期刊文献+
共找到843篇文章
< 1 2 43 >
每页显示 20 50 100
Efficient and stable silver-europium codoped lead-free double perovskite nanocrystals for warm-white emission
1
作者 Ruixiang Wu Fengjie Guo +8 位作者 Zixuan Wang Jiayu Di Cheng Li Ruiling Zhang Peigeng Han Yujing Wang Xilin Bai Junfeng Zhang Xiangyang Miao 《Journal of Rare Earths》 2025年第5期882-887,共6页
Owing to their unique optical properties and nontoxicity,lead-free halide double perovskite nanocrystals are of interest for widespread applications.Herein,the colloid synthesis and photoluminescenc e property of Ag^(... Owing to their unique optical properties and nontoxicity,lead-free halide double perovskite nanocrystals are of interest for widespread applications.Herein,the colloid synthesis and photoluminescenc e property of Ag^(+)-Eu^(3+)codoped Cs_(2)NaInCl_(6)nanocrystals were investigated.The pe rovskite nanocrystals exhibit a broad warm-white photo luminescence with correlated color temperature(CCT)of 3447 K and color rendering index(CRI)of 90.2,and the means of codoping would improve its optical performance.A fast energy transfer and a long-lived self-trapped excitons state are unveiled by the femtosecond transient absorption spectra.The fast energy transfer from the self-trapped excitons of host nanocrystals to the Eu^(3+)ions is helpful to achieve a broad photoluminescence,and the quantum yield of Cs_(2)NaInCl_(6):0.05Ag^(+)-Eu^(3+)anocrystals can be enha nced to 69.5%.There is a large exciton binding energy and strong electron-phonon interaction in the codoped perovskite nanocrystals.The efficient and excellent air-stable double perovskite nanocrystals would be considered as a single-component phosphor for warm-white lighting. 展开更多
关键词 Lead-free perovskite nanocrystals Warm-white emission Silver-europium codoping Femtosecond transient absorption spectra Rare earths
原文传递
Ligand Engineering Achieves Suppression of Temperature Quenching in Pure Green Perovskite Nanocrystals for Efficient and Thermostable Electroluminescence
2
作者 Kaiwang Chen Qing Du +7 位作者 Qiufen Cao Chao Du Shangwei Feng Yutong Pan Yue Liang Lei Wang Jiangshan Chen Dongge Ma 《Nano-Micro Letters》 2025年第4期25-38,共14页
Formamidinium lead bromide(FAPbBr_(3))perovskite nanocrystals(NCs)are promising for display and lighting due to their ultra-pure green emission.However,the thermal quenching will exacerbate their performance degradati... Formamidinium lead bromide(FAPbBr_(3))perovskite nanocrystals(NCs)are promising for display and lighting due to their ultra-pure green emission.However,the thermal quenching will exacerbate their performance degradation in practical applications,which is a common issue for halide perovskites.Here,we reported the heat-resistant FAPbBr_(3)NCs prepared by a ligand-engineered room-temperature synthesis strategy.An aromatic amine,specificallyβ-phenylethylamine(PEA)or 3-fluorophenylethylamine(3-F-PEA),was incoporated as the short-chain ligand to expedite the crystallization rate and control the size distribution of FAPbBr_(3)NCs.Employing this ligand engineering approach,we synthesized high quality FAPbBr_(3)NCs with uniform grain size and reduced long-chain alkyl ligands,resulting in substantially suppressed thermal quenching and enhanced carrier transportation in the perovskite NCs films.Most notably,more than 90%of the room temperature PL intensity in the 3-F-PEA modified FAPbBr_(3)NCs film was preserved at 380 K.Consequently,we fabricated ultra-pure green EL devices with a room temperature external quantum efficiency(EQE)as high as 21.9%at the luminance of above 1,000 cd m^(-2),and demonstrated less than 10%loss in EQE at 343 K.This study introduces a novel room temperature method to synthesize efficient FAPbBr_(3)NCs with exceptional thermal stability,paving the way for advanced optoelectronic device applications. 展开更多
关键词 Perovskite nanocrystals Ligands engineering Thermal quenching Ultra-pure green emission Light-emitting diodes
在线阅读 下载PDF
Preparation and fluorescence properties of SiO_(2)-coated CsPb_(1-x)Zn_(x)Br_(3)nanocrystals with enhanced efficiency and stability
3
作者 Zhe Qin Peng Wen +4 位作者 Wenkui Wu Ting Chen Yiyuan Peng Fei Wang Zhixiang Xie 《International Journal of Minerals,Metallurgy and Materials》 2025年第7期1750-1761,共12页
