Unsteady aerodynamic characteristics at high angles of attack are of great importance to the design and development of advanced fighter aircraft, which are characterized by post-stall maneuverability with multiple Deg...Unsteady aerodynamic characteristics at high angles of attack are of great importance to the design and development of advanced fighter aircraft, which are characterized by post-stall maneuverability with multiple Degrees-of-Freedom(multi-DOF) and complex flow field structure.In this paper, a special kind of cable-driven parallel mechanism is firstly utilized as a new suspension method to conduct unsteady dynamic wind tunnel tests at high angles of attack, thereby providing experimental aerodynamic data. These tests include a wide range of multi-DOF coupled oscillatory motions with various amplitudes and frequencies. Then, for aerodynamic modeling and analysis, a novel data-driven Feature-Level Attention Recurrent neural network(FLAR) is proposed. This model incorporates a specially designed feature-level attention module that focuses on the state variables affecting the aerodynamic coefficients, thereby enhancing the physical interpretability of the aerodynamic model. Subsequently, spin maneuver simulations, using a mathematical model as the baseline, are conducted to validate the effectiveness of the FLAR. Finally, the results on wind tunnel data reveal that the FLAR accurately predicts aerodynamic coefficients, and observations through the visualization of attention scores identify the key state variables that affect the aerodynamic coefficients. It is concluded that the proposed FLAR enhances the interpretability of the aerodynamic model while achieving good prediction accuracy and generalization capability for multi-DOF coupling motion at high angles of attack.展开更多
Dynamic sign language recognition holds significant importance, particularly with the application of deep learning to address its complexity. However, existing methods face several challenges. Firstly, recognizing dyn...Dynamic sign language recognition holds significant importance, particularly with the application of deep learning to address its complexity. However, existing methods face several challenges. Firstly, recognizing dynamic sign language requires identifying keyframes that best represent the signs, and missing these keyframes reduces accuracy. Secondly, some methods do not focus enough on hand regions, which are small within the overall frame, leading to information loss. To address these challenges, we propose a novel Video Transformer Attention-based Network (VTAN) for dynamic sign language recognition. Our approach prioritizes informative frames and hand regions effectively. To tackle the first issue, we designed a keyframe extraction module enhanced by a convolutional autoencoder, which focuses on selecting information-rich frames and eliminating redundant ones from the video sequences. For the second issue, we developed a soft attention-based transformer module that emphasizes extracting features from hand regions, ensuring that the network pays more attention to hand information within sequences. This dual-focus approach improves effective dynamic sign language recognition by addressing the key challenges of identifying critical frames and emphasizing hand regions. Experimental results on two public benchmark datasets demonstrate the effectiveness of our network, outperforming most of the typical methods in sign language recognition tasks.展开更多
Pedestrian trajectory prediction is pivotal and challenging in applications such as autonomous driving,social robotics,and intelligent surveillance systems.Pedestrian trajectory is governed not only by individual inte...Pedestrian trajectory prediction is pivotal and challenging in applications such as autonomous driving,social robotics,and intelligent surveillance systems.Pedestrian trajectory is governed not only by individual intent but also by interactions with surrounding agents.These interactions are critical to trajectory prediction accuracy.While prior studies have employed Convolutional Neural Networks(CNNs)and Graph Convolutional Networks(GCNs)to model such interactions,these methods fail to distinguish varying influence levels among neighboring pedestrians.To address this,we propose a novel model based on a bidirectional graph attention network and spatio-temporal graphs to capture dynamic interactions.Specifically,we construct temporal and spatial graphs encoding the sequential evolution and spatial proximity among pedestrians.These features are then fused and processed by the Bidirectional Graph Attention Network(Bi-GAT),which models the bidirectional interactions between the target pedestrian and its neighbors.The model computes node attention weights(i.e.,similarity scores)to differentially aggregate neighbor information,enabling fine-grained interaction representations.Extensive experiments conducted on two widely used pedestrian trajectory prediction benchmark datasets demonstrate that our approach outperforms existing state-of-theartmethods regarding Average Displacement Error(ADE)and Final Displacement Error(FDE),highlighting its strong prediction accuracy and generalization capability.展开更多
Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating In...Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating Interactive Dynamic Graph Convolution Network(IDGCN)with Temporal Multi-Head Trend-Aware Attention.Its core innovation lies in IDGCN,which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs,and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data.For 15-and 60-min forecasting on METR-LA,AIDGCN achieves MAEs of 0.75%and 0.39%,and RMSEs of 1.32%and 0.14%,respectively.In the 60-min long-term forecasting of the PEMS-BAY dataset,the AIDGCN out-performs the MRA-BGCN method by 6.28%,4.93%,and 7.17%in terms of MAE,RMSE,and MAPE,respectively.Experimental results demonstrate the superiority of our pro-posed model over state-of-the-art methods.展开更多
篇章要素识别(discourse element identification)的主要任务是识别篇章要素单元并进行分类.针对篇章要素识别对上下文依赖性理解不足的问题,提出一种基于BiLSTM-Attention的识别篇章要素模型,提高议论文篇章要素识别的准确率.该模型利...篇章要素识别(discourse element identification)的主要任务是识别篇章要素单元并进行分类.针对篇章要素识别对上下文依赖性理解不足的问题,提出一种基于BiLSTM-Attention的识别篇章要素模型,提高议论文篇章要素识别的准确率.该模型利用句子结构和位置编码来识别句子的成分关系,通过双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)进一步获得深层次上下文相关联的信息;引入注意力机制(attention mechanism)优化模型特征向量,提高文本分类的准确度;最终用句间多头自注意力(multi-head self-attention)获取句子在内容和结构上的关系,弥补距离较远的句子依赖问题.相比于HBiLSTM、BERT等基线模型,在相同参数、相同实验条件下,中文数据集和英文数据集上准确率分别提升1.3%、3.6%,验证了该模型在篇章要素识别任务中的有效性.展开更多
交通运输业减排是实现全局减排目标的关键。研究基于改进的随机性环境影响评估(Stochastic Impacts by Regression on Population,Affluence,and Technology,STIRPAT)模型分析影响交通运输业碳排放的主要因素,设置低碳、基准和高碳3种...交通运输业减排是实现全局减排目标的关键。研究基于改进的随机性环境影响评估(Stochastic Impacts by Regression on Population,Affluence,and Technology,STIRPAT)模型分析影响交通运输业碳排放的主要因素,设置低碳、基准和高碳3种情景方案,利用卷积神经网络-长短期记忆网络-注意力机制(Convolutional Neural Networks-Long short-Term Memory-Attention Mec.hanism,CNN-LSTM-Attention)交通运输业碳排放预测模型对中国30个省、自治区、直辖市2022—2035年交通运输业碳排放进行预测。结果显示:人口情况、经济水平和交通运输等3个维度的影响因素对交通运输业碳排放具有正向驱动作用,能源技术维度的影响因素则起负向驱动作用;CNN-LSTM-Attention交通运输业碳排放预测模型提升了模型在小样本数据集的预测能力,预测效果较好;低碳、基准和高碳3种情景下中国交通运输业的碳排放峰值将晚于2030年的总排放峰值目标实现;各省在碳排放峰值和达峰时间上存在异质性,应采取差异化、精准化的政策策略,局部上分区域、分梯次达峰,以整体上实现碳达峰目标。展开更多
基金supported by the National Natural Science Foundation of China(Nos.12172315,12072304,11702232)the Fujian Provincial Natural Science Foundation,China(No.2021J01050)the Aeronautical Science Foundation of China(No.20220013068002).
文摘Unsteady aerodynamic characteristics at high angles of attack are of great importance to the design and development of advanced fighter aircraft, which are characterized by post-stall maneuverability with multiple Degrees-of-Freedom(multi-DOF) and complex flow field structure.In this paper, a special kind of cable-driven parallel mechanism is firstly utilized as a new suspension method to conduct unsteady dynamic wind tunnel tests at high angles of attack, thereby providing experimental aerodynamic data. These tests include a wide range of multi-DOF coupled oscillatory motions with various amplitudes and frequencies. Then, for aerodynamic modeling and analysis, a novel data-driven Feature-Level Attention Recurrent neural network(FLAR) is proposed. This model incorporates a specially designed feature-level attention module that focuses on the state variables affecting the aerodynamic coefficients, thereby enhancing the physical interpretability of the aerodynamic model. Subsequently, spin maneuver simulations, using a mathematical model as the baseline, are conducted to validate the effectiveness of the FLAR. Finally, the results on wind tunnel data reveal that the FLAR accurately predicts aerodynamic coefficients, and observations through the visualization of attention scores identify the key state variables that affect the aerodynamic coefficients. It is concluded that the proposed FLAR enhances the interpretability of the aerodynamic model while achieving good prediction accuracy and generalization capability for multi-DOF coupling motion at high angles of attack.
