期刊文献+
共找到15,804篇文章
< 1 2 250 >
每页显示 20 50 100
Janus-type BN-embedded perylene diimides via a“shuffling”strategy:Regioselective functionalizable building block towards high-performance n-type organic semiconductors
1
作者 Kexiang Zhao Zongrui Wang +4 位作者 Qi-Yuan Wan Jing-Cai Zeng Li Ding Jie-Yu Wang Jian Pei 《Chinese Chemical Letters》 2025年第6期417-422,共6页
Regioselevtive functionalization of perylene diimides(PDIs)at bay area often requires multistep synthesis and strenuous recrystallization.Direct bromination of perylene diimides only afford the 1,6 and 1,7-regioisomer... Regioselevtive functionalization of perylene diimides(PDIs)at bay area often requires multistep synthesis and strenuous recrystallization.Direct bromination of perylene diimides only afford the 1,6 and 1,7-regioisomers.More importantly,the 1,6-dibromo regioisomers could only be separated by preparative HPLC.Herein,we report a promising strategy for constructing Janus backbone of BN-doped perylene diimide derivatives.This Janus-type configuration results in the unique regioselective functionalization of BN-JPDIs,which yields exclusively the 1,6-regioisomers.Further investigation shows that the Janus-type configuration leads to a net dipole moment of 1.94 D and intramolecular charge transfer,which causes substantial changes on the optoelectronic properties.Moreover,the single crystal organic field-effect transistors based on BN-JPDIs exhibit electron mobilities up to 0.57 cm^(2)V^(-1)s^(-1),showcasing their potential as versatile building block towards high-performance n-type organic semiconductors. 展开更多
关键词 BN heterocycles Perylene diimides Regioselective functionalization Intramolecular charge transfer n-type organic semiconductors
原文传递
Hot-Carrier Effects on Total Dose Irradiated 65 nm n-Type Metal-Oxide-Semiconductor Field-Effect Transistors 被引量:1
2
作者 郑齐文 崔江维 +3 位作者 周航 余德昭 余学峰 郭旗 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第7期117-119,共3页
The influence of total dose irradiation on hot-carrier reliability of 65 nm n-type metal-oxide-semiconductor field- effect transistors (nMOSFETs) is investigated. Experimental results show that hot-carrier degradati... The influence of total dose irradiation on hot-carrier reliability of 65 nm n-type metal-oxide-semiconductor field- effect transistors (nMOSFETs) is investigated. Experimental results show that hot-carrier degradations on ir- radiated narrow channel nMOSFETs are greater than those without irradiation. The reason is attributed to radiation-induced charge trapping in shallow trench isolation (STI). The electric field in the pinch-off region of the nMOSFET is enhanced by radiation-induced charge trapping in STI, resulting in a more severe hot-carrier effect. 展开更多
关键词 of NM in Hot-Carrier Effects on Total Dose Irradiated 65 nm n-type Metal-Oxide-semiconductor Field-Effect Transistors STI on IS
原文传递
n-Type acceptor-acceptor polymer semiconductors 被引量:1
3
作者 Yongqiang Shi Liming Ding 《Journal of Semiconductors》 EI CAS CSCD 2021年第10期6-8,共3页
Polymer semiconductors have aroused interests from both academic and industry due to their wide applications in electronic devices,such as organic thin-film transistors(OT-FTs)[1],polymer solar cells(PSCs)[2−6],organi... Polymer semiconductors have aroused interests from both academic and industry due to their wide applications in electronic devices,such as organic thin-film transistors(OT-FTs)[1],polymer solar cells(PSCs)[2−6],organic thermoelectrics(OTEs)[7−11],and perovskite solar cells(PVSCs)[12−14].To date,great efforts have been devoted to developing p-type poly-mer semiconductors,while the development of n-type poly-mers lags far behind.In fact,n-type polymers are essential for organic electronic devices. 展开更多
关键词 semiconductorS ACCEPTOR POLYMER
在线阅读 下载PDF
Isothianaphthene diimide: an air-stable n-type semiconductor
4
作者 Xiaolong Chen Yaowu He +6 位作者 Muhammad Umair Ali Yu He Yanan Zhu Aiyuan Li Changbin Zhao Igor FPerepichka Hong Meng 《Science China Chemistry》 SCIE EI CAS CSCD 2019年第10期1360-1364,共5页
