-tions,limiting them to the crystalline matrix between the two amorphous layers.The results also indicate that Young’s modulus of the HEAs increases with the increase of the indentation velocity and indentation radius.However,the hardness of HEAs is positively correlated with the indenter velocity,and negatively correlated with the indenter radius.It should be noted that the critical indentation depth and critical in-dentation force for the plastic deformation of the dual-phase HEAs decrease with the increase of indenter velocity,which is opposite to that of the single-phase crystalline HEAs. 展开更多
关键词 High-entropy alloys nanoindentation Deformation mechanism Molecular dynamics simulation
原文传递
Correlation of microstructure and magnetic softness of Si-microalloying FeNiBCuSi nanocrystalline alloy revealed by nanoindentation
10
作者 Benjun Wang Wenjun Liu +9 位作者 Li Liu Yu Wang Yu Hang Xinyu Wang Mengen Shi Hanchen Feng Long Hou Chenchen Yuan Zhong Li Weihuo Li 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第12期351-359,共9页
Compared to the commercial soft-magnetic alloys,the high saturation magnetic flux density(Bs)and low coercivity(Hc)of post-developed novel nanocrystalline alloys tend to realize the miniaturization and lightweight of ... Compared to the commercial soft-magnetic alloys,the high saturation magnetic flux density(Bs)and low coercivity(Hc)of post-developed novel nanocrystalline alloys tend to realize the miniaturization and lightweight of electronic products,thus attracting great attention.In this work,we designed a new FeNiBCuSi formulation with a novel atomic ratio,and the microstructure evolution and magnetic softness were investigated.Microstructure analysis revealed that the amount of Si prompted the differential chemical fluctuations of Cu element,favoring the different nucleation and growth processes ofα-Fe nanocrystals.Furthermore,microstructural defects associated with chemical heterogeneities were unveiled using the Maxwell-Voigt model with two Kelvin units and one Maxwell unit based on creeping analysis by nanoindentation.The defect,with a long relaxation time in relaxation spectra,was more likely to induce the formation of crystal nuclei that ultimately evolved into theα-Fe nanocrystals.As a result,Fe_(84)Ni_(2)B_(12.5)Cu_(1)Si_(0.5)alloy with refined uniform nanocrystalline microstructure exhibited excellent magnetic softness,including a high B_(s)of 1.79 T and very low H_(c)of 2.8 A/m.Our finding offers new insight into the influence of activated defects associated with chemical heterogeneities on the microstructures of nanocrystalline alloy with excellent magnetic softness. 展开更多
关键词 nanocrystalline alloy magnetic softness MICROSTRUCTURES defects nanoindentation
原文传递
Nanoindentation behavior and creep-induced cracking of long-term crept austenitic steel at 650℃
11
作者 Zhen Zhang Yu-hang Duan +7 位作者 Shuai Wang Jin-shan Chen An-zhe Wang Xiang-yang Mao Yuan-ji Shi Jie Zhang Ming Liu Zheng-fei Hu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第2期464-474,共11页
The grain boundary(GB)damage of long-term crept HR3C(25Cr–20Ni–Nb–N)austenitic steel with solid solution state was investigated by nanoindentation test accompanied with in-situ electron back-scattered diffraction.T... The grain boundary(GB)damage of long-term crept HR3C(25Cr–20Ni–Nb–N)austenitic steel with solid solution state was investigated by nanoindentation test accompanied with in-situ electron back-scattered diffraction.The corresponding microstructure was characterized by scanning electron microscopy and transmission electron microscopy.Results show that the increase in nanoindentation hardness at the GBs and triple grain junctions may be related to the dislocation accumulation and carbide growth during the creep.Coarsened M23C6 and dislocations piling-up at the GB accelerate the nucleation and coalescence of creep cavity along the GB.The nanoindentation hardness in grains varies with orientation of the stress axis.The orientation difference of neighbor grains may induce local high geometrically necessary dislocation densities and strain gradients near the GB,consequently causing stress concentration and subsequent crack growth at specific GBs. 展开更多
关键词 Austenitic steel CREEP nanoindentation Grain orientation Creep-induced cracking
原文传递
Temperature effect on nanotwinned Ni under nanoindentation using molecular dynamic simulation
12
作者 何茜 徐子翼 倪玉山 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期603-612,共10页
