A novel Ag3PO4-AgBr-PTh composite loaded on Na2SiO3 was synthesized for enhanced visible-light photocatalytic activity. The photocatalyUc activity of the samples was evaluated by photodegrading rhodamine B (RhB) und...A novel Ag3PO4-AgBr-PTh composite loaded on Na2SiO3 was synthesized for enhanced visible-light photocatalytic activity. The photocatalyUc activity of the samples was evaluated by photodegrading rhodamine B (RhB) under visible light irradiation. The main reactive species and possible photocatalytic mechanism were also discussed. As a result, the Ag3PO4-AgBr-PTh composite loaded on Na2SiO3 exhibited enhanced photocatalytic activity for RhB compared with Ag3PO4 under visible-light irradiation. Additionally, it was demonstrated that the hole (h+) and superoxide radical (·O2-) were the major reactive species involving in the RhB degradation. PTh played vital role for the enhanced photocatalytic activity of Ag3PO4-AgBr-PTh-Na2SiO3 composite, which offered an electron transfer expressway and accelerated the transfer of the electrons from the CB of AgBr into Ag3PO4. This work could provide a new perspective for the synthesis of Ag3PO4-based composites and the improvement of photocatalytic activity of Ag3PO4.展开更多
文摘A novel Ag3PO4-AgBr-PTh composite loaded on Na2SiO3 was synthesized for enhanced visible-light photocatalytic activity. The photocatalyUc activity of the samples was evaluated by photodegrading rhodamine B (RhB) under visible light irradiation. The main reactive species and possible photocatalytic mechanism were also discussed. As a result, the Ag3PO4-AgBr-PTh composite loaded on Na2SiO3 exhibited enhanced photocatalytic activity for RhB compared with Ag3PO4 under visible-light irradiation. Additionally, it was demonstrated that the hole (h+) and superoxide radical (·O2-) were the major reactive species involving in the RhB degradation. PTh played vital role for the enhanced photocatalytic activity of Ag3PO4-AgBr-PTh-Na2SiO3 composite, which offered an electron transfer expressway and accelerated the transfer of the electrons from the CB of AgBr into Ag3PO4. This work could provide a new perspective for the synthesis of Ag3PO4-based composites and the improvement of photocatalytic activity of Ag3PO4.