Herein,we propose a new strategy to develop air-stable n-type organic semiconductors with non-classical thiophene aromatic diimide derivatives by replacing aromatic naphthalene with a heteroaromatic isothianaphthene c... Herein,we propose a new strategy to develop air-stable n-type organic semiconductors with non-classical thiophene aromatic diimide derivatives by replacing aromatic naphthalene with a heteroaromatic isothianaphthene core.We designed and successfully synthesized the isothianaphthene core based diimide material,N,N′-bis(n-hexyl)isothianaphthene-2,3,6,7-tetracarboxylic acid diimide(BTDI-C6)as an n-type semiconductor.Compared to N,N′-bis(n-hexyl)naphthalene-1,4,5,8-tetracarboxylic acid diimide(NDI-C6),BTDI-C6 possesses a deeper LUMO energy level of-4.21 eV,which is 0.32 eV lower than that of NDI-C6.Both molecular modelling and experimental results elucidated that organic thin film transistors(OTFTs)based on both of these materials exhibit comparable mobilities;however,the threshold voltage of BTDI-C6 based device(+7.5 V)is significantly lower than that of NDI-C6 based counterpart(+34V).Moreover,the low-lying LUMO energy level of BTDI-C6 ensures excellent air-stability which is further validated by the device performance.In addition,BTDI-C6 shows high luminescence while NDI-C6 is not luminescent at all in solution,which reveals the potential application of our newly synthesized material in n-type light-emitting transistors. 展开更多
关键词 isothianaphthene non-classical IMIDE n-type
原文传递
X-ray irradiation-induced degradation in Hf_(0.5)Zr_(0.5)O_(2) fully depleted silicon-on-insulator n-type metal oxide semiconductor field-effect transistors 被引量:1
5
作者 Yu-Dong Li Qing-Zhu Zhang +5 位作者 Fan-Yu Liu Zhao-Hao Zhang Feng-Yuan Zhang Hong-Bin Zhao Bo Li Jiang Yan 《Rare Metals》 SCIE EI CAS CSCD 2021年第11期3299-3307,共9页
The n-type ultrathin fully depleted silicon-on-insulator(FDSOI) metal-oxide-semiconductor field-effect transistors(MOSFETs),with a Hf_(0.5)Zr_(0.5)O_(2) high dielectric permittivity(high-k) dielectric as gate insulato... The n-type ultrathin fully depleted silicon-on-insulator(FDSOI) metal-oxide-semiconductor field-effect transistors(MOSFETs),with a Hf_(0.5)Zr_(0.5)O_(2) high dielectric permittivity(high-k) dielectric as gate insulator,were fabricated.The total ionizing dose effects were investigated,and an X-ray radiation dose up to 1500 krad(Si) was applied for both long-and short-channel devices.The short-channel devices(0.025-0.100 μm) exhibited less irradiation sensitivity compared with the long-channel devices(0.35-16 μm),leading to a 71% reduction in the irradiation-induced drain current growth and a 26% decrease in the shift of the threshold voltage.It was experimentally demonstrated that the OFF mode is the worst case among the three working conditions(OFF,ON and A110) for short-channel devices.Also,the determined effective electron mobility was enhanced by 38% after X-ray irradiation,attributed to the different compensations for charges triggered by radiation between the highk dielectric and buried oxide.By extracting the carrier mobility,gate length modulation,and source/drain(S/D)parasitic resistance,the degradation mechanism on X-ray irradiation was revealed.Finally,the split capacitance-voltage measurements were used to validate the analysis. 展开更多
关键词 Total ionizing dose Fully depleted silicon-on-insulator(FDSOI) Metal–oxide–semiconductor field-effect transistor(MOSFET) HIGH-K Hf_(0.5)Zr_(0.5)O_(2)
原文传递
On-chip light control of semiconductor optoelectronic devices using integrated metasurfaces 被引量:2
6
作者 Cheng-Long Zheng Pei-Nan Ni +1 位作者 Yi-Yang Xie Patrice Genevet 《Opto-Electronic Advances》 2025年第1期5-30,共26页
Semiconductor optoelectronics devices,capable of converting electrical power into light or conversely light into electrical power in a compact and highly efficient manner represent one of the most advanced technologie... Semiconductor optoelectronics devices,capable of converting electrical power into light or conversely light into electrical power in a compact and highly efficient manner represent one of the most advanced technologies ever developed,which has profoundly reshaped the modern life with a wide range of applications.In recent decades,semiconductor technology has rapidly evolved from first-generation narrow bandgap materials(Si,Ge)to the latest fourth-generation ultra-wide bandgap semiconductor(GaO,diamond,AlN)with enhanced performance to meet growing demands.Additionally,merging semiconductor devices with other techniques,such as computer assisted design,state-of-the-art micro/nano fabrications,novel epitaxial growth,have significantly accelerated the development of semiconductor optoelectronics devices.Among them,integrating metasurfaces with semiconductor