All-inorganic perovskite CsPbX_(3)(X=Cl,Br,I)nanocrystals(NCs)have emerged as promising candidates for light-emitting diode(LED)displays due to their outstanding photophysical properties.However,their practical applic... All-inorganic perovskite CsPbX_(3)(X=Cl,Br,I)nanocrystals(NCs)have emerged as promising candidates for light-emitting diode(LED)displays due to their outstanding photophysical properties.However,their practical application remains hindered by poor stability and the inherent toxicity of Pb2+.In this study,we present a two-step heating method to synthesize CsPb_(1-x)Zn_(x)Br_(3)NCs with enhanced optoelectronic performance and uniform dispersion.The optimized Zn^(2+)-doped NCs achieve a photoluminescence quantum yield(PLQY)of 86%,with a reduction in lattice spacing from 0.384 to 0.365 nm,attributed to increased perovskite lattice formation energy and effective surface passivation.To further improve stability,a silica(SiO_(2))shell is introduced via surface modification with(3-aminopropyl)triethoxysilane(APTES),forming CsPb_(0.7)Zn_(0.3)Br_(3)@SiO_(2)core–shell NCs.At an optimal APTES/B-site metal ion molar ratio of 1.8,the PLQY increases to 96%.The SiO2encapsulation significantly enhances environmental stability,with coated NCs retaining 43%of their initial photoluminescence(PL)intensity after immersion in water for 36 h,compared to only 5%for uncoated NCs.Furthermore,after ethanol treatment for 210 min,the coated NCs retain 39%of their initial PL intensity,while the uncoated counterparts retain merely7%.The enhanced stability and luminescence performance of CsPb_(0.7)Zn_(0.3)Br_(3)@SiO_(2)NCs make them highly promising for LED applications.White light-emitting diodes(WLEDs)fabricated using these NCs exhibit a color rendering index(CRI)of 78.2,a correlated color temperature(CCT)of 5470 K,and a luminous efficiency(LE)of 54.2 lm/W,demonstrating significant potential for next-generation display and lighting technologies. 展开更多
关键词 CsPbX3 nanocrystals zinc ion doping silica-coated white light-emitting diode STABILITY
在线阅读 下载PDF
Recent advancements in the synthesis,functionalization,and utilization of cellulose nanocrystals
4
作者 Xiao Zhang Hui Ni +3 位作者 Xiangming Xu Long Li Hailan Kang Donghan Li 《Resources Chemicals and Materials》 2025年第1期1-19,共19页
The utilization of cellulose nanocrystals(CNCs),a renewable and eco-friendly nanomaterial,has emerged as the favored option for sustainable fillers.This paper presents diverse methods for CNCs preparation,including ac... The utilization of cellulose nanocrystals(CNCs),a renewable and eco-friendly nanomaterial,has emerged as the favored option for sustainable fillers.This paper presents diverse methods for CNCs preparation,including acid hydrolysis,oxidation,mechanical method,enzymatic hydrolysis,solvent method and hybrid approach.The strategies for modifying CNCs can be summarized as encompassing physical adsorption through non-covalent bond interactions and chemical modifications via covalent bonding.Moreover,the applications of CNCs in sensing systems,electronic skin devices,packaging materials,electronics industries,stabilizers and cosmetics are discussed with a particular emphasis on their contribution to enhancing polymer matrix properties.Lastly,future prospects for the advancement of CNCs are explored with a focus on its potential impact on sustainability efforts. 展开更多
关键词 Cellulose nanocrystals PREPARATION MODIFICATION Application
在线阅读 下载PDF
Enhanced room temperature CO_(2) photoreduction on gas-solid interfaces using nanocrystals integrated with ZIF-8 wrapping design
5
作者 Xiaoxiong Hou Zhuangzhuang Ma +3 位作者 Zhilei Zhang Xiaotong Gao Hongqiang Wang Lichao Jia 《Journal of Materials Science & Technology》 2025年第6期55-63,共9页
Composites derived from metal-organic frameworks(MOFs)show promise as catalysts for the photocat-alytic reduction of CO_(2).However,their potential is hindered by constraints such as limited light absorp-tion and slug... Composites derived from metal-organic frameworks(MOFs)show promise as catalysts for the photocat-alytic reduction of CO_(2).However,their potential is hindered by constraints such as limited light absorp-tion and sluggish electron transfer and separation,impacting the overall efficiency of the photocatalytic process.In this study,TiO_(2)nanocrystals,modified with Ptx+,underwent laser etching were encapsulated within the traditional MOF-ZIF-8 framework.This enhanced the adsorption capabilities for CO_(2)reactants and solar light,while also facilitating directed electron transfer and the separation of photogenerated charges.The finely-tuned catalyst demonstrates impressive CH_(4) selectivity at 9.5%,with yields of 250.24μmol g^(-1)h^(-1)for CO and 25.43μmol g^(-1)h^(-1)for CH_(4),utilizing water as a hole trap and H^(+)source.This study demonstrates the viability of achieving characteristics related to the separation of photogen-erated charges in TiO_(2)nanocrystals through laser etching and MOF composite catalysts.It offers novel perspectives for designing MOF-based catalysts with enhanced performance in artificial photosynthesis. 展开更多
