In Europe, computation of displacement demand for seismic assessment of existing buildings is essentially based on a simplified formulation of the N2 method as prescribed by Eurocode 8(EC8). However, a lack of accurac...In Europe, computation of displacement demand for seismic assessment of existing buildings is essentially based on a simplified formulation of the N2 method as prescribed by Eurocode 8(EC8). However, a lack of accuracy of the N2 method in certain conditions has been pointed out by several studies. This paper addresses the assessment of effectiveness of the N2 method in seismic displacement demand determination in non-linear domain. The objective of this work is to investigate the accuracy of the N2 method through comparison with displacement demands computed using non-linear timehistory analysis(NLTHA). Results show that the original N2 method may lead to overestimation or underestimation of displacement demand predictions. This may affect results of mechanical model-based assessment of seismic vulnerability at an urban scale. Hence, the second part of this paper addresses an improvement of the N2 method formula by empirical evaluation of NLTHA results based on EC8 ground-classes. This task is formulated as a mathematical programming problem in which coefficients are obtained by minimizing the overall discrepancy between NLTHA and modified formula results. Various settings of the mathematical programming problem have been solved using a global optimization metaheuristic. An extensive comparison between the original N2 method formulation and optimized formulae highlights benefits of the strategy.展开更多
The emission of N2 is important to remove excess N from lakes, ponds, and wetlands. To investigate the gas emission from water, Gao et al.(2013) developed a new method using a bubble trap device to collect gas sampl...The emission of N2 is important to remove excess N from lakes, ponds, and wetlands. To investigate the gas emission from water, Gao et al.(2013) developed a new method using a bubble trap device to collect gas samples from waters. However, the determination accuracy of sampling volume and gas component concentration was still debatable. In this study, the method was optimized for in situ sampling, accurate volume measurement and direct injection to a gas chromatograph for the analysis of N2 and other gases. By the optimized new method, the recovery rate for N2 was 100.28% on average; the mean coefficient of determination(R2) was 0.9997; the limit of detection was 0.02%. We further assessed the effects of the new method, bottle full of water, vs. vacuum bag and vacuum vial methods, on variations of N2 concentration as influenced by sample storage times of 1,2, 3, 5, and 7 days at constant temperature of 15°C, using indices of averaged relative peak area(%) in comparison with the averaged relative peak area of each method at 0 day.The indices of the bottle full of water method were the lowest(99.5%–108.5%) compared to the indices of vacuum bag and vacuum vial methods(119%–217%). Meanwhile, the gas chromatograph determination of other gas components(O2, CH4, and N2O) was also accurate. The new method was an alternative way to investigate N2 released from various kinds of aquatic ecosystems.展开更多
Gas chromatography equipped with an electron capture detector (GC-ECD) has been widely used for measuring atmospheric N2O,but nonlinear response and the influence of atmospheric CO2 have been recognized as defects f...Gas chromatography equipped with an electron capture detector (GC-ECD) has been widely used for measuring atmospheric N2O,but nonlinear response and the influence of atmospheric CO2 have been recognized as defects for quantification.An original GCECD method using N 2 as carrier gas was improved by introducing a small flow rate of CO2 makeup gas into the ECD,which could well remedy the above defects.The N2O signal of the improved method was 4-fold higher than that of the original method and the relative standard deviation was reduced from 〉 1% to 0.31%.N2O concentrations with different CO2 concentrations (172.2×10-6-1722×10-6mol/mol) measured by the improved GC-ECD method were in line with the actual N2O concentrations.However,the N2O concentrations detected by the original method were largely biased with a variation range of-4.5%~7%.The N2O fluxes between an agricultural field and the atmosphere measured by the original method were greatly overestimated in comparison with those measured by the improved method.Good linear correlation (R2=0.9996) between the response of the improved ECD and N2O concentrations (93×10-9-1966×10-9mol/mol) indicated that atmospheric N2O could be accurately quantified via a single standard gas.Atmospheric N2O concentrations comparatively measured by the improved method and a high precision GC-ECD method were in good agreement.展开更多
The potential energy snrface of a CO2-N2 mixture is determined by using an inversion method, together with a new collision integral correlation [J. Phys. Chem. R@ Data 19 1179 (1990)]. With the new invert potential,...The potential energy snrface of a CO2-N2 mixture is determined by using an inversion method, together with a new collision integral correlation [J. Phys. Chem. R@ Data 19 1179 (1990)]. With the new invert potential, the transport properties of CO2-N2 mixture are presented in a temperature range front 273.15 K to 3273.15 K at low density by employing the Chapman-Enskog scheme and the Wang Chang-Uhlenbeck de Boer theory, consisting of a viscosity coefficient, a thermal conductivity coefficient, a binary diffusion coefficient, and a thermal diffusion factor. The accuracy of the predicted results is estimated to be 2% for viscosity, 5% for thermal conductivity, and 10% for binary diffusion coefficient.展开更多
文摘In Europe, computation of displacement demand for seismic assessment of existing buildings is essentially based on a simplified formulation of the N2 method as prescribed by Eurocode 8(EC8). However, a lack of accuracy of the N2 method in certain conditions has been pointed out by several studies. This paper addresses the assessment of effectiveness of the N2 method in seismic displacement demand determination in non-linear domain. The objective of this work is to investigate the accuracy of the N2 method through comparison with displacement demands computed using non-linear timehistory analysis(NLTHA). Results show that the original N2 method may lead to overestimation or underestimation of displacement demand predictions. This may affect results of mechanical model-based assessment of seismic vulnerability at an urban scale. Hence, the second part of this paper addresses an improvement of the N2 method formula by empirical evaluation of NLTHA results based on EC8 ground-classes. This task is formulated as a mathematical programming problem in which coefficients are obtained by minimizing the overall discrepancy between NLTHA and modified formula results. Various settings of the mathematical programming problem have been solved using a global optimization metaheuristic. An extensive comparison between the original N2 method formulation and optimized formulae highlights benefits of the strategy.
