Traditional desorption methods in porous sorbents rely heavily on energy-intensive processes such as heating,vacuum pumping,or inert gas purging[1].While effective,these approaches incur substantial energy and operati...Traditional desorption methods in porous sorbents rely heavily on energy-intensive processes such as heating,vacuum pumping,or inert gas purging[1].While effective,these approaches incur substantial energy and operational costs,particularly for hydrocarbons with high boiling points or strong host-vip interactions[2].This is the same case in the newly-developed macrocyclebased crystalline adsorbents,namely nonporous adaptive crystals(NACs).To address these challenges,a recent study published in Angewandte Chemie International Edition by Jie,Ma,and co-workers reported an innovative molecular-"squeeze"triggered desorption mechanism in NACs[3-5].Specifically,ethyl acetate(EA)triggers vip desorption without penetrating the crystal pores or voids.Instead,EA molecules interact with the crystal surface through supramolecular forces,causing the adaptive closure of voids and the subsequent release of vip molecules.Unlike conventional sponges that rely on mechanical squeeze to deform themselves in the bulk for vip release,these macrocycle crystals undergo structural deformation at the molecular level and condensed phase when exposed to vaporized molecules.Because of the similar behavior between sponges and such NACs,the authors name them as sponge-likemacrocyclecrystals.展开更多
A new type of NaCS/PDMDAAC polyelectrolyte complex membrane prepared by interfacial reaction of sodium cellulose sulfate as polyanions and poly(dimethylallylammonium chloride)as polycations was proposed.The static con...A new type of NaCS/PDMDAAC polyelectrolyte complex membrane prepared by interfacial reaction of sodium cellulose sulfate as polyanions and poly(dimethylallylammonium chloride)as polycations was proposed.The static contact angle of the polyelectrolyte complex(PELC)membrane surface was measured to characterize membrane wettability.The effects of concentration of polyelectrolyte,molecular weight,and reaction time on contact angle were investigated.It was found that NaCS/PDMDAAC PELC membrane was hydrophilic.Its contact angle decreased with the increasing concentration of NaCS and molecular weight of PDMDAAC,and increased with the increasing concentration of PDMDAAC and reaction time.展开更多
In this study, electrochemical corrosion tests, full-soak corrosion tests and associated microstructure analysis were conducted to investigate the corrosion behaviors of B4C/6061Al neutron absorber composites(NACs) ...In this study, electrochemical corrosion tests, full-soak corrosion tests and associated microstructure analysis were conducted to investigate the corrosion behaviors of B4C/6061Al neutron absorber composites(NACs) manufactured by powder metallurgy method in solutions having different boric acid(H3BO3) concentrations(500, 2500 and 10,000 ppm). In electrochemical corrosion tests, B4C/6061Al NACs demonstrate the highest(short-term) corrosion resistance in the 2500 ppm H3BO3 solution. While for full-soak corrosion tests, the B4C/6061Al NACs show the highest(long-term) corrosion resistance in the 500 ppm H3BO3 solution. This difference is found to be mainly due to the formation of different surface morphologies during these two different corrosion tests. As noticed, a layer of Al(OH)3was formed on the composite surface during full-soak corrosion tests, but it cannot be found in the electrochemical corrosion tests. The full-soak corrosion mechanism of the B4C/6061Al NACs in the H3BO3 solution is found to be primarily determined by the dynamic balance between the formation and dissolution rates of the oxide film, which is mainly controlled by the density of H~+ ions in the solution.展开更多
The dynamics of the double-channel dissociation of the NaCs molecule is investigated by using the time-dependent wave packet (TDWP) method with the "split operator-Fourier transform" scheme. At a given wavelength ...The dynamics of the double-channel dissociation of the NaCs molecule is investigated by using the time-dependent wave packet (TDWP) method with the "split operator-Fourier transform" scheme. At a given wavelength and intensity of laser pulse, the population of each state changing with time is obtained. The photo-absorption spectra and kinetic- energy distribution of the dissociation fragments, which exhibit vibration-level structure and dispersion of the wave packet, respectively, are also obtained. The results show that by increasing the laser intensity, one can find not only the band center shift of the photo-absorption spectrum, but also the change of the fragment energy. The appearance of the diffusive band in the photo-absorption spectrum and the multiple peaks in the kinetic-energy spectrum can be attributed to the effects of the predissoeiation limit and the external field.展开更多