关键词 CO_(2)photoreduction nanocrystals TiO_(2) ZIF-8 Wrapping structure
原文传递
Regulation strategies of hot carrier cooling process in perovskite nanocrystals
6
作者 Zhenyao Tan Kexin Xu +2 位作者 Yi Chen Can Ren Tingchao He 《Chinese Physics B》 2025年第9期507-517,共11页
Recent breakthroughs in hot carrier(HC)cooling dynamics within halide perovskite nanocrystals(NCs)have positioned them as promising candidates for next-generation optoelectronic applications.Therefore,it is of great i... Recent breakthroughs in hot carrier(HC)cooling dynamics within halide perovskite nanocrystals(NCs)have positioned them as promising candidates for next-generation optoelectronic applications.Therefore,it is of great importance to systematically summarize advances in understanding and controlling HC relaxation mechanisms.Here,we offer an overview of advances in the understanding of the HC cooling process in perovskite NCs,with a focus on influences of excitation energy,excitation intensity,composition,size,dimensionality,doping,and core-shell structure on the HC cooling times.Finally,we propose suggestions for future investigations into the HC cooling process in perovskite NCs. 展开更多
关键词 perovskite nanocrystals hot carrier cooling ultrafast dynamics
原文传递
Electrocatalytic Nitric Oxide Reduction to Yield Ammonia over Fe_(3)C Nanocrystals
7
作者 Sen Lin Lang Zhang +4 位作者 Tong Hou Jun-Yang Ding Zi-Mo Peng Yi-Fan Liu Xi-Jun Liu 《电化学(中英文)》 北大核心 2025年第4期1-11,共11页
Nitric oxide(NO),which generally originates from vehicle exhaust and industrial flue gases,is one of the most serious air pollutants.In this case,the electrochemical NO reduction reaction(NORR)not only removes the atm... Nitric oxide(NO),which generally originates from vehicle exhaust and industrial flue gases,is one of the most serious air pollutants.In this case,the electrochemical NO reduction reaction(NORR)not only removes the atmospheric pollutant NO but also produces valuable ammonia(NH_(3)).Hence,through the synthesis and modification of Fe_(3)C nanocrystal cata-lysts,the as-obtained optimal sample of Fe_(3)C/C-900 was adopted as the NORR catalyst at ambient conditions.As a result,the Fe_(3)C/C-900 catalyst showed an NH_(3)Faraday efficiency of 76.5%and an NH_(3)yield rate of 177.5μmol·h^(-1)·cm^(-2)at the working potentials of-0.8 and-1.2 V versus reversible hydrogen electrode(vs.RHE),respectively.And it delivered a stable NORR activity during the electrolysis.Moreover,we attribute the high NORR properties of Fe_(3)C/C-900 to two aspects:one is the enhanced intrinsic activity of Fe_(3)C nanocrystals,including the lowering of the energy barrier of rate-limiting step(*NOH→*N)and the inhibition of hydrogen evolution;on the other hand,the favorable dispersion of active components,the effective adsorption of gaseous NO,and the release of liquid NH_(3)products facilitated by the porous carbon substrate. 展开更多
关键词 Nitric oxide reduction NH3 synthesis Fe_(3)C nanocrystal ELECTROLYSIS Theoretical calculation
在线阅读 下载PDF
Incorporation sodium ions into monodisperse lead-free double perovskite Cs_(2)AgBiCl_(6) nanocrystals to improve optical properties 被引量:1
8
作者 Song Wang Ying Xie +3 位作者 Wenchao Jiang Binghang Liu Keying Shi Kai Pan 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第3期549-553,共5页
Lead-free double perovskite nanocrystals(NCs)have emerged as a promising candidate in the optical field,owing to their non-toxic,good moist heat and chemical stability.However,their poor optical properties limited the... Lead-free double perovskite nanocrystals(NCs)have emerged as a promising candidate in the optical field,owing to their non-toxic,good moist heat and chemical stability.However,their poor optical properties limited their application.To improve the optical properties of lead-free double perovskite NCs,metal ion doping or alloying had been suggested as a promising strategy.Here,we prepared monodisperse,uniformly sized,cubic morphology of Cs_(2)AgBiCl_(6)NCs with different Na^(+)incorporation amounts via a simple hot-injection method.The Na^(+)incorporation broke the parity-forbidden transition by