Temperature effect on atomic deformation of nanotwinned Ni (nt-Ni) under localized nanoindentation is investigated in comparison with nanocrystalline Ni (nc-Ni) through molecular simulation.The nt-Ni exhibits enhanced... Temperature effect on atomic deformation of nanotwinned Ni (nt-Ni) under localized nanoindentation is investigated in comparison with nanocrystalline Ni (nc-Ni) through molecular simulation.The nt-Ni exhibits enhanced critical load and hardness compared to nc-Ni,where perfect,stair-rod and Shockley dislocations are activated at (111),(111) and (111) slip planes in nt-Ni compared to only SSockley dislocation nucleation at (111) and (111) slip planes of nc-Ni.The nt-Ni exhibits a less significant indentation size effect in comparison with nc-Ni due to the dislocation slips hindrance of the twin boundary.The atomic deformation associated with the indentation size effect is investigated during dislocation transmission.Different from the decreasing partial slips parallel to the indenter surface in nc-Ni with increasing temperature,the temperaturedependent atomic deformation of nt-Ni is closely related to the twin boundary:from the partial slips parallel to the twin boundary (~10 K),to increased confined layer slips and decreased twin migration(300 K–600 K),to decreased confined layer slips and increased dislocation interaction of dislocation pinning and dissociation (900 K–1200 K).Dislocation density and atomic structure types through quantitative analysis are implemented to further reveal the above-mentioned dislocation motion and atomic structure alteration.Our study is helpful for understanding the temperature-dependent plasticity of twin boundary in nanotwinned materials. 展开更多
关键词 nanoindentation twin boundary plastic deformation molecular dynamics simulation
原文传递
Mechanical properties of tungsten nanowhiskers characterized by nanoindentation 被引量:2
13
作者 侯丽珍 王世良 +2 位作者 陈国良 贺跃辉 谢亚 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第8期2323-2328,共6页
The Mechanical properties of the hexagonal tungsten nanowhiskers, which were synthesized by chemical vapor deposition, were characterized by instrumented nanoindentation and atomic force microscope (AFM). The nanoin... The Mechanical properties of the hexagonal tungsten nanowhiskers, which were synthesized by chemical vapor deposition, were characterized by instrumented nanoindentation and atomic force microscope (AFM). The nanoindentation results show that tungsten nanowhiskers exhibit a hardness of (6.2±1.7) GPa and an elastic modulus of (225±20) GPa. According to the comparative test results, the tungsten nanowhiskers possess a comparable hardness to tungsten microwhiskers, and an hardness increase of 35% to the bulk single-crystal tungsten. The increase in the hardness of whiskers is attributed to the lacking of dislocation avalanche observed in the bulk single-crystal tungsten. The measured modulus is about 80% that of the tungsten microwhiskers, which can be contributed to the size effects of the nanowhiskers and the substrate effects in the nanoindentation test. 展开更多
关键词 TUNGSTEN NANOWHISKERS mechanical properties nanoindentation
在线阅读 下载PDF
Elastic modulus determination at different levels of periodontal ligament in nanoindentation 被引量:1
14
作者 杨宇 汤文成 《Journal of Southeast University(English Edition)》 EI CAS 2017年第1期33-38,共6页
In order to investigate the material properties ofperiodontal ligament ( PDL) in different locations, the nanoindentation method is used to survey the elastic modulus of the PDL at different levels. Cadaveric specim... In order to investigate the material properties ofperiodontal ligament ( PDL) in different locations, the nanoindentation method is used to survey the elastic modulus of the PDL at different levels. Cadaveric specimens of human mandibular canine were obtained from 4 adult donors, 16 transverse specimens were made from the sections of cervical margin, midroot and apex using the slow cutting machine. The prepared specimens were tested in different sections (along the longitudinal direction) and different areas (in the circumferential direction). According to the Oliver-Phair theory, the mean values of elastic modulus were calculated foreach area and the differences among them were compared. In the midroot section, the average elastic modulus is ranging from 0. 11 to 0. 23 MPa, the changing range of the cervical margin and apex are from 0. 21 to 0. 53 MPa and 0. 44 to0.62 MPa, respectively. Experimental results indicate that the average elastic modulus in the midroot is lower than that in the cervical margin and apex, and relatively small changes occur among them. However, there is a large change to the elastic modulus value in the cicumferential direction for the PDL. 展开更多
关键词 periodontal ligament PDL) elastic modulus nanoindentation material properties CANINE
暂未订购
Creep characteristics of coal and rock investigated by nanoindentation 被引量:16
15
作者 Changlun Sun Guichen Li +2 位作者 Mohamed Elgharib Gomah Jiahui Xu Yuantian Sun 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2020年第6期769-776,共8页
