A two-body regularization for N-body problem based on perturbation theory for Keplerian problem is discussed. We provide analytical estimations of accuracy and conduct N-body experiments in order to compare it with st...A two-body regularization for N-body problem based on perturbation theory for Keplerian problem is discussed. We provide analytical estimations of accuracy and conduct N-body experiments in order to compare it with state-of-the-art Hermite integrator. It is shown that this regularization keeps some features that allow overcoming KS-regularization in some particular cases.展开更多
The theoretical foundation of a new N-body simulation method for the dynamics of large numbers (N > 106) of gravitating bodies is described. The new approach is founded on the probability description of the physica...The theoretical foundation of a new N-body simulation method for the dynamics of large numbers (N > 106) of gravitating bodies is described. The new approach is founded on the probability description of the physical parameters and a similarity method which permits a manifold reduction of the calculation time for the evolution of “large” systems. This is done by averaging the results of calculations over an ensemble of many “small” systems with total particle number in the ensemble equal to the number of stars in the large system. The method is valid for the approximate calculation of the evolution of large systems, including dissipative systems like AGN containing a supermassive black hole, accretion disc, and the surrounding stellar cluster.展开更多
We have shown the outcome of N-body simulations of the interactions of two disc galaxies without gas with the same mass. Both disc galaxies have halos of dark matter, central bulges and initial supermassive black hole...We have shown the outcome of N-body simulations of the interactions of two disc galaxies without gas with the same mass. Both disc galaxies have halos of dark matter, central bulges and initial supermassive black hole (SMBH) seeds at their centers. The purpose of this work is to study the mass and dynamical evolution of the initial SMBH seed during a Hubble cosmological time. It is a complementation of our previous paper with different initial orbit conditions and by introducing the SMBH seed in the initial galaxy. The disc of the secondary galaxy has a coplanar or polar orientation in relation to the disc of the primary galaxy and their initial orbit are eccentric and prograde. The primary and secondary galaxies have mass and size of Milky Way with an initial SMBH seed. We have found that the merger of the primary and secondary discs can result in a final normal disc or a final warped disc. After the fusion of discs, the final one is thicker and larger than the initial disc. The tidal effects are very important, modifying the evolution of the SMBH in the primary and secondary galaxy differently. The mass of the SMBH of the primary galaxy has increased by a factor ranging from 52 to 64 times the initial seed mass, depending on the experiment. However, the mass of the SMBH of the secondary galaxy has increased by a factor ranging from 6 to 33 times the initial SMBH seed mass, depending also on the experiment. Most of the accreted particles have come from the bulge and from the halo, depleting their particles. This could explain why the observations show that the SMBH with masses of approximatelyis found in many bulgeless galaxies. Only a small number of the accreted particles has come from the disc. In some cases of final merging stage of the two galaxies, the final SMBH of the secondary galaxy was ejected out of the galaxy.展开更多
To address the limitations of existing coupling methods in aero-engine system simulation,which fail to adaptively adjust iterative parameters and coupling relationships,which can result in low efficiency and in⁃stabil...To address the limitations of existing coupling methods in aero-engine system simulation,which fail to adaptively adjust iterative parameters and coupling relationships,which can result in low efficiency and in⁃stability,this study introduces a‘Dynamic Event-Driven Co-Simulation’algorithm integrated with decision tree algorithms.This algorithm separates the overall coupling relationships and the main solver from the primary mod⁃el,utilizing a dynamic event monitoring module to adaptively adjust simulation strategies,including iteration pa⁃rameters,coupling relationships,and convergence criteria.This facilitates efficient adaptive simulations of dy⁃namic events while balancing solution accuracy and computational efficiency.The research focuses on a twinshaft turbofan engine,establishing six system-level models that encompass overall performance and various sub⁃systems based on three coupling methods,along with a multidisciplinary multi-fidelity simulation framework in⁃corporating a 3D CFD