reducing the inversion symmetry of the electron wave function at the Ag site,which changed the parity of the self-trapped exciton wave function and thus allowed radiative recombination.As a result,the photoluminescence quantum yield(PLQY)of Na^(+)-alloyed Cs_(2)AgBiCl_(6)NCs(12.1%)was higher than that of Cs_(2)AgBiCl_(6)NCs(2.4%),and the exciton lifetime of Na^(+)-alloyed Cs_(2)AgBiCl_(6)NCs increased to 36.98 ns from 17.58 ns for Cs_(2)AgBiCl_(6)NCs.By adjusting the amount of Na^(+)incorporation,the band gap of Cs_(2)AgBiCl_(6)NCs can be significantly tuned from~2.90 eV to~3.50 eV.Furthermore,the temperature-dependent photoluminescence spectra indicated that the Na^(+)-alloyed Cs_(2)AgBiCl_(6)NCs possessed higher longitudinal optical phonon energy and exciton binding energy compared to Cs_(2)AgBiCl_(6)NCs.This suggested that there were strong exciton-phonon interactions during exciton recombination,a reduced probability of non-radiative processes,and excellent thermal stability.It offers a promising strategy for improving the optical properties of lead-free double perovskite NCs,and have the potential to replace traditional lead halide perovskite NCs in future optoelectronic applications. 展开更多
关键词 nanocrystals Alloy Double perovskites Optical properties Exciton binding energy
原文传递
Self-assembly of perovskite nanocrystals:From driving forces to applications 被引量:1
9
作者 Yi Li Fei Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期561-578,I0013,共19页
Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review ... Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review discusses the driving forces behind the self-assembly process of perovskite NCs,and the commonly used self-assembly methods and different self-assembly structures are detailed.Subsequently,we summarize the collective optoelectronic properties and application areas of perovskite superlattice structures.Finally,we conclude with an outlook on the potential issues and future challenges in developing perovskite NCs. 展开更多
关键词 SELF-ASSEMBLY Metal halide perovskite nanocrystals Driving forces
在线阅读 下载PDF
Gallium oxide nanocrystals for self-powered deep ultraviolet photodetectors 被引量:1
10
作者 Yufei Tan Qian Qiao +10 位作者 Tongge Zhao Shulong Chang Zhenfeng Zhang Jinhao Zang Chaonan Lin Yuanyuan Shang Xun Yang Jiawen Zhou Xuan Yu Xiaoming Yu Chongxin Shan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第23期200-209,共10页
Zero-dimensional colloidal nanocrystals(NCs)of gamma-phased gallium oxide(γ-Ga_(2)O_(3))were success-fully synthesized using the sol-gel method,resulting in nanocrystals with high crystallinity.Heterojunc-tion photod... Zero-dimensional colloidal nanocrystals(NCs)of gamma-phased gallium oxide(γ-Ga_(2)O_(3))were success-fully synthesized using the sol-gel method,resulting in nanocrystals with high crystallinity.Heterojunc-tion photodetectors were then constructed by employing spin-coating technology to depositγ-Ga_(2)O_(3)NCs film of varying thicknesses onto p-type GaN substrates.The resulting devices demonstrated self-power capability through a photovoltaic effect when exposed to ultraviolet light illumination.Notably,a device with a 300 nm thick active layer,annealed in 400℃,exhibited a responsivity of 6.7×10^(-3) A W^(-),a detectivity of 3.10×10^(11) Jones,and an external quantum efficiency of 3.2%under 254 nm light illumination at 0.16 mW cm^(-2),all without the need for an external power supply.These findings suggest promising practical applications for such photodetectors in single-point imaging systems.This study presents a straightforward and viable approach for developing high-performance and self-powered ultraviolet photodetectors based on zero-dimensionalγ-Ga_(2)O_(3)NCs,thereby opening up possibilities for various photonic systems and applications that do not rely on an external power supply. 展开更多
关键词 Ga_(2)O_(3)nanocrystals Sol-gel method Ultraviolet photodetector SELF-POWERED
原文传递
Shape and composition evolution of Pt and Pt_(3)M nanocrystals under HCl chemical etching
11
作者 Lian Sun Honglei Wang +3 位作者 Ming Ma Tingting Cao Leilei Zhang Xingui Zhou 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第9期403-407,共5页
