期刊文献+
共找到37,973篇文章
< 1 2 250 >
每页显示 20 50 100
Interactive Dynamic Graph Convolution with Temporal Attention for Traffic Flow Forecasting
1
作者 Zitong Zhao Zixuan Zhang Zhenxing Niu 《Computers, Materials & Continua》 2026年第1期1049-1064,共16页
Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating In... Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating Interactive Dynamic Graph Convolution Network(IDGCN)with Temporal Multi-Head Trend-Aware Attention.Its core innovation lies in IDGCN,which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs,and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data.For 15-and 60-min forecasting on METR-LA,AIDGCN achieves MAEs of 0.75%and 0.39%,and RMSEs of 1.32%and 0.14%,respectively.In the 60-min long-term forecasting of the PEMS-BAY dataset,the AIDGCN out-performs the MRA-BGCN method by 6.28%,4.93%,and 7.17%in terms of MAE,RMSE,and MAPE,respectively.Experimental results demonstrate the superiority of our pro-posed model over state-of-the-art methods. 展开更多
关键词 Traffic flow prediction interactive dynamic graph convolution graph convolution temporal multi-head trend-aware attention self-attention mechanism
在线阅读 下载PDF
Unsteady aerodynamic modeling and analysis of aircraft model in multi-DOF coupling maneuvers at high angles of attack with attention mechanism 被引量:1
2
作者 Wenzhao DONG Xiaoguang WANG +1 位作者 Dongbo HAN Qi LIN 《Chinese Journal of Aeronautics》 2025年第6期349-361,共13页
Unsteady aerodynamic characteristics at high angles of attack are of great importance to the design and development of advanced fighter aircraft, which are characterized by post-stall maneuverability with multiple Deg... Unsteady aerodynamic characteristics at high angles of attack are of great importance to the design and development of advanced fighter aircraft, which are characterized by post-stall maneuverability with multiple Degrees-of-Freedom(multi-DOF) and complex flow field structure.In this paper, a special kind of cable-driven parallel mechanism is firstly utilized as a new suspension method to conduct unsteady dynamic wind tunnel tests at high angles of attack, thereby providing experimental aerodynamic data. These tests include a wide range of multi-DOF coupled oscillatory motions with various amplitudes and frequencies. Then, for aerodynamic modeling and analysis, a novel data-driven Feature-Level Attention Recurrent neural network(FLAR) is proposed. This model incorporates a specially designed feature-level attention module that focuses on the state variables affecting the aerodynamic coefficients, thereby enhancing the physical interpretability of the aerodynamic model. Subsequently, spin maneuver simulations, using a mathematical model as the baseline, are conducted to validate the effectiveness of the FLAR. Finally, the results on wind tunnel data reveal that the FLAR accurately predicts aerodynamic coefficients, and observations through the visualization of attention scores identify the key state variables that affect the aerodynamic coefficients. It is concluded that the proposed FLAR enhances the interpretability of the aerodynamic model while achieving good prediction accuracy and generalization capability for multi-DOF coupling motion at high angles of attack. 展开更多