nozzle model.The study tests both model exchange and coupled simulation methods under a 14 s transient acceleration and deceleration scenario.In a 100%throttle condition,a high-fidelity nozzle model is used to analyze the sensitivity of different convergence criteria on computational efficiency and accuracy.Re⁃sults indicate that the accuracy and efficiency achieved with this method are comparable to those of PROOSIS soft⁃ware(18 s and 35 s,respectively),while being 71%more efficient than Simulink software(62 s and 120 s,re⁃spectively).Furthermore,appropriately relaxing the convergence criteria for the 0D model(from 10-6 to 10-4)while enhancing those for the 3D model(from 3000 steps to 6000 steps)can effectively balance computational accuracy and efficiency.展开更多
Self-assembly of block copolymers(BCPs)is highly intricate and is adsorbing extensive experimental and simulation efforts to reveal it for maximizing structural order and device performances.The coarse-grained(CG)mole...Self-assembly of block copolymers(BCPs)is highly intricate and is adsorbing extensive experimental and simulation efforts to reveal it for maximizing structural order and device performances.The coarse-grained(CG)molecular dynamics(MD)simulation offers a microscopic angle to view the self-assembly of BCPs.Although some molecular details are sacrificed during CG processes,this method exhibits remarkable computational efficiency.In this study,a comprehensive CG model for polystyrene-block-poly(2-vinylpyridine),PS-b-P2VP,one of the most extensively studied BCPs for its high Flory-Huggins interaction parameter,is constructed,with parameters optimized using target values derived from all-atom MD simulations.The CG model precisely coincides with various classical self-assembling morphologies observed in experimental studies,matching the theoretical phase diagrams.Moreover,the conformational asymmetry of the experimental phase diagram is also clearly revealed by our simulation results,and the phase boundaries obtained from simulations are highly consistent with experimental results.The CG model is expected to extend to simulate the self-assembly behaviors of other BCPs in addition to PS-b-P2VP,thus increasing understanding of the microphase separation of BCPs from the molecular level.展开更多
The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope ...The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope and image processing technology were employed to achieve a quantitative grain size distribution of NiTi alloys so as to provide experimental data for molecular dynamics modeling at the atomic scale.Considering the size effect of molecular dynamics model on material properties,a reasonable modeling size was provided by taking into account three characteristic dimensions from the perspective of macro,meso,and micro scales according to the Buckinghamπtheorem.Then,the corresponding MD simulation on deformation and fracture behavior was investigated to derive a parameterized traction-separation(T-S)law,and then it was embedded into cohesive elements of finite element software.Thus,the crack propagation behavior in NiTi alloys was reproduced by the finite element method(FEM).The experimental results show that the predicted initiation fracture toughness is in good agreement with experimental data.In addition,it is found that the dynamics initiation fracture toughness increases with decreasing grain size and increasing loading velocity.展开更多
Land use/cover change(LUCC)constitutes the spatial and temporal patterns of ecological security,and the construction of ecological networks is an effective way to ensure ecological security.Exploring the spatial and t...Land use/cover change(LUCC)constitutes the spatial and temporal patterns of ecological security,and the construction of ecological networks is an effective way to ensure ecological security.Exploring the spatial and temporal change characteristics of ecological network and analyzing the integrated relationship between LUCC and ecological security are crucial for ensuring regional ecological security.Gansu is one of the provinces with fragile ecological environment in China,and rapid changes in land use patterns in recent decades have threatened ecological security.Therefore,taking Gansu Province as the study area,this study simulated its land use pattern in 2050 using patch-generating land use simulation(PLUS)model based on the LUCC trend from 2000 to 2020 and integrated the LUCC into morphological spatial pattern analysis(MSPA)to identify ecological sources and extract the ecological corridors to construct ecological network using circuit theory.The results revealed that,according to the prediction results in 2050,the areas of cultivated land,forest land,grassland,water body,construction land,and unused land would be 63,447.52,39,510.80,148,115.18,4605.21,8368.89,and 