Controlling the shape and composition of Pt-based nanocrystals is essential to improve electrocatalytic performance.In this work,we have carefully investigated the evolution process of morphology and composition for P... Controlling the shape and composition of Pt-based nanocrystals is essential to improve electrocatalytic performance.In this work,we have carefully investigated the evolution process of morphology and composition for Pt and Pt_(3)M(M=Ni,Co)nanocrystals by hydrochloric acid(HCl)etching.As a result,only Pt_(3)Ni nanocrystals successfully formed unsaturated step-like atoms on the surface and then constructed high-index facets(HIFs),while Pt and Pt_(3)Co preserved a good octahedron shape.Density functional theory(DFT)calculation suggests that Cl-ions can be tightly adsorbed on the surface of Pt_(3)Ni rather than other nanocrystals,which hinders the deposition of newly-reduced atoms and thus regulating the surface morphology.Besides,the etching of surface transitional metals further accelerates the formation of HIFs.Boosted by the active sites on the surface,HCl-Pt-Ni exhibited a~10.8 and~11.3 times higher oxygen reduction reaction(ORR)mass and specific activities than commercial Pt/C catalyst,and possessed a good durability after 10,000 cycles test.This work gives a deep insight into the design of high-performance Pt-based ORR catalysts. 展开更多
关键词 ELECTROCATALYSTS nanocrystals PLATINUM Oxygen reduction reaction DFT calculation
原文传递
Multicolor emission from lanthanide ions doped lead-free Cs_(3)Sb_(2)Cl_(9) perovskite nanocrystals
12
作者 He Shao Lifang Li +5 位作者 Xiufeng Wu Lin Xu Biao Dong Donglei Zhou Xue Bai Hongwei Song 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第5期940-946,I0005,共8页
The toxicity of lead ions has become the severe challenge for the all-inorganic lead halide p erovskite materials,although some works have rep orted the lead-free perovskite nanocrystals(NCs),the photoluminescence qua... The toxicity of lead ions has become the severe challenge for the all-inorganic lead halide p erovskite materials,although some works have rep orted the lead-free perovskite nanocrystals(NCs),the photoluminescence quantum yield(PLQY)of these materials is still unsatisfactory.Meanwhile,because the halogen ions can be easily exchanged,the controllable multicolor emission in perovskite NCs is difficult to realize in current reports.In this work,we introduced lanthanide ions into lead-free Cs_(3)Sb_(2)Cl_(9) perovskite NCs.Benefitting from the energy transfer between Cs_(3)Sb_(2)Cl_(9) perovskite NC host and lanthanide ions,the multicolor emission was realized.Based on controlling the doping concentration of Tb^(3+)and Eu^(3+)ions,the white light emission under UV excitation would be turned easily in the Tb^(3+)/Eu^(3+)codoped NCs.In addition,efficient energy transfer from perovskite NCs to Tb^(3+)or Eu^(3+)ions is beneficial to improving the optical properties of lead-free perovskite NCs,resulting in maximum PLQYs of red,green and white light emission of 22.6%,19.7%and 28.5%,respectively.Finally,a white light emitting device(WLED)was fabricated with a power efficiency of 18.5 lm/W,which presents the Commission Internationale de l'Eclairage(CIE)of(0.33,0.35). 展开更多
关键词 Perovskite nanocrystals Lead free Lanthanide ions Energy transfer White light emitting device Rare earths
原文传递
Metal-based inorganic nanocrystals for biological sonodynamic therapy applications:recent progress and perspectives
13
作者 Dong Wang Jia-Tao Zhang 《Rare Metals》 SCIE EI CAS CSCD 2024年第2期413-430,共18页
With the fast development of technology for the treatment of tumor and bacteria,photo-therapeutic strate-gies emerge as a kind of highly effective and common treatment,but the low tissue penetration depth of light lim... With the fast development of technology for the treatment of tumor and bacteria,photo-therapeutic strate-gies emerge as a kind of highly effective and common treatment,but the low tissue penetration depth of light limits their development.Sonodynamic therapy(SDT),as an efficient and non-invasive treatment,attracts more people's attention due to the inherent property of high tissue penetration.The soft tissue penetration depth of ultrasound(US)can even reach more than 10 cm,which has great advantage over that of light.Therefore,many sonosensitizers are studied and applied to SDT-based therapy.Metal-based inorganic nanocrystals are able to generate more reactive oxygen species(ROS)due to the special composition and band structure.The representative achievements and the specific functions of the nanocrystals sonosensitizers are summarized in this work,and the relationship of structure/composition-SDT performance and the internally regulated composite is revealed.Syner-gistic effects of SDT in combination with other therapeutic modalities are mainly highlighted.At the same time,the critical and potential issues and future perspectives are addressed. 展开更多