基金supported by the National Natural Science Foundation of China (No.41301575)Special Preliminary Study Program of the National Basic Research Program (973) of China (No. 2012CB426503)
文摘The emission of N2 is important to remove excess N from lakes, ponds, and wetlands. To investigate the gas emission from water, Gao et al.(2013) developed a new method using a bubble trap device to collect gas samples from waters. However, the determination accuracy of sampling volume and gas component concentration was still debatable. In this study, the method was optimized for in situ sampling, accurate volume measurement and direct injection to a gas chromatograph for the analysis of N2 and other gases. By the optimized new method, the recovery rate for N2 was 100.28% on average; the mean coefficient of determination(R2) was 0.9997; the limit of detection was 0.02%. We further assessed the effects of the new method, bottle full of water, vs. vacuum bag and vacuum vial methods, on variations of N2 concentration as influenced by sample storage times of 1,2, 3, 5, and 7 days at constant temperature of 15°C, using indices of averaged relative peak area(%) in comparison with the averaged relative peak area of each method at 0 day.The indices of the bottle full of water method were the lowest(99.5%–108.5%) compared to the indices of vacuum bag and vacuum vial methods(119%–217%). Meanwhile, the gas chromatograph determination of other gas components(O2, CH4, and N2O) was also accurate. The new method was an alternative way to investigate N2 released from various kinds of aquatic ecosystems.
基金supported by the Special Fund for Environmental Research in the Public Interest(No.201009001)the National Natural Science Foundation of China(No.41075094,21177140 and 40830101)the National Basic Research and the Development Program(973)of China(No.2010CB732304)
文摘Gas chromatography equipped with an electron capture detector (GC-ECD) has been widely used for measuring atmospheric N2O,but nonlinear response and the influence of atmospheric CO2 have been recognized as defects for quantification.An original GCECD method using N 2 as carrier gas was improved by introducing a small flow rate of CO2 makeup gas into the ECD,which could well remedy the above defects.The N2O signal of the improved method was 4-fold higher than that of the original method and the relative standard deviation was reduced from 〉 1% to 0.31%.N2O concentrations with different CO2 concentrations (172.2×10-6-1722×10-6mol/mol) measured by the improved GC-ECD method were in line with the actual N2O concentrations.However,the N2O concentrations detected by the original method were largely biased with a variation range of-4.5%~7%.The N2O fluxes between an agricultural field and the atmosphere measured by the original method were greatly overestimated in comparison with those measured by the improved method.Good linear correlation (R2=0.9996) between the response of the improved ECD and N2O concentrations (93×10-9-1966×10-9mol/mol) indicated that atmospheric N2O could be accurately quantified via a single standard gas.Atmospheric N2O concentrations comparatively measured by the improved method and a high precision GC-ECD method were in good agreement.
基金supported by the National Natural Science Foundation of China (Grant No. 51006083)the China Postdoctoral Science Foundation (Grant No. 20110491658)the Fundamental Research Funds for the Central Universities
文摘The potential energy snrface of a CO2-N2 mixture is determined by using an inversion method, together with a new collision integral correlation [J. Phys. Chem. R@ Data 19 1179 (1990)]. With the new invert potential, the transport properties of CO2-N2 mixture are presented in a temperature range front 273.15 K to 3273.15 K at low density by employing the Chapman-Enskog scheme and the Wang Chang-Uhlenbeck de Boer theory, consisting of a viscosity coefficient, a thermal conductivity coefficient, a binary diffusion coefficient, and a thermal diffusion factor. The accuracy of the predicted results is estimated to be 2% for viscosity, 5% for thermal conductivity, and 10% for binary diffusion coefficient.