基金the Natural Science Foundation of Jiangsu Province(No.BK20240679)National Natural Science Foundation of China(No.22101134)are greatly acknowledged。
文摘Traditional desorption methods in porous sorbents rely heavily on energy-intensive processes such as heating,vacuum pumping,or inert gas purging[1].While effective,these approaches incur substantial energy and operational costs,particularly for hydrocarbons with high boiling points or strong host-vip interactions[2].This is the same case in the newly-developed macrocyclebased crystalline adsorbents,namely nonporous adaptive crystals(NACs).To address these challenges,a recent study published in Angewandte Chemie International Edition by Jie,Ma,and co-workers reported an innovative molecular-"squeeze"triggered desorption mechanism in NACs[3-5].Specifically,ethyl acetate(EA)triggers vip desorption without penetrating the crystal pores or voids.Instead,EA molecules interact with the crystal surface through supramolecular forces,causing the adaptive closure of voids and the subsequent release of vip molecules.Unlike conventional sponges that rely on mechanical squeeze to deform themselves in the bulk for vip release,these macrocycle crystals undergo structural deformation at the molecular level and condensed phase when exposed to vaporized molecules.Because of the similar behavior between sponges and such NACs,the authors name them as sponge-likemacrocyclecrystals.
文摘A new type of NaCS/PDMDAAC polyelectrolyte complex membrane prepared by interfacial reaction of sodium cellulose sulfate as polyanions and poly(dimethylallylammonium chloride)as polycations was proposed.The static contact angle of the polyelectrolyte complex(PELC)membrane surface was measured to characterize membrane wettability.The effects of concentration of polyelectrolyte,molecular weight,and reaction time on contact angle were investigated.It was found that NaCS/PDMDAAC PELC membrane was hydrophilic.Its contact angle decreased with the increasing concentration of NaCS and molecular weight of PDMDAAC,and increased with the increasing concentration of PDMDAAC and reaction time.
基金the financial support provided by ‘‘The Key Science and Technology Program of Shanxi Province, China’’ (Grant No. 20130321024)the College of Materials Science and Engineering at Taiyuan University of TechnologyShanxi Zhongtong High-Tech Co. Ltd
文摘In this study, electrochemical corrosion tests, full-soak corrosion tests and associated microstructure analysis were conducted to investigate the corrosion behaviors of B4C/6061Al neutron absorber composites(NACs) manufactured by powder metallurgy method in solutions having different boric acid(H3BO3) concentrations(500, 2500 and 10,000 ppm). In electrochemical corrosion tests, B4C/6061Al NACs demonstrate the highest(short-term) corrosion resistance in the 2500 ppm H3BO3 solution. While for full-soak corrosion tests, the B4C/6061Al NACs show the highest(long-term) corrosion resistance in the 500 ppm H3BO3 solution. This difference is found to be mainly due to the formation of different surface morphologies during these two different corrosion tests. As noticed, a layer of Al(OH)3was formed on the composite surface during full-soak corrosion tests, but it cannot be found in the electrochemical corrosion tests. The full-soak corrosion mechanism of the B4C/6061Al NACs in the H3BO3 solution is found to be primarily determined by the dynamic balance between the formation and dissolution rates of the oxide film, which is mainly controlled by the density of H~+ ions in the solution.
基金Project supported by the National Natural Science Foundation of China(Grant No.11074151)the Doctoral Program Foundation of Institutions of Higher Education of China(Grant No.20123704110002)
文摘The dynamics of the double-channel dissociation of the NaCs molecule is investigated by using the time-dependent wave packet (TDWP) method with the "split operator-Fourier transform" scheme. At a given wavelength and intensity of laser pulse, the population of each state changing with time is obtained. The photo-absorption spectra and kinetic- energy distribution of the dissociation fragments, which exhibit vibration-level structure and dispersion of the wave packet, respectively, are also obtained. The results show that by increasing the laser intensity, one can find not only the band center shift of the photo-absorption spectrum, but also the change of the fragment energy. The appearance of the diffusive band in the photo-absorption spectrum and the multiple peaks in the kinetic-energy spectrum can be attributed to the effects of the predissoeiation limit and the external field.