161,752.40 km^(2),respectively.The number of ecological sources in Gansu Province would increase to 80,with a total area of 99,927.18 km^(2).The number of ecological corridors would increase to 191,with an estimated total length of 6120.66 km.Both ecological sources and ecological corridors showed a sparse distribution in the northwest and dense distribution in the southeast of the province at the spatial scale.The number of ecological pinch points would reach 312 and the total area would expect to increase to 842.84 km^(2),with the most pronounced increase in the Longdong region.Compared with 2020,the number and area of ecological barriers in 2050 would decrease significantly by 63 and 370.71 km^(2),respectively.In general,based on the prediction results,the connectivity of ecological network of Gansu Province would increase in 2050.To achieve the predicted ecological network in 2050,emphasis should be placed on the protection of cultivated land and ecological land,the establishment of ecological sources in desert areas,the reinforcement of the protection for existing ecological sources,and the construction of ecological corridors to enhance the stability of ecological network.This study provides valuable theoretical support and references for the future construction of ecological networks and regional land resource management decision-making.展开更多
Using molecular dynamics methods,simulations of collision cascades in polycrystalline tungsten(W)have been conducted in this study,including different primary-knock-on atom(PKA)directions,grain sizes,and PKA energies ...Using molecular dynamics methods,simulations of collision cascades in polycrystalline tungsten(W)have been conducted in this study,including different primary-knock-on atom(PKA)directions,grain sizes,and PKA energies between 1 keV and 150 keV.The results indicate that a smaller grain size leads to more defects forming in grain boundary regions during cascade processes.The impact of high-energy PKA may cause a certain degree of distortion of the grain boundaries,which has a higher probability in systems with smaller grain sizes and becomes more pronounced as the PKA energy increases.The direction of PKA can affect the formation and diffusion pathways of defects.When the PKA direction is perpendicular to the grain boundary,defects preferentially form near the grain boundary regions;by contrast,defects are more inclined to form in the interior of the grains.These results are of great significance for comprehending the changes in the performance of polycrystalline W under the high-energy fusion environments and can provide theoretical guidance for further optimization and application of W-based plasma materials.展开更多
Explorations into new electrolytes have highlighted the critical impact of solvation structure on battery performance,Classical molecular dynamics(CMD)using semi-empirical force fields has become an essential tool for...Explorations into new electrolytes have highlighted the critical impact of solvation structure on battery performance,Classical molecular dynamics(CMD)using semi-empirical force fields has become an essential tool for simulating solvation structures.However,mainstream force fields often lack accuracy in describing strong ion-solvent interactions,causing disparities between CMD simulations and experimental observations.Although some empirical methods have been employed in some of the studies to address this issue,their effectiveness has been limited.Our CMD research,supported by quantum chemical calculations and experimental data,reveals that the solvation structure is influenced not only by the charge model but also by the polarization description.Previous empirical approaches that focused solely on adjusting ion-solvent interaction strengths overlooked the importance of polarization effects.Building on this insight,we propose integrating the Drude polarization model into mainstream force fields and verify its feasibility in carbonate,ether,and nitrile electrolytes.Our experimental results demonstrate that this approach significantly enhances the accuracy of CMD-simulated solvation structures.This work is expected to provide a more reliable CMD method for electrolyte design,shielding researchers from the pitfalls of erroneous simulation outcomes.展开更多