关键词 Unsteady aerodynamics Aerodynamic modeling High angle of attack Wind tunnel test attention mechanism
原文传递
VTAN: A Novel Video Transformer Attention-Based Network for Dynamic Sign Language Recognition
3
作者 Ziyang Deng Weidong Min +2 位作者 Qing Han Mengxue Liu Longfei Li 《Computers, Materials & Continua》 2025年第2期2793-2812,共20页
Dynamic sign language recognition holds significant importance, particularly with the application of deep learning to address its complexity. However, existing methods face several challenges. Firstly, recognizing dyn... Dynamic sign language recognition holds significant importance, particularly with the application of deep learning to address its complexity. However, existing methods face several challenges. Firstly, recognizing dynamic sign language requires identifying keyframes that best represent the signs, and missing these keyframes reduces accuracy. Secondly, some methods do not focus enough on hand regions, which are small within the overall frame, leading to information loss. To address these challenges, we propose a novel Video Transformer Attention-based Network (VTAN) for dynamic sign language recognition. Our approach prioritizes informative frames and hand regions effectively. To tackle the first issue, we designed a keyframe extraction module enhanced by a convolutional autoencoder, which focuses on selecting information-rich frames and eliminating redundant ones from the video sequences. For the second issue, we developed a soft attention-based transformer module that emphasizes extracting features from hand regions, ensuring that the network pays more attention to hand information within sequences. This dual-focus approach improves effective dynamic sign language recognition by addressing the key challenges of identifying critical frames and emphasizing hand regions. Experimental results on two public benchmark datasets demonstrate the effectiveness of our network, outperforming most of the typical methods in sign language recognition tasks. 展开更多
关键词 Dynamic sign language recognition TRANSFORMER soft attention attention-based visual feature aggregation
在线阅读 下载PDF
Dynamic Interaction-Aware Trajectory Prediction with Bidirectional Graph Attention Network
4
作者 Jun Li Kai Xu +4 位作者 Baozhu Chen Xiaohan Yang Mengting Sun Guojun Li HaoJie Du 《Computers, Materials & Continua》 2025年第11期3349-3368,共20页
Pedestrian trajectory prediction is pivotal and challenging in applications such as autonomous driving,social robotics,and intelligent surveillance systems.Pedestrian trajectory is governed not only by individual inte... Pedestrian trajectory prediction is pivotal and challenging in applications such as autonomous driving,social robotics,and intelligent surveillance systems.Pedestrian trajectory is governed not only by individual intent but also by interactions with surrounding agents.These interactions are critical to trajectory prediction accuracy.While prior studies have employed Convolutional Neural Networks(CNNs)and Graph Convolutional Networks(GCNs)to model such