Constructing high-performance nanozymes for specific biomolecules is crucial but challenging for practical applications and fundamental research.Herein,through the examination of the catalytic reaction paths of natura...Constructing high-performance nanozymes for specific biomolecules is crucial but challenging for practical applications and fundamental research.Herein,through the examination of the catalytic reaction paths of natural nicotinamide adenine dinucleotide(NADH)oxidase(NOX),a novel and efficient single-atom rhodium catalyst(Rh1/NC)was developed to mimic NOX.The Rh_(1)/NC demonstrated the ability to catalyze the dehydrogenation of NADH and transfer electrons to O_(2)to generate H_(2)O_(2)through the typical two-electron pathway.Furthermore,our findings revealed that Rh_(1)/NC exhibits the ability to catalyze the conversion of produced H_(2)O_(2)into OH under mildly acidic conditions.This process amplifies the oxidation of NADH,showcasing NADH peroxidase-like activity(NPx-like).As a paradigm,this unique dual enzyme-like property of Rh_(1)/NC with a positive feedback effect holds significance in disrupting cancer cellular homeostasis.Rh_(1)/NC can effectively consume NADH via cascade biocatalytic reactions within cancer cells,further triggering the elevation of reactive oxygen species(ROS),leading to impaired oxidative phosphorylation and decreased mitochondrial membrane potential,thus damaging the adenosine triphosphate(ATP)synthesis.The resulting'domino effect'interferes with the energy metabolism homeostasis of cancer cells,ultimately promoting cell apoptosis.This study provides potential guidance for the rational design of materials with greater capabilities.展开更多
Photodynamic therapy(PDT)has received much attention in recent years.However,traditional photosensitizers(PSs)applied in PDT usually suffer from aggregation-caused quenching(ACQ)effect in H_(2)O,single and inefficient...Photodynamic therapy(PDT)has received much attention in recent years.However,traditional photosensitizers(PSs)applied in PDT usually suffer from aggregation-caused quenching(ACQ)effect in H_(2)O,single and inefficient photochemical mechanism of action(MoA),poor cancer targeting ability,etc.In this work,two novel Ru(II)-based aggregation-induced emission(AIE)agents(Ru1 and Ru2)were developed.Both complexes exhibited long triplet excited lifetimes and nearly 100%singlet oxygen quantum yields in H_(2)O.In addition,Ru1 and Ru2 displayed potent photo-catalytic reduced nicotinamide adenine dinucleotide(NADH)oxidation activity with turnover frequency(TOF)values of about 1779 and 2000 h^(−1),respectively.Therefore,both Ru1 and Ru2 showed efficient PDT activity towards a series of cancer cells.Moreover,Ru2 was further loaded in bovine serum albumin(BSA)to enhance the tumor targeting ability in vivo,and the obtained Ru2@BSA could selectively accumulate in tumor tissues and effectively inhibit tumor growth on a 4T1 tumor-bearing mouse model.So far as we know,this work represents the first report about Ru(Ⅱ)-)AIE agents that possess high singlet oxygen quantum yields and also potent photocatalytic NADH oxidation activity,and may provide new ideas for rational design of novel PSs with efficient PDT activity.展开更多
Nicotinamide adenine dinucleotide(NADH)regeneration is necessary for the sustainable application of enzymatic industry.The Rh-based complex[Cp^(*)Rh(bpy)(H)]+has been widely used as an important mediator in NADH regen...Nicotinamide adenine dinucleotide(NADH)regeneration is necessary for the sustainable application of enzymatic industry.The Rh-based complex[Cp^(*)Rh(bpy)(H)]+has been widely used as an important mediator in NADH regeneration systems,but it is limited by complexity and high cost.Here,a Z-scheme was constructed by loading Rh onto carbon nitride nanosheets/carbon nitride quantum dots(CN-CNQD).The resultant catalyst achieved a high yield of NADH in a mediator-free(M-free)system of 0.283 mmol L^(−1) g^(−1) min^(−1),which is 5.29 times that of pure CN.ADH enzyme introduction experiments confirmed that the enzyme active product 1,4-NADH could reach 34.21%selectivity in the M-free system.Mechanism research revealed that the heterojunction between CNs and CNQDs improved the NADH regeneration activity in the traditional M-involved system,while Rh loading was proved to optimize the yield and selectivity of 1,4-NADH in M-free system.The immobilized Rh shows more competitiveness than[Cp^(*)Rh(bpy)(H)]^(+).This study contributes to the construction of an M-free system for further application in greener,lower-cost enzymatic processes.展开更多