optoelectronic devices have opened new frontiers for on-chip control of their electromagnetic response,providing access to previously inaccessible degrees of freedom.We review the recent advances in on-chip control of a variety of semiconductor optoelectronic devices using integrated metasurfaces,including semiconductor lasers,semiconductor light emitting devices,semiconductor photodetectors,and low dimensional semiconductors.The integration of metasurfaces with semiconductors offers wafer-level ultracompact solutions for manipulating the functionalities of semiconductor devices,while also providing a practical platform for implementing cuttingedge metasurface technology in real-world applications. 展开更多
关键词 OPTOELECTRONICS NANOPHOTONICS metasurfaces semiconductor
在线阅读 下载PDF
Optical Spectroscopy Methods for Determining Semiconductor Bandgaps
7
作者 ZHANG Yong 《发光学报》 北大核心 2025年第7期1271-1282,共12页
Although there are numerous optical spectroscopy techniques and methods that have been used to extract the fundamental bandgap of a semiconductor,most of them belong to one of these three approaches:(1)the excitonic a... Although there are numerous optical spectroscopy techniques and methods that have been used to extract the fundamental bandgap of a semiconductor,most of them belong to one of these three approaches:(1)the excitonic absorption,(2)modulation spectroscopy,and(3)the most widely used Tauc-plot.The excitonic absorption is based on a many-particle theory,which is physically the most correct approach,but requires more stringent crystalline quality and appropriate sample preparation and experimental implementation.The Tauc-plot is based on a single-particle theo⁃ry that neglects the many-electron effects.Modulation spectroscopy analyzes the spectroscopy features in the derivative spectrum,typically,of the reflectance and transmission under an external perturbation.Empirically,the bandgap ener⁃gy derived from the three approaches follow the order of E_(ex)>E_(MS)>E_(TP),where three transition energies are from exci⁃tonic absorption,modulation spectroscopy,and Tauc-plot,respectively.In principle,defining E_(g) as the single-elec⁃tron bandgap,we expect E_(g)>E_(ex),thus,E_(g)>E_(TP).In the literature,E_(TP) is often interpreted as E_(g),which is conceptual⁃ly problematic.However,in many cases,because the excitonic peaks are not readily identifiable,the inconsistency be⁃tween E_(g) and E_(TP) becomes invisible.In this brief review,real world examples are used(1)to illustrate how excitonic absorption features depend sensitively on the sample and measurement conditions;(2)to demonstrate the differences between E_(ex),E_(MS),and E_(TP) when they can be extracted simultaneously for one sample;and(3)to show how the popular⁃ly adopted Tauc-plot could lead to misleading results.Finally,it is pointed out that if the excitonic absorption is not ob⁃servable,the modulation spectroscopy can often yield a more useful and reasonable bandgap than Tauc-plot. 展开更多
关键词 semiconductor material bandgap excitonic absorption modulation spectroscopy Tauc plot
在线阅读 下载PDF
Performance Assessment of Semiconductor Detector Used in Diagnostics and Interventional Radiology at the Nigerian Secondary Standard Dosimetry Laboratory
8
作者 Samuel Mofolorunsho Oyeyemi Olumide Olaife Akerele +6 位作者 David Olakanmi Olaniyi Francis Adole Agada Sherif Olaniyi Kelani Akinkunmi Emmanuel Ladapo Ahmed Mohammed Shiyanbade Bamidele Musbau Adeniran Latifat Ronke Owoade 《World Journal of Nuclear Science and Technology》 2025年第1期17-29,共13页
Radiation doses to patients in diagnostics and interventional radiology need to be optimized to comply with the principles of radiation protection in medical practice. This involves using specific detectors with respe... Radiation doses to patients in diagnostics and interventional radiology need to be optimized to comply with the principles of radiation protection in medical practice. This involves using specific detectors with respective diagnostic beams to carry out quality control/quality assurance tests needed to optimize patient doses in the hospital. Semiconductor detectors are used in dosimetry to verify the equipment performance and dose to patients. This work aims to assess the performance, energy dependence, and response of five commercially available semiconductor detectors in RQR, RQR-M, RQA, and RQT at Secondary Standard Dosimetry for clinical applications. The diagnostic beams were generated using Exradin A4 reference ion chamber and PTW electrometer. The ambient temperature and pressure were noted for KTP correction. The detectors designed for RQR showed good performance in RQT beams and vice versa. The detectors designed for RQR-M displayed high energy dependency in other diagnostic beams. The type of diagnostic beam quality determines the response of semiconductor detectors. Therefore, a detector should be calibrated according to the beam qualities to be measured. 展开更多