interactions,these methods fail to distinguish varying influence levels among neighboring pedestrians.To address this,we propose a novel model based on a bidirectional graph attention network and spatio-temporal graphs to capture dynamic interactions.Specifically,we construct temporal and spatial graphs encoding the sequential evolution and spatial proximity among pedestrians.These features are then fused and processed by the Bidirectional Graph Attention Network(Bi-GAT),which models the bidirectional interactions between the target pedestrian and its neighbors.The model computes node attention weights(i.e.,similarity scores)to differentially aggregate neighbor information,enabling fine-grained interaction representations.Extensive experiments conducted on two widely used pedestrian trajectory prediction benchmark datasets demonstrate that our approach outperforms existing state-of-theartmethods regarding Average Displacement Error(ADE)and Final Displacement Error(FDE),highlighting its strong prediction accuracy and generalization capability. 展开更多
关键词 Pedestrian trajectory prediction spatio-temporal modeling bidirectional graph attention network autonomous system
在线阅读 下载PDF
SwinHCAD: A Robust Multi-Modality Segmentation Model for Brain Tumors Using Transformer and Channel-Wise Attention
5
作者 Seyong Jin Muhammad Fayaz +2 位作者 L.Minh Dang Hyoung-Kyu Song Hyeonjoon Moon 《Computers, Materials & Continua》 2026年第1期511-533,共23页
Brain tumors require precise segmentation for diagnosis and treatment plans due to their complex morphology and heterogeneous characteristics.While MRI-based automatic brain tumor segmentation technology reduces the b... Brain tumors require precise segmentation for diagnosis and treatment plans due to their complex morphology and heterogeneous characteristics.While MRI-based automatic brain tumor segmentation technology reduces the burden on medical staff and provides quantitative information,existing methodologies and recent models still struggle to accurately capture and classify the fine boundaries and diverse morphologies of tumors.In order to address these challenges and maximize the performance of brain tumor segmentation,this research introduces a novel SwinUNETR-based model by integrating a new decoder block,the Hierarchical Channel-wise Attention Decoder(HCAD),into a powerful SwinUNETR encoder.The HCAD decoder block utilizes hierarchical features and channelspecific attention mechanisms to further fuse information at different scales transmitted from the encoder and preserve spatial details throughout the reconstruction phase.Rigorous evaluations on the recent BraTS GLI datasets demonstrate that the proposed SwinHCAD model achieved superior and improved segmentation accuracy on both the Dice score and HD95 metrics across all tumor subregions(WT,TC,and ET)compared to baseline models.In particular,the rationale and contribution of the model design were clarified through ablation studies to verify the effectiveness of the proposed HCAD decoder block.The results of this study are expected to greatly contribute to enhancing the efficiency of clinical diagnosis and treatment planning by increasing the precision of automated brain tumor segmentation. 展开更多