Nicotinamide adenine dinucleotide (NADH/NAD+) is involved in important biochemical reactions in human metabolism, including participation in energy production by mitochondria. The changes in fluorescence intensity as ...Nicotinamide adenine dinucleotide (NADH/NAD+) is involved in important biochemical reactions in human metabolism, including participation in energy production by mitochondria. The changes in fluorescence intensity as a function of time in response to blocking and releasing of blood flow in a forearm are used as a measure of oxygen transport with blood to the tissue, which directly correlates with the skin microcirculation status. In this paper, a non-invasive dynamic monitoring system based on blood flow-mediated skin fluorescence (FMSF) technology is developed to monitor the NADH fluorescence intensity of skin tissue during the process of blocking reactive hyperemia. Simultaneously, laser speckle contrast imaging (LSCI) and laser Doppler flowmetry (LDF) were used to observe blood flow, blood oxygen saturation (SOt2) and relative amount of hemoglobin (rHb) during the measurement process, which helped to explore NADH dynamics relevant physiological changes. A variety of parameters have been derived to describe NADH fluorescence curve based on the FMSF device. The experimental results are conducive to understanding the NADH measurement and the physiological processes related to it, which help FMSF to be a great avenue for in vivo physiological, clinical and pharmacological research on mitochondrial metabolism.展开更多
基金financially supported by the National Natural Science Foundation of China(No.22207066)Taishan Scholars Program of Shandong Province(No.TS201712065)+2 种基金the Academic Promotion Program of Shandong First Medical University(No.2019QL009)the Science and Technology Funding from Jinan(No.2020GXRC018)the Traditional Chinese Medicine Science and Technology Project of Shandong Province(No.Q-2022142)。
文摘Constructing high-performance nanozymes for specific biomolecules is crucial but challenging for practical applications and fundamental research.Herein,through the examination of the catalytic reaction paths of natural nicotinamide adenine dinucleotide(NADH)oxidase(NOX),a novel and efficient single-atom rhodium catalyst(Rh1/NC)was developed to mimic NOX.The Rh_(1)/NC demonstrated the ability to catalyze the dehydrogenation of NADH and transfer electrons to O_(2)to generate H_(2)O_(2)through the typical two-electron pathway.Furthermore,our findings revealed that Rh_(1)/NC exhibits the ability to catalyze the conversion of produced H_(2)O_(2)into OH under mildly acidic conditions.This process amplifies the oxidation of NADH,showcasing NADH peroxidase-like activity(NPx-like).As a paradigm,this unique dual enzyme-like property of Rh_(1)/NC with a positive feedback effect holds significance in disrupting cancer cellular homeostasis.Rh_(1)/NC can effectively consume NADH via cascade biocatalytic reactions within cancer cells,further triggering the elevation of reactive oxygen species(ROS),leading to impaired oxidative phosphorylation and decreased mitochondrial membrane potential,thus damaging the adenosine triphosphate(ATP)synthesis.The resulting'domino effect'interferes with the energy metabolism homeostasis of cancer cells,ultimately promoting cell apoptosis.This study provides potential guidance for the rational design of materials with greater capabilities.
基金supported by National Natural Science Foundation of China(NSFC,No.22371289).