关键词 Metal-based inorganic nanocrystals Sonodynamic therapy(SDT) Tumor treatment ANTIBACTERIA
原文传递
Efficient energy transfer from self-trapped excitons to Mn^(2+) dopants in CsCdCl_(3):Mn^(2+) perovskite nanocrystals
14
作者 Anran Zhang Xinquan Zhou +1 位作者 Ranran Gu Zhiguo Xia 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1456-1461,共6页
Mn^(2+)doping has been adopted as an efficient approach to regulating the luminescence properties of halide perovskite nano-crystals(NCs).However,it is still difficult to understand the interplay of Mn^(2+)luminescenc... Mn^(2+)doping has been adopted as an efficient approach to regulating the luminescence properties of halide perovskite nano-crystals(NCs).However,it is still difficult to understand the interplay of Mn^(2+)luminescence and the matrix self-trapped exciton(STE)emission therein.In this study,Mn^(2+)-doped CsCdCl_(3) NCs are prepared by hot injection,in which CsCdCl_(3) is selected because of its unique crystal structure suitable for STE emission.The blue emission at 441 nm of undoped CsCdCl_(3) NCs originates from the defect states in the NCs.Mn^(2+)doping promotes lattice distortion of CsCdCl_(3) and generates bright orange-red light emission at 656 nm.The en-ergy transfer from the STEs of CsCdCl_(3) to the excited levels of the Mn^(2+)ion is confirmed to be a significant factor in achieving efficient luminescence in CsCdCl_(3):Mn^(2+)NCs.This work highlights the crucial role of energy transfer from STEs to Mn^(2+)dopants in Mn^(2+)-doped halide NCs and lays the groundwork for modifying the luminescence of other metal halide perovskite NCs. 展开更多
关键词 perovskite nanocrystals self-trapped excitons LUMINESCENCE energy transfer
在线阅读 下载PDF
Nonlinear Absorption and Low-threshold Two-photon Pumped Amplified Stimulated Emission from FAPbBr_(3) Nanocrystals
15
作者 WANG Yajuan TAY Yong Kang Eugene +3 位作者 WANG Fang YU Sheng SUM Tze Chien LIU Wei 《发光学报》 EI CAS CSCD 北大核心 2024年第8期1281-1291,共11页
Formamidinium lead bromide(FAPbBr_(3))nanocrystals(NCs)have been considered to be a good optoelectronic material due to their pure green emission,excellent stability and superior carrier transport characteristics.Howe... Formamidinium lead bromide(FAPbBr_(3))nanocrystals(NCs)have been considered to be a good optoelectronic material due to their pure green emission,excellent stability and superior carrier transport characteristics.However,two-photon pumped amplified spontaneous emission(ASE)and the corresponding nonlinear optical properties of FAPbBr_(3) NCs are scarcely revealed.Herein,we synthesized colloidal FAPbBr_(3) NCs with different sizes by changing the molar ratio of FABr/PbBr_(2) in the precursor solution,using ligand assisted precipitation(LARP)technology at room temperature.Photoluminescence(PL)and time resolved photoluminescence(TRPL)spectroscopy were measured to characterize their ASE properties.And their nonlinear optical properties were studied through the Zscan technique and the two-photon excited fluorescence method.The stimulated emission properties including oneand two-photon pumped ASE have been realized from FAPbBr_(3) NCs.With large two-photon absorption coefficient(0.27 cm/GW)and high non-linear absorption cross-section(7.52×10^(5) GM),ASE with threshold as low as 9.8μJ/cm^(2) and 487μJ/cm^(2) have been obtained from colloidal FAPbBr_(3) NCs using one-and two-photon excitations.These results indicate that as a new possible green-emitting frequency-upconversion material with low thresholds,FAPbBr_(3) NCs hold great potential in the development of high-performance two-photon pump lasers. 展开更多
关键词 perovskites formamidinium lead bromide nanocrystals NONLINEAR optical gain amplified spontaneous emission
在线阅读 下载PDF
Electronic structure regulation of Fe-doped Ni2P nanocrystals towards durable electrocatalytic oxygen evolution
16
作者 Ya Liu Xing Cao +10 位作者 Jia-Jia Liu Mei-Sheng Han Gao-Wei Zhang Yu-Bin Zhao Huan-Hui Chen Liang Yu Jun-Rong Zeng Zhi-Kai Cheng Liu-Biao Zhong Li-Juan Song Ye-Jun Qiu 《Rare Metals》 CSCD 2024年第12期6405-6415,共11页
