针对动态场景导致视觉定位与建图(simultaneous localization and mapping,SLAM)算法位姿估计精度低和地图质量差等问题,提出一种结合深度学习的动态视觉SLAM算法。该算法在ORB-SLAM3前端引入轻量化且目标识别率高的YOLO11n目标检测网络...针对动态场景导致视觉定位与建图(simultaneous localization and mapping,SLAM)算法位姿估计精度低和地图质量差等问题,提出一种结合深度学习的动态视觉SLAM算法。该算法在ORB-SLAM3前端引入轻量化且目标识别率高的YOLO11n目标检测网络,检测潜在动态区域,并结合Lucas-Kanade(LK)光流法识别其中的动态特征点,从而在剔除动态特征点的同时保留静态特征点,提高特征点利用率和位姿估计精度。此外,新增语义地图构建线程,通过去除YOLO11n识别到的动态物体点云,并融合前端提取的语义信息,实现静态语义地图的构建。在TUM数据集上的实验结果表明,相较于ORB-SLAM3,该算法在高动态序列数据集中的定位精度提升了95.02%,验证了该算法在动态环境下的有效性,能显著提升视觉SLAM系统的定位精度和地图构建质量。展开更多
文摘针对动态场景导致视觉定位与建图(simultaneous localization and mapping,SLAM)算法位姿估计精度低和地图质量差等问题,提出一种结合深度学习的动态视觉SLAM算法。该算法在ORB-SLAM3前端引入轻量化且目标识别率高的YOLO11n目标检测网络,检测潜在动态区域,并结合Lucas-Kanade(LK)光流法识别其中的动态特征点,从而在剔除动态特征点的同时保留静态特征点,提高特征点利用率和位姿估计精度。此外,新增语义地图构建线程,通过去除YOLO11n识别到的动态物体点云,并融合前端提取的语义信息,实现静态语义地图的构建。在TUM数据集上的实验结果表明,相较于ORB-SLAM3,该算法在高动态序列数据集中的定位精度提升了95.02%,验证了该算法在动态环境下的有效性,能显著提升视觉SLAM系统的定位精度和地图构建质量。