Photocatalytic splitting of hydrogen sulfide(H2S) for hydrogen evolution is a promising method to solve the energy and environmental issues.In this work,S,N-codoped carbon dots(S,N-CDs)/graphitic carbon nitride(g-C3N4...Photocatalytic splitting of hydrogen sulfide(H2S) for hydrogen evolution is a promising method to solve the energy and environmental issues.In this work,S,N-codoped carbon dots(S,N-CDs)/graphitic carbon nitride(g-C3N4) nanosheet is synthesized by hydrothermal method as an efficient photocatalyst for the decomposition of H2S.In addition to the characterization of the morphology and structure,chemical state,optical and electrochemical performances of S,N-CDs/g-C3N4,hydrogen evolution tests show that the activity of g-C3N4 is improved by introducing S,N-CDs,and the enhancement depends strongly on the wavelength of incident light.The photocatalytic hydrogen production rate of S,N-CDs/g-C3N4 composite reaches 832 μmol g-1h-1, which is 38 times to that of g-C3N4 under irradiation at 460 nm.Density functional theory calculations and electron paramagnetic resonance as well as photoluminescence technologies have altogether authenticated that the unique wavelength-dependent photosensitization of S,N-CDs on g-C3N4;meanwhile,a good match between the energy level of S,N-CDs and g-C3N4 is pivotal for the effective photocatalytic activity.Our work has unveiled the detailed mechanism of the photocatalytic activity enhancement in S,N-CDs/g-C3N4 composite and showed its potential in photocatalytic splitting of H2S for hydrogen evolution.展开更多
C,N-codoped TiO 2 films have been deposited onto stainless steel substrates using plasma surface alloying and thermal oxidation duplex process.Composition analysis shows that the films shield the substrates entirely.T...C,N-codoped TiO 2 films have been deposited onto stainless steel substrates using plasma surface alloying and thermal oxidation duplex process.Composition analysis shows that the films shield the substrates entirely.The TiO 2 films are anatase in structure as characterized by X-ray diffraction.The electrochemical measurements show that the equilibrium corrosion potential positively shifts from-0.275 eV for bare stainless steel to-0.267 eV for C,N-codoped TiO 2 coated stainless steel,and the corrosion current density decreases from 1.3×10-5 A/cm2 to 4.1×10-6 A/cm2.The corrosion resistance obtained by electrochemistry noise also reveals that the C,N-codoped TiO 2 films provide good protection for stainless steel against corrosion in stimulated body fluid.The above results indicate that C,N-codoped TiO 2 films deposited by plasma surface alloying and thermal oxidation duplex process are effective in protecting stainless steel from corrosion.展开更多
Developing efficient and stable catalysts for the hydrogen evolution reaction(HER)is essential for advancing anion-exchange membrane water electrolyzer(AEMWE)technology.In this study,we present a facile microwave redu...Developing efficient and stable catalysts for the hydrogen evolution reaction(HER)is essential for advancing anion-exchange membrane water electrolyzer(AEMWE)technology.In this study,we present a facile microwave reduction and low-temperature phosphorization strategy to synthesize a highly efficient HER catalyst,comprising P,N-codoped carbon-supported RuP_(2)nanocluster(RuP_(2)@PNC).RuP_(2)@PNC demonstrates outstanding HER performance,achieving overpotentials of 18 and 44 mV at a current density of 10 mA cm^(-2)in alkaline and acidic media,respectively.Furthermore,an AEMWE device utilizing RuP_(2)@PNC as the cathode catalyst delivers a current density of 0.5 A cm^(-2)at a cell voltage of 1.84 V and exhibits remarkable stability over 150 h of operation.Experimental analyses and density functional theory(DFT)calculations reveal that the synergistic effects of P,N-codoped and the unique structure of RuP_(2)enhance electron transfer between Ru and the support,optimize the electronic structure,and regulate the d–band center of Ru.These features improve water adsorption,weaken the Ru–H binding strength,and facilitate efficient H_(2)desorption,collectively driving the superior HER activity of RuP_(2)@PNC.This work offers an effective design strategy for high-performance HER catalysts and provides valuable insights for accelerating the development of AEMWE technology.展开更多