The inherent electrocatalytic potential of transition metal phosphides(TMPs)for oxygen evolution is influenced by the reduced efficiency of electron transfer resulting from the interaction between electronegative phos... The inherent electrocatalytic potential of transition metal phosphides(TMPs)for oxygen evolution is influenced by the reduced efficiency of electron transfer resulting from the interaction between electronegative phosphorus atoms and transition metals.Here,we introduce Fe into Ni_(2)P nanocrystals by thermal injection synthesis method,and anchor them on nickel foam(NF)by facile spraying to prepare self-supporting oxygen evolution reaction(OER)electrocatalyst.Promisingly,the optimized electrode of Ni_(2)P-Fe-2/NF demonstrates low overpotentials of 212 mV with 10 mA·cm^(-2)and a 0.9%decay within300 h test of 50 mA·cm^(-2).Notably,when electrode size was expanded to 600 cm^(2)and applied to a larger electrolyzer,its 9 h decay rate at 6 A current was only 1.69%.Characterization results show that Fe doped NiOOH is generated during OER reaction as actual catalyst,Results from density functional theory(DFT)computations suggest that Fe doping shifts NiOOH d-band center to Fermi level,lowering critical *OOH intermediates formation energy barrier during the OER reaction.These findings inform the large-scale industrial application of TMPs as robust electrocatalysts. 展开更多
关键词 Electronic structure regulation Fe doping Colloidal nanocrystals NI2P Oxygen evolution reaction
原文传递
High reliable gas sensor based on crystal-facet regulatedα-Fe2O3 nanocrystals for rapid detection of exhaled acetone
17
作者 Jin-Yong Hu Hong Lei +4 位作者 Hong-Yu Zhang Xiong-Xiong Xue Xin-Peng Wang Cong-Hui Wang Yong Zhang 《Rare Metals》 CSCD 2024年第12期6500-6515,共16页
The exploitation of the highly reliable gassensing device for exhaled acetone detection possesses momentous and capacious development prospects in the field of an early noninvasive diabetes diagnosis.Considering that ... The exploitation of the highly reliable gassensing device for exhaled acetone detection possesses momentous and capacious development prospects in the field of an early noninvasive diabetes diagnosis.Considering that the characteristics of crystal facets will impact the gas-sensitive performance,herein three different resistive gas sensors were successfully developed by utilizing the stable α-Fe_(2)O_(3)with different crystal facets as the sensitive materials.The gas-sensitive performance testing results reveal that the(110)crystal faceted α-Fe_(2)O_(3)sensor exhibits relatively superior comprehensive gas sensitivity toward acetone.Particularly,it is worth mentioning that the sensor demonstrates reliable sensitivity,rapid response(25 s)/recovery(3 s)speed,and strong anti-interference capability in detecting 2×10^(-6)acetone for the concentration threshold of diabetes,even when exposed to prolonged periods in variable environments.Furthermore,by simply validating the feasibility of the exhalation diagnosis using the as-prepared gas sensor,the(110)faceted α-Fe_(2)O_(3)gas sensor can effectively discriminate the states of healthy human exhalation and the simulated diabetic exhalation.Through integrating the experimental and theoretical analyses,the superior acetone-sensitive performance of the(110)facetedα-Fe_(2)O_(3)gas sensor can principally be interpreted in correlation with crystal facet-dependent gas adsorption capacity and defect-forming ability.These results not only imply a tremendous application perspective in monitoring acetone gas at sub-ppm concentration,but also open up an effective throughway to develop reliable gas-sensing devices for early non-invasive diabetes screening. 展开更多
关键词 Crystal facet Acetone sensor α-Fe_(2)O_(3)nanocrystals High reliability Exhaled breath analysis
原文传递
Isolative Synthesis and Characterization of Cellulose and Cellulose Nanocrystals from Typha angustifolia
18
作者 Lynda S. Mesoppirr Evans K. Suter +2 位作者 Wesley N. Omwoyo Nathan M. Oyaro Simphiwe M. Nelana 《Open Journal of Applied Sciences》 2024年第9期2443-2459,共17页
The application potential of cellulosic materials in natural composites and other fields needs to be explored to develop innovative, sustainable, lightweight, functional biomass materials that are also environmentally... The application potential of cellulosic materials in natural composites and other fields needs to be explored to develop innovative, sustainable, lightweight, functional biomass materials that are also environmentally friendly. This study investigated Typha angustifolia (Typha sp.) as a potential new raw material for extracting cellulose nanocrystals (CNCs) for application in wastewater treatment composites. Alkaline treatments and bleaching were used to remove cellulose from the stem fibres. The