关键词 semiconductor Detectors Optimization of Protection CALIBRATION Patient Dose Diagnostic Radiology
在线阅读 下载PDF
Research Progress on Corrosion-Resistant Coatings of Carbon-Based Materials for the Semiconductor Field
9
作者 Jianxin TU Kui HAO +5 位作者 Caixia HUO Ziyuan GUO Jianhao WANG Aijun LI Ruicheng BAI Zhihao JI 《中国材料进展》 北大核心 2025年第7期636-647,共12页
Semiconductors and related fields today hold vast application prospects.The semiconductor wafer fabrication process involves steps such as substrate preparation and epitaxy,which occur in high-temperature corrosive en... Semiconductors and related fields today hold vast application prospects.The semiconductor wafer fabrication process involves steps such as substrate preparation and epitaxy,which occur in high-temperature corrosive environments.Consequently,components like crucibles,susceptors and wafer carriers require carbon-based materials such as graphite and carbon-carbon composites.However,traditional carbon materials underperform in these extreme conditions,failing to effectively address the challenges.This leads to issues including product contamination and shortened equipment lifespan.Therefore,effective protection of carbon materials is crucial.This paper reviews current research status on the preparation methods and properties of corrosion-resistant coatings within relevant domestic and international fields.Preparation methods include various techniques such as physical vapor deposition(PVD),chemical vapor deposition(CVD)and the sol-gel method.Furthermore,it offers perspectives on future research directions for corrosion-resistant coated components in semiconductor equipment.These include exploring novel coating materials,improving coating preparation processes,enhancing coating corrosion resistance,as well as further investigating the interfacial interactions between coatings and carbon substrates to achieve better adhesion and compatibility. 展开更多
关键词 semiconductor high-temperature corrosion corrosive atmosphere carbon materials corrosion-resistant coatings silicon carbide tantalum carbide
在线阅读 下载PDF
Visible to near-infrared photodetector based on organic semiconductor single crystal
10
作者 LI Xiang HU Jin-Han +7 位作者 ZHONG Zhi-Peng CHEN Yu-Zhong WANG Zhi-Qiang SONG Miao-Miao WANG Yang ZHANG Lei LI Jian-Feng HUANG Hai 《红外与毫米波学报》 北大核心 2025年第1期46-51,共6页
Organic semiconductor materials have shown unique advantages in the development of optoelectronic devices due to their ease of preparation,low cost,lightweight,and flexibility.In this work,we explored the application ... Organic semiconductor materials have shown unique advantages in the development of optoelectronic devices due to their ease of preparation,low cost,lightweight,and flexibility.In this work,we explored the application of the organic semiconductor Y6-1O single crystal in photodetection devices.Firstly,Y6-1O single crystal material was prepared on a silicon substrate using solution droplet casting method.The optical properties of Y6-1O material were characterized by polarized optical microscopy,fluorescence spectroscopy,etc.,confirming its highly single crystalline performance and emission properties in the near-infrared region.Phototransistors based on Y6-1O materials with different thicknesses were then fabricated and tested.It was found that the devices exhibited good visible to near-infrared photoresponse,with the maximum photoresponse in the near-infrared region at 785 nm.The photocurrent on/off ratio reaches 10^(2),and photoresponsivity reaches 16 mA/W.It was also found that the spectral response of the device could be regulated by gate voltage as well as the material thickness,providing important conditions for optimizing the performance of near-infrared photodetectors.This study not only demonstrates the excellent performance of organic phototransistors based on Y6-1O single crystal material in near-infrared detection but also provides new ideas and directions for the future development of infrared detectors. 展开更多