关键词 attention mechanism brain tumor segmentation channel-wise attention decoder deep learning medical imaging MRI TRANSFORMER U-Net
在线阅读 下载PDF
GFL-SAR: Graph Federated Collaborative Learning Framework Based on Structural Amplification and Attention Refinement
6
作者 Hefei Wang Ruichun Gu +2 位作者 Jingyu Wang Xiaolin Zhang Hui Wei 《Computers, Materials & Continua》 2026年第1期1683-1702,共20页
Graph Federated Learning(GFL)has shown great potential in privacy protection and distributed intelligence through distributed collaborative training of graph-structured data without sharing raw information.However,exi... Graph Federated Learning(GFL)has shown great potential in privacy protection and distributed intelligence through distributed collaborative training of graph-structured data without sharing raw information.However,existing GFL approaches often lack the capability for comprehensive feature extraction and adaptive optimization,particularly in non-independent and identically distributed(NON-IID)scenarios where balancing global structural understanding and local node-level detail remains a challenge.To this end,this paper proposes a novel framework called GFL-SAR(Graph Federated Collaborative Learning Framework Based on Structural Amplification and Attention Refinement),which enhances the representation learning capability of graph data through a dual-branch collaborative design.Specifically,we propose the Structural Insight Amplifier(SIA),which utilizes an improved Graph Convolutional Network(GCN)to strengthen structural awareness and improve modeling of topological patterns.In parallel,we propose the Attentive Relational Refiner(ARR),which employs an enhanced Graph Attention Network(GAT)to perform fine-grained modeling of node relationships and neighborhood features,thereby improving the expressiveness of local interactions and preserving critical contextual information.GFL-SAR effectively integrates multi-scale features from every branch via feature fusion and federated optimization,thereby addressing existing GFL limitations in structural modeling and feature representation.Experiments on standard benchmark datasets including Cora,Citeseer,Polblogs,and Cora_ML demonstrate that GFL-SAR achieves superior performance in classification accuracy,convergence speed,and robustness compared to existing methods,confirming its effectiveness and generalizability in GFL tasks. 展开更多
关键词 Graph federated learning GCN GNNs attention mechanism
在线阅读 下载PDF
DAUNet: Unsupervised Neural Network Based on Dual Attention for Clock Synchronization in Multi-Agent Wireless Ad Hoc Networks
7
作者 Haihao He Xianzhou Dong +2 位作者 Shuangshuang Wang Chengzhang Zhu Xiaotong Zhao 《Computers, Materials & Continua》 2026年第1期847-869,共23页