CNCs were then isolated from the recovered cellulose using acid hydrolysis. The study showed a few distinct functional groups (O-H, -C-H, =C-H and C-O, and C-O-C) in the Fourier Transform Infrared (FTIR) spectra. A scanning electron microscope (SEM) revealed the smooth surface of CPC and CNCs, which resulted from removing lignin and hemicellulose from powdered Typha angustifolia. Based on the crystalline index, the powdered Typha angustifolia, CPC, and CNCs were 42.86%, 66.94% and 77.41%. The loss of the amorphous section of the Typha sp. fibre resulted in a decrease in particle size. It may be inferred from the features of a Typha sp. CNC that CNCs may be employed as reinforcement in composites for wastewater treatment. 展开更多
关键词 Typha angustifolia CELLULOSE Acid Hydrolysis Chemically Purified Cellulose Cellulose nanocrystals
在线阅读 下载PDF
Strengthening-softening transition and maximum strength in Schwarz nanocrystals
19
作者 Hanzheng Xing Jiaxi Jiang +2 位作者 Yujia Wang Yongpan Zeng Xiaoyan Li 《Nano Materials Science》 EI CAS CSCD 2024年第3期320-328,共9页
Recently,a Schwarz crystal structure with curved grain boundaries(GBs)constrained by twin-boundary(TB)networks was discovered in nanocrystalline Cu through experiments and atomistic simulations.Nanocrystalline Cu with... Recently,a Schwarz crystal structure with curved grain boundaries(GBs)constrained by twin-boundary(TB)networks was discovered in nanocrystalline Cu through experiments and atomistic simulations.Nanocrystalline Cu with nanosized Schwarz crystals exhibited high strength and excellent thermal stability.However,the grainsize effect and associated deformation mechanisms of Schwarz nanocrystals remain unknown.Here,we performed large-scale atomistic simulations to investigate the deformation behaviors and grain-size effect of nanocrystalline Cu with Schwarz crystals.Our simulations showed that similar to regular nanocrystals,Schwarz nanocrystals exhibit a strengthening-softening transition with decreasing grain size.The critical grain size in Schwarz nanocrystals is smaller than that in regular nanocrystals,leading to a maximum strength higher than that of regular nanocrystals.Our simulations revealed that the softening in Schwarz nanocrystals mainly originates from TB migration(or detwinning)and annihilation of GBs,rather than GB-mediated processes(including GB migration,sliding and diffusion)dominating the softening in regular nanocrystals.Quantitative analyses of simulation data further showed that compared with those in regular nanocrystals,the GB-mediated processes in Schwarz nanocrystals are suppressed,which is related to the low volume fraction of amorphous-like GBs and constraints of TB networks.The smaller critical grain size arises from the suppression of GB-mediated processes. 展开更多
关键词 Schwarz nanocrystal Curved grain boundary Atomistic simulation Grain size effect Maximum strength
在线阅读 下载PDF
Energy-Transfer in CsPbBr_(3) Nanocrystals:Sensitization of Porphyrin Triplets
20
作者 Yinjie Lu Zongwei Chen 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2024年第5期632-637,I0059-I0062,I0100,共11页
Sensitizing molecular triplets by colloidal nanocrystals via triplet energy transfer is important for applications such as upconversion or organic synthesis.Typically two step triplet energy transfer(TET)are included ... Sensitizing molecular triplets by colloidal nanocrystals via triplet energy transfer is important for applications such as upconversion or organic synthesis.Typically two step triplet energy transfer(TET)are included in these applications:firstly the triplet energy stored in nanocrystals are extracted into surface ligands,and then the ligands further transfer triplet energy into molecules in bulk solution.Here we report one-step TET application from CsPbBr_(3) perovskite nanocrystals(NCs)to surface-anchored metalloporphyrin derivative molecules(MP).Compared to conventional two-step TET,the one-step TET mechanism possess lower energy loss and higher TET efficiency which is more generally implementable.In this scheme,photoexcitation of CsPbBr_(3)NCs leads to the sensitization of MP ligands triplets which efficiently emit phosphorescence.The enhanced light absorption of MP ligands and down-shifted photon emission can be useful in devices such as luminescent solar concentrators. 展开更多
关键词 Triplet energy transfer CsPbBr_(3)nanocrystal Metalloporphyrin derivative Luminescent solar concentrators
在线阅读 下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部