关键词 near-infrared photodetector organic semiconductor Y6-1O single crystal spectral response
在线阅读 下载PDF
Ultra-high thermoelectric performance in ternary n-type PbTe collaboratively enabled by self-optimized carrier concentration and ultra-low lattice thermal conductivity
11
作者 Qian Deng Xiaobo Tan +6 位作者 Jiansen Wen Ruiheng Li Jiaxing Luo Yin Xie Zhilong Zhao Baisheng Sa Ran Ang 《Journal of Materials Science & Technology》 2025年第33期86-94,共9页
The relatively lower performance of n-type legs has significantly hindered the application of PbTe ma-terials in medium-temperature thermoelectric(TE)power generation,underscoring the urgent need to enhance the TE per... The relatively lower performance of n-type legs has significantly hindered the application of PbTe ma-terials in medium-temperature thermoelectric(TE)power generation,underscoring the urgent need to enhance the TE performance of n-type PbTe.In this study,electron-phonon decoupling was achieved through the precise manipulation of a single copper-doping element in PbTe(i.e.,Pb_(1.005-x)Cu_(2 x+0.003)Te),enabling the concurrent optimization of phonon transport and electrical properties.High-content Cu dop-ing induced substantial lattice strain and abundant precipitates,which effectively scattered heat-carrying phonons and significantly reduced lattice thermal conductivity.Simultaneously,the retention of high mo-bility and the self-regulation of electron concentration improved electrical performance across a broad temperature range.As a result,an impressive average zT of 1.3 was achieved from 523 to 823 K in n-type Pb_(0.985)Cu_(0.043)Te.Building on this,a seven-pair TE module was fabricated,attaining an energy conversion efficiency of∼8%under a temperature difference of 420 K.This work provides fresh insights into strate-gies for enhancing the TE performance of n-type PbTe. 展开更多
关键词 THERMOELECTRIC n-type pbte Electron-phonon decoupling Power generation
原文传递
Thermoelectric generator and temperature sensor based on polyamide doped n-type single-walled nanotubes toward self-powered wearable electronics
12
作者 Jiye Xiao Zhen Zhang +6 位作者 Zhixiong Liao Jinzhen Huang Dongxia Xian Runhao Zhu Shichao Wang Chunmei Gao Lei Wang 《Journal of Materials Science & Technology》 2025年第4期246-254,共9页
Due to its ability to convert body heat into electricity,organic thermoelectric material is considered a promising and smart maintenance-free power source to charge wearable electronics.However,developing flexible n-t... Due to its ability to convert body heat into electricity,organic thermoelectric material is considered a promising and smart maintenance-free power source to charge wearable electronics.However,developing flexible n-type organic thermoelectric materials and wearable p/n junction thermoelectric devices remains challenging.In this work,two insulated polyamides(PA6 and PA66)that have been widely used as fiber materials are employed as novel dopants for converting p-type single-walled carbon nanotubes(SWCNTs)to n-type thermoelectric materials.Because of the electron transferability of the amide group,polyamide-doped SWCNTs exhibit excellent thermopower values as large as-56.0μV K^(-1) for PA66,and-54.5μV K^(-1) for PA6.Thermoelectric devices with five p/n junctions connected in series are fabricated.The testing device produces a thermoelectric voltage of 43.1 mV and generates 1.85μW thermoelectric power under temperature gradients of approximately 80 K.Furthermore,they display charming capability for temperature recognition and monitoring human activities as sensors.These promising results suggest that the flexible polyamide-doped SWCNT composites herein have high application potential as wearable thermoelectric electronics. 展开更多
关键词 n-type thermoelectric material Self-powered sensors Composites Single-walled carbon nanotubes Wearable electronics
原文传递
Room-Temperature Ferromagnetism via Superexchange in Semiconductor(Cr_(4/6),Mo_(2/6))_(3)Te_(6)
13
作者 Jia-Wen Li Gang Su Bo Gu 《Chinese Physics Letters》 2025年第9期146-162,共17页