基金supported by the National Natural Science Foundation of China under Grant Nos.62076117 and 62166026the Jiangxi Provincial Key Laboratory of Virtual Reality under Grant No.2024SSY03151.
文摘Dynamic sign language recognition holds significant importance, particularly with the application of deep learning to address its complexity. However, existing methods face several challenges. Firstly, recognizing dynamic sign language requires identifying keyframes that best represent the signs, and missing these keyframes reduces accuracy. Secondly, some methods do not focus enough on hand regions, which are small within the overall frame, leading to information loss. To address these challenges, we propose a novel Video Transformer Attention-based Network (VTAN) for dynamic sign language recognition. Our approach prioritizes informative frames and hand regions effectively. To tackle the first issue, we designed a keyframe extraction module enhanced by a convolutional autoencoder, which focuses on selecting information-rich frames and eliminating redundant ones from the video sequences. For the second issue, we developed a soft attention-based transformer module that emphasizes extracting features from hand regions, ensuring that the network pays more attention to hand information within sequences. This dual-focus approach improves effective dynamic sign language recognition by addressing the key challenges of identifying critical frames and emphasizing hand regions. Experimental results on two public benchmark datasets demonstrate the effectiveness of our network, outperforming most of the typical methods in sign language recognition tasks.
基金funded by the National Natural Science Foundation of China,grant number 624010funded by the Natural Science Foundation of Anhui Province,grant number 2408085QF202+1 种基金funded by the Anhui Future Technology Research Institute Industry Guidance Fund Project,grant number 2023cyyd04funded by the Project of Research of Anhui Polytechnic University,grant number Xjky2022150.
文摘Pedestrian trajectory prediction is pivotal and challenging in applications such as autonomous driving,social robotics,and intelligent surveillance systems.Pedestrian trajectory is governed not only by individual intent but also by interactions with surrounding agents.These interactions are critical to trajectory prediction accuracy.While prior studies have employed Convolutional Neural Networks(CNNs)and Graph Convolutional Networks(GCNs)to model such interactions,these methods fail to distinguish varying influence levels among neighboring pedestrians.To address this,we propose a novel model based on a bidirectional graph attention network and spatio-temporal graphs to capture dynamic interactions.Specifically,we construct temporal and spatial graphs encoding the sequential evolution and spatial proximity among pedestrians.These features are then fused and processed by the Bidirectional Graph Attention Network(Bi-GAT),which models the bidirectional interactions between the target pedestrian and its neighbors.The model computes node attention weights(i.e.,similarity scores)to differentially aggregate neighbor information,enabling fine-grained interaction representations.Extensive experiments conducted on two widely used pedestrian trajectory prediction benchmark datasets demonstrate that our approach outperforms existing state-of-theartmethods regarding Average Displacement Error(ADE)and Final Displacement Error(FDE),highlighting its strong prediction accuracy and generalization capability.
文摘Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating Interactive Dynamic Graph Convolution Network(IDGCN)with Temporal Multi-Head Trend-Aware Attention.Its core innovation lies in IDGCN,which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs,and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data.For 15-and 60-min forecasting on METR-LA,AIDGCN achieves MAEs of 0.75%and 0.39%,and RMSEs of 1.32%and 0.14%,respectively.In the 60-min long-term forecasting of the PEMS-BAY dataset,the AIDGCN out-performs the MRA-BGCN method by 6.28%,4.93%,and 7.17%in terms of MAE,RMSE,and MAPE,respectively.Experimental results demonstrate the superiority of our pro-posed model over state-of-the-art methods.
文摘篇章要素识别(discourse element identification)的主要任务是识别篇章要素单元并进行分类.针对篇章要素识别对上下文依赖性理解不足的问题,提出一种基于BiLSTM-Attention的识别篇章要素模型,提高议论文篇章要素识别的准确率.该模型利用句子结构和位置编码来识别句子的成分关系,通过双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)进一步获得深层次上下文相关联的信息;引入注意力机制(attention mechanism)优化模型特征向量,提高文本分类的准确度;最终用句间多头自注意力(multi-head self-attention)获取句子在内容和结构上的关系,弥补距离较远的句子依赖问题.相比于HBiLSTM、BERT等基线模型,在相同参数、相同实验条件下,中文数据集和英文数据集上准确率分别提升1.3%、3.6%,验证了该模型在篇章要素识别任务中的有效性.