In coal mining industry,with the depth growing of coal mines,the creep behaviours of coal and rock can extensively affect the mining safety,coalbed methane recovery and geo-sequestration.To acquire a better insight in... In coal mining industry,with the depth growing of coal mines,the creep behaviours of coal and rock can extensively affect the mining safety,coalbed methane recovery and geo-sequestration.To acquire a better insight into their creep characteristics,an efficient and robust researching technique,nanoindentation,was applied to investigate the creep performances of coal and rock samples obtained from two coal mines in the east of China.Creep characteristics were reflected by evaluating the curves of creep depth versus creep time of nanoindentation tests during the load-holding period at the peak load of 30 mN.These curves can be divided into two stages:transient stage and steady stage;and the time of load-holding period of 5 s,which is the dividing point between two stages,can efficiently avoid the influence of creep displacement on the unloading curves.The exponential function can perfectly fit creep curves and Kelvin model can be used to calculate the rheological parameters of coal and rock samples.Calculated results yield values for the creep modulus and viscosity terms of coal and rock.This study also settled a particular emphasis on the selection of the positions of indentations to obtain the rheological properties of mineralogical constituents in heterogonous coal and rock samples and their elastic aftereffect. 展开更多
关键词 Coal and rock nanoindentation CREEP Heterogeneous properties Elastic aftereffect
在线阅读 下载PDF
Factors impacting nanoindentation testing results of the cuticle of dung beetle Copris ochus Motschulsky 被引量:7
16
作者 TONG Jin , SUN Ji-yu , CHEN Dong-hui , ZHANG Shu-jun 1 1 1 2 1. Key Laboratory for Terrain-Machine Bionics Engineering (Ministry of Education, China), Jilin University, 5988 Renmin Street, Changchun 130022, P. R. China 2. Department of Multi-media and Computing, University of Gloucestershire, Cheltenham, The Park, GL50 2QF, UK. 1 《Journal of Bionic Engineering》 SCIE EI CSCD 2004年第4期221-230,共10页
The cuticle of dung beetle is a layered composite material in micro- or nano-scale. Dung beetle can fly, walk and dig. It can shovel and compact dung of mammals into balls. It use foreleg to walk, midleg and hindleg ... The cuticle of dung beetle is a layered composite material in micro- or nano-scale. Dung beetle can fly, walk and dig. It can shovel and compact dung of mammals into balls. It use foreleg to walk, midleg and hindleg to hold and impel dung ball. Its two foreleges as digging legs are developed. The factors impacting the nanoindentation testing results of the femur cuticle of forelegs of dung beetle Copris ochus Motschulsky were examined. The nanomechanical test instrument used for the tests was Hysitron nanomechanical system. The results shown that the holding time and loading time are important factors im- pacting the accuracy of such indentation properties as reduced modulus (Er) and the harness ( H ) of the femur cuticle of the forelegs of dung beetle Copris ochus Motschulsky in nanoscale. There exists a threshold holding time of 20 s for the reduced modulus of the femur cuticle. The tests of nanoindentation creep property and the regression analysis of relationship between the depth increment at the maximum load and the time further confirmed the correction of the above threshold holding time. There exist visco-elastic-plastic behaviour and creep phenomenon in the femur cuticle during indenting. Its creep property during the holding procedure at maximum load can be regressed by a general logarithmic equation. The equation fitted by the testing data is ? h = 54.83452 ln(0.00723t +1.00486), where, ? h is the depth increment at the maximum load and t is the time. 展开更多
关键词 INSECT dung beetle cuticle nanoindentation holding time loading time creep 1
在线阅读 下载PDF
Fracture Toughness Properties of Three Different Biomaterials Measured by Nanoindentation 被引量:6
17
作者 Ji-yu Sun Jin Tong 《Journal of Bionic Engineering》 SCIE EI CSCD 2007年第1期11-17,共7页
The fracture toughness of hard biomaterials, such as nacre, bovine hoof wall and beetle cuticle, is associated with fibrous or lamellar structures that deflect or stop growing cracks. Their hardness and reduced modulu... The fracture toughness of hard biomaterials, such as nacre, bovine hoof wall and beetle cuticle, is associated with fibrous or lamellar structures that deflect or stop growing cracks. Their hardness and reduced modulus were measured by using a nanoindenter in this paper. Micro/nanoscale cracks were generated by nanoindentation using a Berkovich tip. Nanoindentation of nacre and bovine hoof wall resulted in pile-up around the indent. It was found that the fracture toughness (Kc) of bovine hoof wall is the maximum, the second is nacre, and the elytra cuticle of dung beetle is the least one. 展开更多
关键词 biomimetics BIONICS BIOMATERIALS nanoindentation laminated structure fracture toughness
在线阅读 下载PDF
Determination of Elastoplastic Mechanical Properties of the Weld and Heat Affected Zone Metals in Tailor-Welded Blanks by Nanoindentation Test 被引量:7
18
作者 MA Xiangdong GUAN Yingping YANG Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第5期911-918,共8页