Realizing ferromagnetic semiconductors with high Curie temperature TC is still a challenge in spintronics.Recent experiments have reported two-dimensional(2D)room temperature ferromagnetic metals,such as monolayer Cr_... Realizing ferromagnetic semiconductors with high Curie temperature TC is still a challenge in spintronics.Recent experiments have reported two-dimensional(2D)room temperature ferromagnetic metals,such as monolayer Cr_(3)Te_(6).In this paper,through density functional theory(DFT)calculations,we propose a method to obtain 2D high TC ferromagnetic semiconductors through element replacement in these ferromagnetic metals.We predict that monolayer(Cr_(4/6),Mo_(2/6))_(3)Te_(6),created via element replacement in monolayer Cr_(3)Te_(6),is a room-temperature ferromagnetic semiconductor exhibiting a band gap of 0.34 eV and a TC of 384 K.Our analysis reveals that the metal-to-semiconductor transition stems from the synergistic interplay of Mo-induced lattice distortion,which resolves band overlap,and the electronic contributions of Mo dopants,which further drive the formation of a distinct band gap.The origin of the high TC is traced to strong superexchange coupling between magnetic ions,analyzed via the superexchange model with DFT and Wannier function calculations.Considering the fast developments in fabrication and manipulation of 2D materials,our theoretical results propose an approach to explore high-temperature ferromagnetic semiconductors derived from experimentally obtained 2D high-temperature ferromagnetic metals through element replacement. 展开更多
关键词 ferromagnetic semiconductors ferromagnetic metalswe MONOLAYER density functional theory dft calculationswe room temperature ferromagnetism element replacement ferromagnetic metalssuch semiconductor
原文传递
Critical Role of Intermetallic Particles in the Corrosion of 6061 Aluminum Alloy and Anodized Aluminum Used in Semiconductor Processing Equipment
14
作者 Yang Zhao Bo He +3 位作者 Jinliang Yang Yongxiang Liu Tao Zhang Fuhui Wang 《Acta Metallurgica Sinica(English Letters)》 2025年第6期904-924,共21页
The effect of intermetallic particles on the corrosion of 6061 aluminum alloy and its coating used in semiconductor processing systems was systematically studied via liquid and gas experiments and micromorphology char... The effect of intermetallic particles on the corrosion of 6061 aluminum alloy and its coating used in semiconductor processing systems was systematically studied via liquid and gas experiments and micromorphology characterization.The results revealed that a huge difference of corrosion resistance between imported and domestic 6061 aluminum alloys in HCl solution and gas acid mist experiments mainly was attributed to the different size and amount of Al_(15)(Fe,Mn)_(3)Si_(2).The corrosion resistance of domestic 6061 alloy in dry/wet semiconductor electronic special gas environments was worse than that of imported aluminum alloy,and there are great differences in the corrosion mechanism of 6061 alloy caused by the second phase in the two dry/wet environments.And the corrosion resistance of the hard anodized alumina film was closely related to the microscopic morphology of holes.The vertical and elongatedα-Al_(15)(Mn,Fe)_(3)Si_(2) phase was formed in the rolled aluminum alloy that has been rolled perpendicular to the surface of the substrate.Compared to the horizontal long hole,the longitudinal long holes generated by the verticalα-Al_(15)(Mn,Fe)_(3)Si_(2) phase will enable the corrosive medium to reach the substrate rapidly,which significantly weakens the corrosion resistance of the hard anodized film. 展开更多
关键词 semiconductor Intermetallic particles Anodized aluminum CORROSION
原文传递
Research on heterojunction semiconductor photodetectors based on CsPbBr_(3) QDs/CsPbBr_(x)I_(3-x) QDs
15
作者 Chenguang Shen Mengwei Chen +1 位作者 Wei Huang Yingping Yang 《Journal of Semiconductors》 2025年第10期89-97,共9页
All-inorganic CsPbBr_(3) perovskite quantum dots(QDs)have attracted extensive attention in photoelectric detection for their excellent photoelectric properties and stability.However,the CsPbBr_(3) quantum dot film exh... All-inorganic CsPbBr_(3) perovskite quantum dots(QDs)have attracted extensive attention in photoelectric detection for their excellent photoelectric properties and stability.However,the CsPbBr_(3) quantum dot film exhibits a high non-radiative recombination rate,and the mismatch in energy levels with the carbon electrode weakens hole extraction efficiency.These reduces the device's performance.To improve this,a semiconductor photodetector based on fluorine-doped tin oxide(FTO)/dense