Carbon nanotubes(CNTs),black phosphorus nanotubes(BPNTs),and graphene derivatives exhibit significant promise for applications in nano-electromechanical systems(NEMS),energy storage,and sensing technologies due to the...Carbon nanotubes(CNTs),black phosphorus nanotubes(BPNTs),and graphene derivatives exhibit significant promise for applications in nano-electromechanical systems(NEMS),energy storage,and sensing technologies due to their exceptional mechanical,electrical,and thermal properties.This review summarizes recent advances in understanding the dynamic behaviors of these nanomaterials,with a particular focus on insights gained from molecular dynamics(MD)simulations.Key areas discussed include the oscillatory and rotational dynamics of double-walled CNTs,fabrication and stability challenges associated with BPNTs,and the emerging potential of graphyne nanotubes(GNTs).The review also outlines design strategies for enhancing nanodevice performance and underscores the importance of future efforts in experimental validation,multi-scale coupling analyses,and the development of novel nanocomposites to accelerate practical deployment.展开更多
Deeply buried mountain tunnels are often exposed to the risk of rock bursts,which always cause serious damage to the supporting structures and threaten the safety of the engineers.Due to the limited data available,a s...Deeply buried mountain tunnels are often exposed to the risk of rock bursts,which always cause serious damage to the supporting structures and threaten the safety of the engineers.Due to the limited data available,a suitable approach to predict the rockburst tendency at the preliminary stage becomes very important.In this study,an integrated methodology combining 3D initial stress inversion and rockburst tendency prediction was developed and subsequently applied to a case study of the Sangzhuling Tunnel on the Sichuan–Tibet Railway.The numerical modelling involved inverting the initial stress field using a multiple linear regression method.The tunnel excavation was simulated separately by FDM and DEM,based on a stress boundary condition from the inverted stress field.The comparative analysis demonstrates that the rockburst ratio calculated using DEM(76.70%)exhibits a slight increase compared to FDM(75.38%),and the rockburst location is consistent with the actual situation.This suggests that DEM is more suitable for simulating the stress redistribution during excavation in a jointed rock mass.The numerical simulation combined with the deviatoric stress approach effectively predicts rockburst tendency,meeting the engineering requirements.Despite its limitations,numerical simulation remains a reliable method for predicting rock bursts.展开更多
The formation of donut-shaped penetration pore upon membrane fusion in a closed lipid membrane system is of biological significance,since such the structures extensively exist in living body with various functions.How...The formation of donut-shaped penetration pore upon membrane fusion in a closed lipid membrane system is of biological significance,since such the structures extensively exist in living body with various functions.However,the related formation dynamics is unclear because of the limitation of experimental techniques.This work developed a new model of intra-vesicular fusion to elaborate the formation and stabilization of penetration pores by employing molecular dynamics simulations,based on simplified spherical lipid vesicle system,and investigated the regulation of membrane lipid composition.Results showed that penetration pore could be successfully formed based on the strategy of membrane fusion.The ease of intra-vesicular fusion and penetration pore formation was closely correlated with the lipid curvature properties,where negative spontaneous curvature of lipids seemed to be unfavorable for intra-vesicle fusion.Furthermore,the inner membrane tension around the pore was much larger than other regions,which governed the penetration pore size and stability.This work provided basic understanding for vesicle penetration pore formation and stabilization mechanisms.展开更多
This paper investigates the impact of the model top and damping layer on the numerical simulation of tropical cyclones(TCs)and reveals the significant role of stratospheric gravity waves(SGWs).TCs can generate SGWs,wh...This paper investigates the impact of the model top and damping layer on the numerical simulation of tropical cyclones(TCs)and reveals the significant role of stratospheric gravity waves(SGWs).TCs can generate SGWs,which propagate upward and outward into the stratosphere.These SGWs can reach the damping layer,which is a consequence of the numerical scheme employed,where they can affect the tangential circulation through the dragging and forcing processes.In models with a higher top boundary,this tangential circulation develops far from the TC and has minimal direct impact on TC intensity.By comparison,in models with a lower top(e.g.,20 km),the damping layer is located just above the top of the TC.The SGW dragging in the damping layer and the consequent tangential force can thus induce ascent outside the eyewall,promote latent heat release,tilt the eyewall,and enlarge the inner-core radius.This process will reduce inner-core vorticity advection within the boundary layer,and eventually inhibits the intensification of the TC.This suggests that when the thickness of the damping layer is 5 km,the TC numerical model top height should be at least higher than 20 km to generate more accurate simulations.展开更多