Developing high-performance anode materials for potassium-ion batteries is significantly urgent. We here demonstrate Sb_2S_3 nanoparticles(~20 nm) homogeneously dispersed in porous S,N-codoped graphene framework(Sb_2S...Developing high-performance anode materials for potassium-ion batteries is significantly urgent. We here demonstrate Sb_2S_3 nanoparticles(~20 nm) homogeneously dispersed in porous S,N-codoped graphene framework(Sb_2S_3-SNG) as a self-supported anode material for potassium-ion batteries. The rational structure design of integrating Sb_2S_3 nanoparticles with S,N-codoped graphene contributes to high reactivity, strong affinity, good electric conductivity, and robust stability of the composite, enabling superior K-storage performance. Moreover, the self-supported architecture significantly decreases the inactive weight of the battery, resulting in a high energy density of a Sb_2S_3-SNG/KVPO_4 F-C full cell to ~166.3 W h kg^(-1).展开更多
Recently,Cu-based single-atom catalysts(SACs)have garnered increasing attention as substitutes for platinum-based catalysts in the oxygen reduction reaction(ORR).Therefore,a facile,economical,and efficient synthetic m...Recently,Cu-based single-atom catalysts(SACs)have garnered increasing attention as substitutes for platinum-based catalysts in the oxygen reduction reaction(ORR).Therefore,a facile,economical,and efficient synthetic methodology for the preparation of a high-performance Cu-based SAC electrocatalyst for the ORR is extremely desired,but is also significantly challenging.In this study,we propose a ball-milling method to synthesize isolated metal SACs embedded in S,N-codoped nanocarbon(MNSDC,M=Cu,Fe,Co,Ni,Mn,Pt,and Pd).In particular,the Cu-NSDC SACs exhibit high electrochemical activity for the ORR with half-wave potential(E_(1/2))of 0.84 V(vs.reversible hydrogen electrode(RHE),20 mV higher than Pt/C)in alkaline electrolyte,excellent stability,and electrocatalytic selectivity.Density functional theory(DFT)calculations demonstrated that the desorption of OH*intermediates was the rate-determining step over Cu-NSDC.This study creates a pathway for high-performance ORR single atomic electrocatalysts for fuel cell applications and provides opportunities to convert biowaste materials into commercial opportunities.展开更多
基金financial support from the National Natural Science Foundation of China (U1862111 and 21702213)Cheung Kong Scholars Programme of China+3 种基金Chinese Academic of Science “light of west China” ProgramProvincial International Cooperation Project 2020YFH0118, Sichuan, ChinaOpen Fund (PLN201802 and 201928) of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University)Open Fund of State Key Laboratory of Industrial Vent Gas Reuse (SKLIVGR-SWPU-2020-05)。
文摘Photocatalytic splitting of hydrogen sulfide(H2S) for hydrogen evolution is a promising method to solve the energy and environmental issues.In this work,S,N-codoped carbon dots(S,N-CDs)/graphitic carbon nitride(g-C3N4) nanosheet is synthesized by hydrothermal method as an efficient photocatalyst for the decomposition of H2S.In addition to the characterization of the morphology and structure,chemical state,optical and electrochemical performances of S,N-CDs/g-C3N4,hydrogen evolution tests show that the activity of g-C3N4 is improved by introducing S,N-CDs,and the enhancement depends strongly on the wavelength of incident light.The photocatalytic hydrogen production rate of S,N-CDs/g-C3N4 composite reaches 832 μmol g-1h-1, which is 38 times to that of g-C3N4 under irradiation at 460 nm.Density functional theory calculations and electron paramagnetic resonance as well as photoluminescence technologies have altogether authenticated that the unique wavelength-dependent photosensitization of S,N-CDs on g-C3N4;meanwhile,a good match between the energy level of S,N-CDs and g-C3N4 is pivotal for the effective photocatalytic activity.Our work has unveiled the detailed mechanism of the photocatalytic activity enhancement in S,N-CDs/g-C3N4 composite and showed its potential in photocatalytic splitting of H2S for hydrogen evolution.
基金Funded by the National Natural Science Foundation of China (No.50771070)Project Innovation of the Graduate Students of Shanxi Province(No.20093038)
文摘C,N-codoped TiO 2 films have been deposited onto stainless steel substrates using plasma surface alloying and thermal oxidation duplex process.Composition analysis shows that the films shield the substrates entirely.The TiO 2 films are anatase in structure as characterized by X-ray diffraction.The electrochemical measurements show that the equilibrium corrosion potential positively shifts from-0.275 eV for bare stainless steel to-0.267 eV for C,N-codoped TiO 2 coated stainless steel,and the corrosion current density decreases from 1.3×10-5 A/cm2 to 4.1×10-6 A/cm2.The corrosion resistance obtained by electrochemistry noise also reveals that the C,N-codoped TiO 2 films provide good protection for stainless steel against corrosion in stimulated body fluid.The above results indicate that C,N-codoped TiO 2 films deposited by plasma surface alloying and thermal oxidation duplex process are effective in protecting stainless steel from corrosion.