titanium dioxide(c-TiO_(2))/mesoporous titanium dioxide(m-TiO_(2))/CsPbBr_(3) QDs/CsPbBr_(x)I_(3-x)(x=2,1.5,1)QDs/C struc-ture was studied.By adjusting the Br-:I-ratio,the synthesized CsPbBr_(x)I_(3-x)(x=2,1.5,1)QDs showed an adjustable band gap width of 2.284-2.394 eV.And forming a typeⅡband structure with CsPbBr_(3) QDs,which reduced the valence band offset between the active layer and the carbon electrode,this promoted carrier extraction and reduced non-radiative recombination rate.Compared with the original device(the photosensitive layer is CsPbBr_(3) QDs),the performance of the photodetector based on the CsPbBr_(3) QDs/CsPbBr2I QDs heterostructure is significantly improved,the responsivity(R)increased by 73%,the specific detectivity rate(D^(*))increased from 6.98×10^(12) to 3.19×10^(13) Jones,the on/off ratio reached 106.This study provides a new idea for the development of semiconductor tandem detectors. 展开更多
关键词 photodetector all-inorganic perovskite quantum dots semiconductor heterostructure
在线阅读 下载PDF
Chemical pressure manipulation of ferromagnetism in magnetic semiconductor Ba(Zn,Mn,Cu)_(2)As_(2)
16
作者 Xueqin Zhao Jinou Dong +4 位作者 Lingfeng Xie Xun Pan Haoyuan Tang Zhicheng Xu Fanlong Ning 《Chinese Physics B》 2025年第10期522-527,共6页
We report the manipulation of ferromagnetism in magnetic semiconductor Ba(Zn,Mn,Cu)_(2)As_(2)through chemical pressure.The substitutions of Sr for Ba and Sb for As introduce positive and negative chemical pressures,re... We report the manipulation of ferromagnetism in magnetic semiconductor Ba(Zn,Mn,Cu)_(2)As_(2)through chemical pressure.The substitutions of Sr for Ba and Sb for As introduce positive and negative chemical pressures,respectively;neither Sr doping nor Sb doping change the tetragonal crystal structure.Based on Ba(Zn_(0.75)Mn_(0.125)Cu_(0.125))_(2)As_(2)with T_(C)~34 K,10%Sr/Ba substitutions significantly improve T_(C)by~15%to 39 K,whereas 10%Sb/As substitutions substantially reduce TCby~47%to 18 K.The AC magnetic susceptibility measurements indicate that Sr-doped and Sb-doped samples evolve into a spin glass state below the spin freezing temperature Tf.Electrical transport measurements demonstrate that Sr-doped specimens retain semiconducting behavior;additionally,they display a significant negative magnetoresistance effect under applied magnetic fields and the magnetoresistance reaches~-19%at 8 T. 展开更多
关键词 magnetic semiconductors SPIN-GLASS negative magnetoresistance
原文传递
Predicted stable two-dimensional semiconductor TiOS materials with promising photocatalytic properties:First-principles calculations
17
作者 Pan Zhang Shihai Fu +2 位作者 Chunying Pu Xin Tang Dawei Zhou 《Chinese Physics B》 2025年第5期534-541,共8页
TiO_(2)is a well-known photocatalyst with a band gap of 3.2 eV,yet its ability to absorb light is limited to the short wavelengths of ultraviolet light.To achieve a more effective photocatalytic material,we have desig... TiO_(2)is a well-known photocatalyst with a band gap of 3.2 eV,yet its ability to absorb light is limited to the short wavelengths of ultraviolet light.To achieve a more effective photocatalytic material,we have designed two-dimensional semiconductor TiOS materials using swarm intelligence algorithms combined with first-principles calculations.Three stable low-energy structures with space groups of P2_(1)/m,P3m1 and P2_(1)/c are identified.Among these structures,the Janus P3m1 phase is a direct bandgap semiconductor,while the P2_(1)/m and P2_(1)/c phases are indirect bandgap semiconductors.Utilizing the accurate hybrid density functional HSE06 method,the band gaps of the three structures are calculated to be 2.34 eV(P2_(1)/m),2.24 eV(P3m1)and 3.22 eV(P2_(1)/c).Optical calculations reveal that TiOS materials exhibit a good light-harvesting capability in both visible and ultraviolet spectral ranges.Moreover,the photocatalytic calculations also indicate that both P2_(1)/m and P3m1 TiOS can provide a strong driving force for converting H_(2)O to H_(2)and O_(2)in an acidic environment with pH=0.The structural stabilities,mechanical properties,electronic structures and hydrogen evolution reaction activities are also discussed in detail.Our research suggests that two-dimensional TiOS materials have potential applications in both semiconductor devices and photocatalysis. 展开更多
关键词 first principles structure prediction TiOS semiconductor PHOTOCATALYSIS
原文传递