Clock synchronization has important applications in multi-agent collaboration(such as drone light shows,intelligent transportation systems,and game AI),group decision-making,and emergency rescue operations.Synchroniza... Clock synchronization has important applications in multi-agent collaboration(such as drone light shows,intelligent transportation systems,and game AI),group decision-making,and emergency rescue operations.Synchronization method based on pulse-coupled oscillators(PCOs)provides an effective solution for clock synchronization in wireless networks.However,the existing clock synchronization algorithms in multi-agent ad hoc networks are difficult to meet the requirements of high precision and high stability of synchronization clock in group cooperation.Hence,this paper constructs a network model,named DAUNet(unsupervised neural network based on dual attention),to enhance clock synchronization accuracy in multi-agent wireless ad hoc networks.Specifically,we design an unsupervised distributed neural network framework as the backbone,building upon classical PCO-based synchronization methods.This framework resolves issues such as prolonged time synchronization message exchange between nodes,difficulties in centralized node coordination,and challenges in distributed training.Furthermore,we introduce a dual-attention mechanism as the core module of DAUNet.By integrating a Multi-Head Attention module and a Gated Attention module,the model significantly improves information extraction capabilities while reducing computational complexity,effectively mitigating synchronization inaccuracies and instability in multi-agent ad hoc networks.To evaluate the effectiveness of the proposed model,comparative experiments and ablation studies were conducted against classical methods and existing deep learning models.The research results show that,compared with the deep learning networks based on DASA and LSTM,DAUNet can reduce the mean normalized phase difference(NPD)by 1 to 2 orders of magnitude.Compared with the attention models based on additive attention and self-attention mechanisms,the performance of DAUNet has improved by more than ten times.This study demonstrates DAUNet’s potential in advancing multi-agent ad hoc networking technologies. 展开更多
关键词 Clock synchronization deep learning dual attention mechanism pulse-coupled oscillator
在线阅读 下载PDF
Syntax-Aware Hierarchical Attention Networks for Code Vulnerability Detection
8
作者 Yongbo Jiang Shengnan Huang +1 位作者 Tao Feng Baofeng Duan 《Computers, Materials & Continua》 2026年第1期2252-2273,共22页
In the context of modern software development characterized by increasing complexity and compressed development cycles,traditional static vulnerability detection methods face prominent challenges including high false ... In the context of modern software development characterized by increasing complexity and compressed development cycles,traditional static vulnerability detection methods face prominent challenges including high false positive rates and missed detections of complex logic due to their over-reliance on rule templates.This paper proposes a Syntax-Aware Hierarchical Attention Network(SAHAN)model,which achieves high-precision vulnerability detection through grammar-rule-driven multi-granularity code slicing and hierarchical semantic fusion mechanisms.The SAHAN model first generates Syntax Independent Units(SIUs),which slices the code based on Abstract Syntax Tree(AST)and predefined grammar