基金supported by the National Natural Science Foundation of China(Nos.52371222 and 52271211)the Natural Science Foundation of Hunan Province in China(Nos.2025JJ60350,2024JJ4022,and 2023JJ30277)+1 种基金the Key Research and Development Program of Hunan Province(No.2023GK2035)HORIZON–Marie Sk?odowska–Curie Actions–2021–PF(No.101065098),European Union
文摘Developing efficient and stable catalysts for the hydrogen evolution reaction(HER)is essential for advancing anion-exchange membrane water electrolyzer(AEMWE)technology.In this study,we present a facile microwave reduction and low-temperature phosphorization strategy to synthesize a highly efficient HER catalyst,comprising P,N-codoped carbon-supported RuP_(2)nanocluster(RuP_(2)@PNC).RuP_(2)@PNC demonstrates outstanding HER performance,achieving overpotentials of 18 and 44 mV at a current density of 10 mA cm^(-2)in alkaline and acidic media,respectively.Furthermore,an AEMWE device utilizing RuP_(2)@PNC as the cathode catalyst delivers a current density of 0.5 A cm^(-2)at a cell voltage of 1.84 V and exhibits remarkable stability over 150 h of operation.Experimental analyses and density functional theory(DFT)calculations reveal that the synergistic effects of P,N-codoped and the unique structure of RuP_(2)enhance electron transfer between Ru and the support,optimize the electronic structure,and regulate the d–band center of Ru.These features improve water adsorption,weaken the Ru–H binding strength,and facilitate efficient H_(2)desorption,collectively driving the superior HER activity of RuP_(2)@PNC.This work offers an effective design strategy for high-performance HER catalysts and provides valuable insights for accelerating the development of AEMWE technology.
基金supported by the National Natural Science Foundation of China (21231005, 51231003)the Program of Introducing Talents of Discipline to Universities of China (B12015)
文摘Developing high-performance anode materials for potassium-ion batteries is significantly urgent. We here demonstrate Sb_2S_3 nanoparticles(~20 nm) homogeneously dispersed in porous S,N-codoped graphene framework(Sb_2S_3-SNG) as a self-supported anode material for potassium-ion batteries. The rational structure design of integrating Sb_2S_3 nanoparticles with S,N-codoped graphene contributes to high reactivity, strong affinity, good electric conductivity, and robust stability of the composite, enabling superior K-storage performance. Moreover, the self-supported architecture significantly decreases the inactive weight of the battery, resulting in a high energy density of a Sb_2S_3-SNG/KVPO_4 F-C full cell to ~166.3 W h kg^(-1).
基金supported by the National Key Research and Development Program Nanotechnology Specific Project(No.2020YFA0210900)the National Natural Science Foundation of China(Nos.21908255,22078371,22108315,21938001,and 21961160741)+3 种基金the Guangdong Provincial Key R&D Programme(No.2019B110206002)the Science and Technology Key Project of Guangdong Province(No.2020B010188002)the Guangdong Basic and Applied Basic Research Foundation(No.2020A1515110864)the Guangdong Natural Science Foundation(No.2021A1515010163).
文摘Recently,Cu-based single-atom catalysts(SACs)have garnered increasing attention as substitutes for platinum-based catalysts in the oxygen reduction reaction(ORR).Therefore,a facile,economical,and efficient synthetic methodology for the preparation of a high-performance Cu-based SAC electrocatalyst for the ORR is extremely desired,but is also significantly challenging.In this study,we propose a ball-milling method to synthesize isolated metal SACs embedded in S,N-codoped nanocarbon(MNSDC,M=Cu,Fe,Co,Ni,Mn,Pt,and Pd).In particular,the Cu-NSDC SACs exhibit high electrochemical activity for the ORR with half-wave potential(E_(1/2))of 0.84 V(vs.reversible hydrogen electrode(RHE),20 mV higher than Pt/C)in alkaline electrolyte,excellent stability,and electrocatalytic selectivity.Density functional theory(DFT)calculations demonstrated that the desorption of OH*intermediates was the rate-determining step over Cu-NSDC.This study creates a pathway for high-performance ORR single atomic electrocatalysts for fuel cell applications and provides opportunities to convert biowaste materials into commercial opportunities.