A 1050 bp up-stream regulatory fragment of the transcription factor gene NAC1in Arabidopsis thaliana was isolated using polymerase chain reaction (PCR) based techniques. Thefragment was used to substitute the 35S prom...A 1050 bp up-stream regulatory fragment of the transcription factor gene NAC1in Arabidopsis thaliana was isolated using polymerase chain reaction (PCR) based techniques. Thefragment was used to substitute the 35S promoter of the pBI121 plasmid to construct abate-glucuronidase gene (GUS) expression system. The construct was introduced into tobacco(Nico-tiana tabaccum) plants by the Agrobacterium-med\aled transferring method. GUS expressionpattern was studied by using the transgenic lines. The results showed that the GUS driven by theNAC1 up-stream regulatory region was specifically expressed in the root meristem region, basal areasof the lateral root primordium and the lateral roots. The GUS expression was induced by3-indolebutyric acid (IBA)and gibberellins (GA_3 and GA_(4+7)). The results indicated that theup-stream regulatory fragment of NAC1 responded to plant hormones. The fragment might be involved inboth auxins and gibberellins signaling in promoting the development of lateral roots.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.30200169)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20010019008).
文摘A 1050 bp up-stream regulatory fragment of the transcription factor gene NAC1in Arabidopsis thaliana was isolated using polymerase chain reaction (PCR) based techniques. Thefragment was used to substitute the 35S promoter of the pBI121 plasmid to construct abate-glucuronidase gene (GUS) expression system. The construct was introduced into tobacco(Nico-tiana tabaccum) plants by the Agrobacterium-med\aled transferring method. GUS expressionpattern was studied by using the transgenic lines. The results showed that the GUS driven by theNAC1 up-stream regulatory region was specifically expressed in the root meristem region, basal areasof the lateral root primordium and the lateral roots. The GUS expression was induced by3-indolebutyric acid (IBA)and gibberellins (GA_3 and GA_(4+7)). The results indicated that theup-stream regulatory fragment of NAC1 responded to plant hormones. The fragment might be involved inboth auxins and gibberellins signaling in promoting the development of lateral roots.