rules,retaining vulnerability-sensitive contexts.Following this,through a hierarchical attention mechanism,the local syntax-aware layer encodes fine-grained patterns within SIUs,while the global semantic correlation layer captures vulnerability chains across SIUs,achieving synergistic modeling of syntax and semantics.Experiments show that on benchmark datasets like QEMU,SAHAN significantly improves detection performance by 4.8%to 13.1%on average compared to baseline models such as Devign and VulDeePecker. 展开更多
关键词 Vulnerability detection abstract syntax tree syntax rule slicing hierarchical attention mechanism deep learning
在线阅读 下载PDF
文献计量学揭示新路径方法学(NAMs)驱动环境风险评估的范式迁移:动态演进、区域协同与技术前沿
9
作者 杨雨寒 许宜平 +1 位作者 马梅 王子健 《生态毒理学报》 北大核心 2025年第5期1-21,共21页
传统环境风险评估依赖动物实验的伦理争议与效率瓶颈,催生了新路径方法学(New Approach Methodologies,NAMs)的兴起,其通过体外测试(in vitro)、计算机模拟(in silico)等技术提升评估效率与准确性并减少动物依赖。本研究基于文献计量学... 传统环境风险评估依赖动物实验的伦理争议与效率瓶颈,催生了新路径方法学(New Approach Methodologies,NAMs)的兴起,其通过体外测试(in vitro)、计算机模拟(in silico)等技术提升评估效率与准确性并减少动物依赖。本研究基于文献计量学方法,运用DDA、VOSviewer与CiteSpace等工具,系统分析1990—2025年Web of Science(SCIE)数据库中NAMs在环境风险评估领域的1991篇核心文献,揭示多维度演化规律。研究发现,NAMs研究历经早期探索(1990—2007年)、过渡发展(2008—2021年)后,于2022年进入爆发增长阶段(该阶段发文占比55%),人工智能(Artificial Intelligence,AI)成为核心驱动力。主题演化分析显示,毒理学与药理学构成核心知识基础,而有害结局路径(Adverse Outcome Pathways,AOPs)框架、下一代风险评估(Next Generation Risk Assessment,NGRA)范式及组学技术(omics)、AI技术应用成为近年热点,内分泌干扰物(endocrine-disrupting chemicals,EDCs)、微/纳米塑料(micro and nanoplastics,MNPLs)风险评估同步激增。区域格局呈现显著分化:欧美国家以56%发文量主导研究,形成以美国为核心的北美亚洲、欧洲德英、欧洲意西三大合作网络,引领框架创新;中国虽发文量居全球第2位,但国际合作率显著低于欧美,且集中于AI与组学技术应用,框架贡献薄弱。政府机构与企业取代高校院所成为研发主力,凸显监管需求与产业合规的双重驱动。NAMs研究呈现出深度学科交叉态势,其知识基础高度依赖毒理学与环境科学,并通过计算机科学等关键节点的渗透,推动了人工智能与风险评估的深度融合。同时,知识扩散呈现路径分化,环境科学聚焦污染物应用,毒理学深耕机制框架。但领域仍面临外推不确定性、数据共享壁垒及标准割裂等挑战。本研究为环境风险评估领域政策制定、跨学科协作与资源优化提供实证支撑,并指明预测毒理学与AI融合、复杂污染物评估与国际监管协同三大未来方向。 展开更多
关键词 新路径方法学(nams) 环境风险评估 文献计量学 技术前沿
在线阅读 下载PDF
中国保险业系统性风险的评估与预警研究——基于Attention-LSTM模型的分析 被引量:2
10
作者 师荣蓉 杨娅 《财经理论与实践》 北大核心 2025年第2期26-34,共9页
基于保险业系统性风险传导机制和预警机制的理论分析,利用CoVaR方法评估保险业系统性风险,从微观保险机构和宏观经济环境构建Attention-LSTM模型对保险业系统性风险进行预警分析。研究发现:当遭遇重大事件冲击时,系统重要性保险机构对... 基于保险业系统性风险传导机制和预警机制的理论分析,利用CoVaR方法评估保险业系统性风险,从微观保险机构和宏观经济环境构建Attention-LSTM模型对保险业系统性风险进行预警分析。研究发现:当遭遇重大事件冲击时,系统重要性保险机构对保险业的风险溢出增加;将金融压力指数纳入风险预警体系,其预测平均绝对误差、均方根误差和平均绝对百分比误差分别降低8.59%、7.27%和4.55%;Attention-LSTM模型能捕捉风险间的关联性和传染性,在预测准确性、泛化能力和时间稳定性方面均优于传统机器学习模型。鉴于此,应建立保险业风险分区管理体系,融合深度学习模型多维度构建保险业系统性风险预警机制。 展开更多
关键词 保险业系统性风险 评估 预警 attention-LSTM模型
在线阅读 下载PDF
基于SSA-LSTM-Attention的日光温室环境预测模型 被引量:1
11
作者 孟繁佳 许瑞峰 +3 位作者 赵维娟 宋文臻 高艺璇 李莉 《农业工程学报》 北大核心 2025年第11期256-263,共8页
建立准确的温室环境预测模型有助于精准调控温室环境促进作物的生长发育,针对温室小气候具有时序性、非线性和强耦合等特点,该研究提出了一种基于SSA-LSTM-Attention(sparrow search algorithm-long short-term memoryattention mechani... 建立准确的温室环境预测模型有助于精准调控温室环境促进作物的生长发育,针对温室小气候具有时序性、非线性和强耦合等特点,该研究提出了一种基于SSA-LSTM-Attention(sparrow search algorithm-long short-term memoryattention mechanism)的日光温室环境预测模型。首先,通过温室物联网数据采集系统获取温室内外环境数据;其次,使用皮尔逊相关性分析法筛选出强相关性因子;最后,构建环境特征时间序列矩阵输入模型进行温室环境预测。对日光温室的室内温度、室内湿度、光照强度和土壤湿度4种环境因子的预测,SSA-LSTM-Attention模型的平均拟合指数达到了97.9%。相较于反向传播神经网络(back propagation neural network,BP)、门控循环单元(gate recurrent unit,GRU)、长短期记忆神经网络(long short term memory,LSTM)和LSTM-Attention(long short-term memory-attention mechanism)模型,分别提高8.1、4.1、3.5、3.0个百分点;平均绝对百分比误差为2.6%,分别降低6.5、3.2、2.8、2.5个百分点。试验结果表明,通过利用SSA自动优化LSTM-Attention模型的超参数,提高了模型预测精度,为日光温室环境超前调控提供了有效的数据支持。 展开更多