The elastoplastic mechanical properties of the weld and heat affected zone metals have comparatively major impact on the forming process of tailor-welded blanks. A few scholars investigated the elastoplastic mechanica... The elastoplastic mechanical properties of the weld and heat affected zone metals have comparatively major impact on the forming process of tailor-welded blanks. A few scholars investigated the elastoplastic mechanical properties of the weld and heat affected zone, but they only simply assumed that it was a uniform distribution elastoplastic material different from the base materials. Four types of tailor-welded blanks which consist of ST12 and 304 stainless steel plates are selected as the research objects, the elastoplastic mechanical properties of the tailor-welded blanks weld and heat affected zone metals are obtained based on the nanoindentation tests, and the Erichsen cupping tests are conducted by combining numerical simulation with physical experiment. The nanoindentation tests results demonstrate that the elastoplastic mechanical properties of the weld and heat affected zone metals are not only different from the base materials, but also varying between the weld metals and the heat affected zone metals. Comparing the Erichsen cupping test resulted from numerical with that from experimental method, it is found that the numerical value of Erichsen cupping test which consider the elastoplastic mechanical properties of the weld and heat affected zone metals have a good agreement with the experimental result, and the relative error is only 4.8%. The proposed research provides good solutions for the inhomogeneous elastoplastic mechanical properties of the tailor-welded blanks weld and heat affected zone metals, and improves the control performance of tailor-welded blanks forming accuracy. 展开更多
关键词 tailor-welded blanks elastoplastic mechanical properties nanoindentation test Erichsen cupping test
在线阅读 下载PDF
The microscopic mechanical performance for nonuniform welded joint of nickel-based alloy with nanoindentation 被引量:6
19
作者 Li Xiaoquan Hao Benxing +2 位作者 Chen Yixin Yun Yeling Yang Zonghui 《China Welding》 EI CAS 2019年第2期29-34,共6页
To quantify the nonuniform micromechanical performance of welded joint,the load-displacement curves by nanoindentation test were introduced to examine different zones including base metal,coarse grained heat affected ... To quantify the nonuniform micromechanical performance of welded joint,the load-displacement curves by nanoindentation test were introduced to examine different zones including base metal,coarse grained heat affected zone,partially melted zone,weld metal near the fusion boundary and weld metal center.The results showed that the strengthening effect of weld metal was more obvious than that of heat affected zone for nickel based welded joint and especially in coarse grained heat affected zone,the hardening resulted from overheating was not apparent.Nickel based weld metal with high content of alloying elements which were often segregated at interdendritic regions or precipitated in grain interior under nonequilibrium solidification contributed to the characteristics that differ from conventional low alloy steel welded joint. 展开更多
关键词 MICROSCOPIC mechanical performance nanoindentation NICKEL based alloy WELDED joint
在线阅读 下载PDF
Plastic characterization of metals by combining nanoindentation test and finite element simulation 被引量:6
20
《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第8期2368-2373,共6页
Materials with the same elastic modulus E and representative stress and strain (σr,εr) present similar indentation-loading curves, whatever the value of strain hardening exponent n. Based on this definition, a goo... Materials with the same elastic modulus E and representative stress and strain (σr,εr) present similar indentation-loading curves, whatever the value of strain hardening exponent n. Based on this definition, a good approach was proposed to extract the plastic properties or constitutive equations of metals from nanoindentation test combining finite element simulation. Firstly, without consideration of strain hardening, the representative stress was determined by varying assumed representative stress over a wide range until a good agreement was reached between the computed and experimental loading curves. Similarly, the corresponding representative strain was determined with different hypothetical values of strain hardening exponent in the range of 0-0.6. Through modulating assumed strain hardening exponent values to make the computed unloading curve coincide with that of the experiment, the real strain hardening exponent was acquired. Once the strain hardening exponent was determined, the initial yield stress ay of metals could be obtained by the power law constitution. The validity of the proposed methodology was verified by three real metals: AISI 304 steel, Fe andA1 alloy. 展开更多
关键词 nanoindentation finite element simulation representative stress representative stain initial yield stress
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部