γʹvolume fraction(fv)plays a critical role in the mechanical properties of Ni-based single-crystal superalloys.A creep phase-field model is utilized to simulate the microstructure evolution and creep performance duri...γʹvolume fraction(fv)plays a critical role in the mechanical properties of Ni-based single-crystal superalloys.A creep phase-field model is utilized to simulate the microstructure evolution and creep performance during creep under different fv conditions.The influence mechanism of fv on creep properties is investigated based on the analysis of evolutions of internal stress and strain fields.As fv increases,the morphology ofγʹrafts changes from discontinuous to continuous,while the morphological change ofγchannels is opposite,the inclination ofγchannels from the[010]direction to(011)directions during tertiary creep first decreases and then increases,the creep life first increases and then decreases,and the main distribution of creep damage shifts fromγʹtoγʹ/γinterfaces andγchannels.The longest creep life under fv of 0.65 can be attributed to the stableγʹraft structure,the lowest stress and strain inγchannels,and the slowest damage accumulation.展开更多
Surface nanocrystallization is a practical approach to enhance surface wear resistance,whereas the specific mechanism of how surface nanocrystallization affects the wear resistance of NbMoTaW refractory high-entropy a...Surface nanocrystallization is a practical approach to enhance surface wear resistance,whereas the specific mechanism of how surface nanocrystallization affects the wear resistance of NbMoTaW refractory high-entropy alloys(RHEAs)remains unclear.Herein,we performed molecular dynamics simulations to explore the wear behaviors of nanograined NbMoTaW RHEA during surface scratching.The wear resistance of nanograined models was significantly enhanced compared to the single-crystalline counterpart.As the grain size increases,the dominant plastic deformation mechanism switches from grain boundary deformation to dislocation movement.Notably,the model with a grain size of 20 nm exhibits the highest dislocation density,local stress,and degree of work hardening.At elevated temperatures,the dynamic recrystallization becomes a crucial plastic deformation mechanism and hinders the formation of dislocations,resulting in a decrease in dislocation density and consequently a decline in the wear resistance of NbMoTaW RHEAs.The current study provides insight into the mechanism underlying the enhanced wear resistance of NbMoTaW RHEAs.展开更多
The effects of temperature and Re content on the mechanical properties,dislocation morphology,and deformation mechanism of γ-γ′phases nickel-based single crystal superalloys are investigated by using the molecular ...The effects of temperature and Re content on the mechanical properties,dislocation morphology,and deformation mechanism of γ-γ′phases nickel-based single crystal superalloys are investigated by using the molecular dynamics method through the model of γ-γ′phases containing hole defect.The addition of Re makes the dislocation distribution tend towards the γ phase.The higher the Re content,the earlier theγphase yields,while the γ′phase yields later.Dislocation bends under the combined action of the applied force and the resistance of the Re atoms to form a bend point.The Re atoms are located at the bend points and strengthen the alloy by fixing the dislocation and preventing it from cutting the γ′phase.Dislocations nucleate first in the γ phase,causing theγphase to deform plastically before the γ′phase.As the strain increases,the dislocation length first remains unchanged,then increases rapidly,and finally fluctuates and changes.The dislocation lengths in the γ phase are larger than those in the γ′phase at different temperatures.The dislocation length shows a decreasing tendency with the increase of the temperature.Temperature can affect movement of the dislocation,and superalloys have different plastic deformation mechanisms at low,medium and high temperatures.展开更多