关键词 日光温室 麻雀搜索算法 长短期记忆网络 注意力机制 环境预测模型
在线阅读 下载PDF
基于BiLSTM-Attention的议论文篇章要素识别 被引量:1
12
作者 刘佳旭 白再冉 张艳菊 《计算机系统应用》 2025年第5期202-211,共10页
篇章要素识别(discourse element identification)的主要任务是识别篇章要素单元并进行分类.针对篇章要素识别对上下文依赖性理解不足的问题,提出一种基于BiLSTM-Attention的识别篇章要素模型,提高议论文篇章要素识别的准确率.该模型利... 篇章要素识别(discourse element identification)的主要任务是识别篇章要素单元并进行分类.针对篇章要素识别对上下文依赖性理解不足的问题,提出一种基于BiLSTM-Attention的识别篇章要素模型,提高议论文篇章要素识别的准确率.该模型利用句子结构和位置编码来识别句子的成分关系,通过双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)进一步获得深层次上下文相关联的信息;引入注意力机制(attention mechanism)优化模型特征向量,提高文本分类的准确度;最终用句间多头自注意力(multi-head self-attention)获取句子在内容和结构上的关系,弥补距离较远的句子依赖问题.相比于HBiLSTM、BERT等基线模型,在相同参数、相同实验条件下,中文数据集和英文数据集上准确率分别提升1.3%、3.6%,验证了该模型在篇章要素识别任务中的有效性. 展开更多
关键词 双向长短期记忆网络 注意力机制 位置编码 篇章要素识别 多头注意力
在线阅读 下载PDF
基于Attention-1DCNN-CE的加密流量分类方法
13
作者 耿海军 董赟 +3 位作者 胡治国 池浩田 杨静 尹霞 《计算机应用》 北大核心 2025年第3期872-882,共11页
针对传统加密流量识别方法存在多分类准确率低、泛化性不强以及易侵犯隐私等问题,提出一种结合注意力机制(Attention)与一维卷积神经网络(1DCNN)的多分类深度学习模型——Attention-1DCNN-CE。该模型包含3个核心部分:1)数据集预处理阶段... 针对传统加密流量识别方法存在多分类准确率低、泛化性不强以及易侵犯隐私等问题,提出一种结合注意力机制(Attention)与一维卷积神经网络(1DCNN)的多分类深度学习模型——Attention-1DCNN-CE。该模型包含3个核心部分:1)数据集预处理阶段,保留原始数据流中数据包间的空间关系,并根据样本分布构建成本敏感矩阵;2)在初步提取加密流量特征的基础上,利用Attention和1DCNN模型深入挖掘并压缩流量的全局与局部特征;3)针对数据不平衡这一挑战,通过结合成本敏感矩阵与交叉熵(CE)损失函数,显著提升少数类别样本的分类精度,进而优化模型的整体性能。实验结果表明,在BOT-IOT和TON-IOT数据集上该模型的整体识别准确率高达97%以上;并且该模型在公共数据集ISCX-VPN和USTC-TFC上表现优异,在不需要预训练的前提下,达到了与ET-BERT(Encrypted Traffic BERT)相近的性能;相较于PERT(Payload Encoding Representation from Transformer),该模型在ISCX-VPN数据集的应用类型检测中的F1分数提升了29.9个百分点。以上验证了该模型的有效性,为加密流量识别和恶意流量检测提供了解决方案。 展开更多
关键词 网络安全 加密流量 注意力机制 一维卷积神经网络 数据不平衡 成本敏感矩阵
在线阅读 下载PDF
基于音视频信息融合与Self-Attention-DSC-CNN6网络的鲈鱼摄食强度分类方法 被引量:1
14
作者 李道亮 李万超 杜壮壮 《农业机械学报》 北大核心 2025年第1期16-24,共9页
摄食强度识别分类是实现水产养殖精准投喂的重要环节。现有的投喂方式存在过度依赖人工经验判断、投喂量不精确、饲料浪费严重等问题。基于多模态融合的鱼类摄食程度分类能够综合不同类型的数据(如:视频、声音和水质参数),为鱼群的投喂... 摄食强度识别分类是实现水产养殖精准投喂的重要环节。现有的投喂方式存在过度依赖人工经验判断、投喂量不精确、饲料浪费严重等问题。基于多模态融合的鱼类摄食程度分类能够综合不同类型的数据(如:视频、声音和水质参数),为鱼群的投喂提供更加全面精准的决策依据。因此,提出了一种融合视频和音频数据的多模态融合框架,旨在提升鲈鱼摄食强度分类性能。将预处理后的Mel频谱图(Mel Spectrogram)和视频帧图像分别输入到Self-Attention-DSC-CNN6(Self-attention-depthwise separable convolution-CNN6)优化模型进行高层次的特征提取,并将提取的特征进一步拼接融合,最后将拼接后的特征经分类器分类。针对Self-Attention-DSC-CNN6优化模型,基于CNN6算法进行了改进,将传统卷积层替换为深度可分离卷积(Depthwise separable convolution,DSC)来达到减少计算复杂度的效果,并引入Self-Attention注意力机制以增强特征提取能力。实验结果显示,本文所提出的多模态融合框架鲈鱼摄食强度分类准确率达到90.24%,模型可以有效利用不同数据源信息,提升了对复杂环境中鱼群行为的理解,增强了模型决策能力,确保了投喂策略的及时性与准确性,从而有效减少了饲料浪费。 展开更多
关键词 鲈鱼 摄食强度分类 多模态融合 Self-attention-DSC-CNN6
在线阅读 下载PDF
基于CNN-LSTM-Attention 组合模型的黄金周旅游客流预测——以大理州为例 被引量:1
15
作者 戢晓峰 郭雅诗 +2 位作者 陈方 黄志文 李武 《干旱区资源与环境》 北大核心 2025年第3期200-208,共9页
黄金周旅游客流预测一直是区域旅游管理的重大现实需求,能够为黄金周旅游组织提供更为精准的数据支持。文中基于百度迁徙数据和百度搜索指数数据,以卷积神经网络(CNN)、长短期记忆网络(LSTM)以及注意力机制(Attention)为基准,构建了CNN-... 黄金周旅游客流预测一直是区域旅游管理的重大现实需求,能够为黄金周旅游组织提供更为精准的数据支持。文中基于百度迁徙数据和百度搜索指数数据,以卷积神经网络(CNN)、长短期记忆网络(LSTM)以及注意力机制(Attention)为基准,构建了CNN-LSTM-Attention组合模型,对大理州黄金周日度旅游客流人数进行了预测,并基于SHAP算法进行了影响因素分析。结果显示:1)CNN-LSTM-Attention组合模型的预测精度优于RF模型、SVM模型、CNN模型、LSTM模型和CNN-LSTM模型。2)引入百度搜索指数特征后,模型的均方根误差(RMSE)、平均绝对百分比误差(MAPE)、决定系数(R^(2))表现最优,表明百度搜索指数的加入在一定程度上提升了模型的预测精度。文中所构模型为黄金周旅游客流预测提供了新思路。 展开更多