Vibration characteristic analysis of a cracked piezoelectric semiconductor curved beam
18
作者 Qiaoyun ZHANG Xiaoyan ZHANG +2 位作者 Jiahao XU Zhicai SONG Minghao ZHAO 《Applied Mathematics and Mechanics(English Edition)》 2025年第10期1967-1982,共16页
The fracture mechanics theory posits that cracks induce strain energy concentration near their tips in structural components,generating localized flexibility that impedes crack propagation.Theoretically,cracks are rep... The fracture mechanics theory posits that cracks induce strain energy concentration near their tips in structural components,generating localized flexibility that impedes crack propagation.Theoretically,cracks are represented as dimensionless,massless spring models,effectively capturing crack characteristics and cross-sectional properties at the crack location.Leveraging this spring-based representation,this study establishes an open-crack model for a one-dimensional(1D)piezoelectric semiconductor(PSC)curved beam under dynamic loading.This model enables the investigation of vibration characteristics in cracked structures.The analytical solutions for the electromechanical fields of the beam are derived using the differential operator method,and the natural frequencies together with the corresponding generalized mode shapes of the beam are determined analytically.Furthermore,the effects of the crack parameters on the natural vibration characteristics of the PSC curved beam are analyzed. 展开更多
关键词 piezoelectric semiconductor(PSC) curved beam VIBRATION CRACK analytical solution
在线阅读 下载PDF
Investigating the doping performance of an ionic dopant for organic semiconductors and thermoelectric applications
19
作者 Jing Guo Yaru Feng +10 位作者 Jinjun Zhang Jing Zhang Ping−An Chen Huan Wei Xincan Qiu Yu Liu Jiangnan Xia Huajie Chen Yugang Bai Lang Jiang Yuanyuan Hu 《Journal of Semiconductors》 2025年第8期84-92,共9页
Doping plays a pivotal role in enhancing the performance of organic semiconductors(OSCs)for advanced optoelectronic and thermoelectric applications.In this study,we systematically investigated the doping performance a... Doping plays a pivotal role in enhancing the performance of organic semiconductors(OSCs)for advanced optoelectronic and thermoelectric applications.In this study,we systematically investigated the doping performance and applicability of the ionic dopant 4-isopropyl-4′-methyldiphenyliodonium tetrakis(penta-fluorophenyl-borate)(DPI-TPFB)as a p-dopant for OSCs.Using the p-type OSC PBBT-2T as a model system,we demonstrated that DPI-TPFB shows significant doping effect,as confirmed by ESR spectra,ultraviolet-visible-near-infrared(UV-vis-NIR)absorption,and work function analysis,and enhances the electronic conductivity of PBBT-2T films by over four orders of magnitude.Furthermore,DPI-TPFB exhibited broad doping applicability,effectively doping various p-type OSCs and even imparting p-type characteristics to the n-type OSC N2200,transforming its intrinsic n-type behavior into p-type.The application of DPI-TPFB-doped PBBT-2T films in organic thermoelectric devices(OTEs)was also explored,achieving a power factor of approximately 10μW·m^(-1)·K^(-2).These findings highlight the potential of DPI-TPFB as a versatile and efficient dopant for integration into organic optoelectronic and thermoelectric devices. 展开更多
关键词 ionic dopant DOPING DPI-TPFB organic semiconductor organic thermoelectric devices
在线阅读 下载PDF
Semiconductor Fibers:Weaving the Future of Wearable Tech
20
作者 YAN Fusheng 《Bulletin of the Chinese Academy of Sciences》 2025年第1期30-31,共2页
Imagine a beanie that“sees”traffic lights for the visually impaired,or a shirt that doubles as a high-speed data receiver.These aren’t sci-fi fantasies-they’re the first threads of a revolution sparked by ultra-th... Imagine a beanie that“sees”traffic lights for the visually impaired,or a shirt that doubles as a high-speed data receiver.These aren’t sci-fi fantasies-they’re the first threads of a revolution sparked by ultra-thin,flexible semiconductor fibers.In a Nature study published February 2024,researchers from the Chinese Academy of Sciences and Nanyang Technological University unveiled a breakthrough in producing high-performance optoelectronic fibers,overcoming decades-old engineering hurdles. 展开更多
关键词 wearable tech high performance optoelectronic fibers semiconductor fibers flexible technology
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部