文摘Photodynamic therapy(PDT)has received much attention in recent years.However,traditional photosensitizers(PSs)applied in PDT usually suffer from aggregation-caused quenching(ACQ)effect in H_(2)O,single and inefficient photochemical mechanism of action(MoA),poor cancer targeting ability,etc.In this work,two novel Ru(II)-based aggregation-induced emission(AIE)agents(Ru1 and Ru2)were developed.Both complexes exhibited long triplet excited lifetimes and nearly 100%singlet oxygen quantum yields in H_(2)O.In addition,Ru1 and Ru2 displayed potent photo-catalytic reduced nicotinamide adenine dinucleotide(NADH)oxidation activity with turnover frequency(TOF)values of about 1779 and 2000 h^(−1),respectively.Therefore,both Ru1 and Ru2 showed efficient PDT activity towards a series of cancer cells.Moreover,Ru2 was further loaded in bovine serum albumin(BSA)to enhance the tumor targeting ability in vivo,and the obtained Ru2@BSA could selectively accumulate in tumor tissues and effectively inhibit tumor growth on a 4T1 tumor-bearing mouse model.So far as we know,this work represents the first report about Ru(Ⅱ)-)AIE agents that possess high singlet oxygen quantum yields and also potent photocatalytic NADH oxidation activity,and may provide new ideas for rational design of novel PSs with efficient PDT activity.
基金supported by the National Natural Science Foundation of China(No.21906056)Open Project of State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(No.ESK202104)+1 种基金the Science and Technology Commission of Shanghai Municipality(No.22ZR1418600)Shanghai Municipal Science and Technology(No.20DZ2250400).
文摘Nicotinamide adenine dinucleotide(NADH)regeneration is necessary for the sustainable application of enzymatic industry.The Rh-based complex[Cp^(*)Rh(bpy)(H)]+has been widely used as an important mediator in NADH regeneration systems,but it is limited by complexity and high cost.Here,a Z-scheme was constructed by loading Rh onto carbon nitride nanosheets/carbon nitride quantum dots(CN-CNQD).The resultant catalyst achieved a high yield of NADH in a mediator-free(M-free)system of 0.283 mmol L^(−1) g^(−1) min^(−1),which is 5.29 times that of pure CN.ADH enzyme introduction experiments confirmed that the enzyme active product 1,4-NADH could reach 34.21%selectivity in the M-free system.Mechanism research revealed that the heterojunction between CNs and CNQDs improved the NADH regeneration activity in the traditional M-involved system,while Rh loading was proved to optimize the yield and selectivity of 1,4-NADH in M-free system.The immobilized Rh shows more competitiveness than[Cp^(*)Rh(bpy)(H)]^(+).This study contributes to the construction of an M-free system for further application in greener,lower-cost enzymatic processes.
文摘Nicotinamide adenine dinucleotide (NADH/NAD+) is involved in important biochemical reactions in human metabolism, including participation in energy production by mitochondria. The changes in fluorescence intensity as a function of time in response to blocking and releasing of blood flow in a forearm are used as a measure of oxygen transport with blood to the tissue, which directly correlates with the skin microcirculation status. In this paper, a non-invasive dynamic monitoring system based on blood flow-mediated skin fluorescence (FMSF) technology is developed to monitor the NADH fluorescence intensity of skin tissue during the process of blocking reactive hyperemia. Simultaneously, laser speckle contrast imaging (LSCI) and laser Doppler flowmetry (LDF) were used to observe blood flow, blood oxygen saturation (SOt2) and relative amount of hemoglobin (rHb) during the measurement process, which helped to explore NADH dynamics relevant physiological changes. A variety of parameters have been derived to describe NADH fluorescence curve based on the FMSF device. The experimental results are conducive to understanding the NADH measurement and the physiological processes related to it, which help FMSF to be a great avenue for in vivo physiological, clinical and pharmacological research on mitochondrial metabolism.