关键词 客流预测 黄金周 卷积神经网络(CNN) 长短期记忆网络(LSTM) 注意力机制
原文传递
基于Attention LSTM的中小企业财务风险预测模型
16
作者 张文闻 《中国市场》 2025年第27期147-150,共4页
文章提出了一种基于Attention LSTM的中小企业财务风险预测模型。此模型结合了长短期记忆网络(LSTM)和注意力机制(Attention),有效解读财务时间序列数据,并准确评估各时间段数据对风险预测的重要性。实证研究揭示,对于关键风险因素,如... 文章提出了一种基于Attention LSTM的中小企业财务风险预测模型。此模型结合了长短期记忆网络(LSTM)和注意力机制(Attention),有效解读财务时间序列数据,并准确评估各时间段数据对风险预测的重要性。实证研究揭示,对于关键风险因素,如偿债能力、经营稳定性和盈利能力等,模型表现出优于传统预测方式的精准度。因此,该模型为中小企业提供了一个有效的财务风险预测工具,可以帮助企业及时发现并应对潜在的财务风险,为未来的决策制定提供重要支持。 展开更多
关键词 中小企业 财务风险预测 attention LSTM 模型预测
在线阅读 下载PDF
基于VMD-TCN-BiLSTM-Attention的短期电力负荷预测
17
作者 刘义艳 李国良 代杰 《智慧电力》 北大核心 2025年第10期87-94,共8页
针对短期电力负荷数据具有非线性和波动性等特点而导致的预测精度不足问题,提出一种基于变分模态分解(VMD)、时间卷积网络(TCN)、双向长短期记忆网络(BiLSTM)与注意力机制(Attention)相结合的新型预测模型。首先,采用VMD方法将电力负荷... 针对短期电力负荷数据具有非线性和波动性等特点而导致的预测精度不足问题,提出一种基于变分模态分解(VMD)、时间卷积网络(TCN)、双向长短期记忆网络(BiLSTM)与注意力机制(Attention)相结合的新型预测模型。首先,采用VMD方法将电力负荷数据分解成多个不同频率的模态分量,利用TCN模型提取模态分量中的时序特征;其次,通过BiLSTM网络进一步挖掘序列依赖关系;最后,引入注意力机制对BiLSTM输出的特征进行加权处理。实验结果表明,所提模型与其他传统模型相比预测精度显著提升,在短期电力负荷预测中具有较高的应用价值。 展开更多
关键词 短期电力负荷 变分模态分解 时间卷积网络 双向长短期记忆网络 注意力机制
在线阅读 下载PDF
基于电池老化趋势重构与TCN-GRU-Attention网络的SOH估计 被引量:1
18
作者 李士哲 张天宇 谢家乐 《电力科学与工程》 2025年第3期38-45,共8页
针对噪声干扰导致锂电池老化过程中关键特征提取困难的问题,首先,在增量容量曲线中提取反应电池老化规律的峰值特征,捕捉电池性能随时间变化的关键信息;然后,通过改进的自适应噪声完备集合经验模态分解与小波阈值降噪对特征进行联合降噪... 针对噪声干扰导致锂电池老化过程中关键特征提取困难的问题,首先,在增量容量曲线中提取反应电池老化规律的峰值特征,捕捉电池性能随时间变化的关键信息;然后,通过改进的自适应噪声完备集合经验模态分解与小波阈值降噪对特征进行联合降噪,重构出更高精度的特征序列;最后,将该特征序列输入到时间卷积网络提取序列特征,并利用门控循环单元捕捉长时间依赖性,同时引入多头注意力机制进一步增强模型对关键特征的感知能力。实验结果表明,用该方法可有效提高锂电池健康状态估计的准确性,使均方根误差小于1.5%,平均绝对误差小于1%。 展开更多
关键词 锂电池 电池健康状态 自适应噪声完备集合经验模态分解 小波阈值降噪 时间卷积网络 门控循环单元 多头注意力机制
在线阅读 下载PDF
基于特征选择和优化CNN-BiLSTM-Attention对SF_(6)断路器漏气故障诊断 被引量:1
19
作者 欧阳鑫 赵龙周 +4 位作者 彭晶 龚泽威一 段雨廷 马宏明 帅春燕 《电子技术应用》 2025年第6期32-39,共8页
SF_(6)(六氟化硫)断路器是保障电网稳定运行的重要设备,但其在长期使用中容易发生漏气问题,既影响设备性能,又威胁电网的安全性。为精准诊断SF_(6)断路器的漏气故障,提出了一种基于Gini指数特征选择和贝叶斯优化(Bayesian Optimization,... SF_(6)(六氟化硫)断路器是保障电网稳定运行的重要设备,但其在长期使用中容易发生漏气问题,既影响设备性能,又威胁电网的安全性。为精准诊断SF_(6)断路器的漏气故障,提出了一种基于Gini指数特征选择和贝叶斯优化(Bayesian Optimization, BO)的CNN-BiLSTM-Attention组合模型。首先,针对影响SF_(6)断路器漏气的内外部因素,进行特征映射与重要性分析,并采用KMeans-SMOTE技术解决数据分布不均的问题。其次,利用基于Gini指数的方法筛选关键特征,并通过贝叶斯优化精调CNN-BiLSTM-Attention模型的超参数以提升分类性能。实验结果表明,设备缺陷、运行年限、运维水平、天气和温度是导致漏气的主要因素。与其他模型相比,所提方法在漏气故障的0/1分类任务中展现出更高的分类精度和鲁棒性。研究不仅验证了方法的有效性,还揭示了引发SF6断路器漏气的关键因素,为设备巡检和运维管理提供了科学支持,进一步提升了电网运行的安全性与可靠性。 展开更多
关键词 SF_(6)断路器 贝叶斯优化 特征选择 卷积神经网络-双向长短时记忆网络-注意力机制
在线阅读 下载PDF
基于健康因子和Attention-GRU的锂电池剩余使用寿命预测
20
作者 林晶 张学明 +1 位作者 董静 高煜琨 《南京信息工程大学学报》 北大核心 2025年第6期788-797,共10页
为了提高神经网络模型预测锂离子电池剩余使用寿命的准确性,本文提出一种基于Attention(注意力机制)-GRU(门控循环单元)模型的预测方法.首先,以美国NASA公开的Random Walk电池数据为基础,在电池电压、电流和时间等直接测量数据中提取与... 为了提高神经网络模型预测锂离子电池剩余使用寿命的准确性,本文提出一种基于Attention(注意力机制)-GRU(门控循环单元)模型的预测方法.首先,以美国NASA公开的Random Walk电池数据为基础,在电池电压、电流和时间等直接测量数据中提取与电池容量衰减相关性显著的健康因子,计算健康因子与电池容量之间的相关性;其次,构建Attention-GRU模型学习健康因子变化规律,依据相关性分配注意力权重,得到注意力向量,调整隐藏层输出;最后,对电池剩余使用寿命进行预测,并增加B05系列电池寿命预测探究模型泛化能力.实验结果表明:使用Attention-GRU模型对Random Walk电池预测时,MAE和RMSE在0.015左右,对B05系列电池预测时,MAE和RMSE在0.01以下,预测精度均优于对比方法,具有较高的准确度和良好的泛化能力. 展开更多
关键词 锂离子电池 attention-GRU 剩余使用寿命 健康因子
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部