Recent advancements in nanotechnology have spotlighted the catalytic potential of nanozymes, particularly single-atom nanozymes(SANs), which are pivotal for innovations in biosensing and medical diagnostics. Among oth...Recent advancements in nanotechnology have spotlighted the catalytic potential of nanozymes, particularly single-atom nanozymes(SANs), which are pivotal for innovations in biosensing and medical diagnostics. Among others, DNA stands out as an ideal biological regulator. Its inherent programmability and interaction capabilities allow it to significantly modulate nanozyme activity. This study delves into the dynamic interplay between DNA and molybdenum-zinc single-atom nanozymes(Mo-Zn SANs). Using molecular dynamics simulations, we uncover how DNA influences the peroxidase-like activities of Mo-Zn SANs, providing a foundational understanding that broadens the application scope of SANs in biosensing.With these insights as a foundation, we developed and demonstrated a model aptasensor for point-ofcare testing(POCT), utilizing a label-free colorimetric approach that leverages DNA-nanozyme interactions to achieve high-sensitivity detection of lysozyme. Our work elucidates the nuanced control DNA exerts over nanozyme functionality and illustrates the application of this molecular mechanism through a smartphone-assisted biosensing platform. This study not only underscores the practical implications of DNA-regulated Mo-Zn SANs in enhancing biosensing platforms, but also highlights the potential of single-atom nanozyme technology to revolutionize diagnostic tools through its inherent versatility and sensitivity.展开更多
Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise re...Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise results is inefficient in terms of computational resource.This is particularly evident when large-scale fluid field simulations are conducted with significant differences in computational domain size.In this work,a variable-domain-size adaptive mesh enlargement(vAME)method is developed based on the proposed adaptive mesh enlargement(AME)method for modeling multi-explosives explosion problems.The vAME method reduces the division of numerous empty areas or unnecessary computational domains by adaptively suspending enlargement operation in one or two directions,rather than in all directions as in AME method.A series of numerical tests via AME and vAME with varying nonintegral enlargement ratios and different mesh numbers are simulated to verify the efficiency and order of accuracy.An estimate of speedup ratio is analyzed for further efficiency comparison.Several large-scale near-ground explosion experiments with single/multiple explosives are performed to analyze the shock wave superposition formed by the incident wave,reflected wave,and Mach wave.Additionally,the vAME method is employed to validate the accuracy,as well as to investigate the performance of the fluid field and shock wave propagation,considering explosive quantities ranging from 1 to 5 while maintaining a constant total mass.The results show a satisfactory correlation between the overpressure versus time curves for experiments and numerical simulations.The vAME method yields a competitive efficiency,increasing the computational speed to 3.0 and approximately 120,000 times in comparison to AME and the fully fine mesh method,respectively.It indicates that the vAME method reduces the computational cost with minimal impact on the results for such large-scale high-energy release problems with significant differences in computational domain size.展开更多
Shale gas serves as a significant strategic successor resource for future oil and gas reserves and production in China.Thus,a profound understanding of the adsorption mechanism of shale gas in shale reservoirs is cruc...Shale gas serves as a significant strategic successor resource for future oil and gas reserves and production in China.Thus,a profound understanding of the adsorption mechanism of shale gas in shale reservoirs is crucial to accurately predict and evaluate shale gas reserves.In this study,we utilized two simulation methods,molecular dynamics simulation and Giant Canonical Monte Carlo simulation to examine the adsorption characteristics of kerogen under varying temperature and pressure conditions.We compared the results under identical temperature and pressure conditions for different mineral-kerogen composite models.Moreover,we examined the effects of temperature,pressure,and mineral species on the kerogen adsorption mechanism.The results indicate that shale formations with high organic matter content and a substantial proportion of non-clay inorganic minerals,as well as those subjected to higher temperature and pressure conditions than the shallow layer,possess a greater capacity to accommodate shale gas.This study examined the adsorption mechanism of methane in shale gas using different mineral-kerogen composite models.The findings of this study provide more accurate guidance and support for efficient development of shale gas.展开更多
Eutectic high entropy alloys are noted for their excellent castability and comprehensive mechanical properties.The excellent mechanical properties are closely related to the activation and evolution of deformation mec...Eutectic high entropy alloys are noted for their excellent castability and comprehensive mechanical properties.The excellent mechanical properties are closely related to the activation and evolution of deformation mechanisms at the atomic scale.In this work,AlCoCrFeNi2.1 alloy is taken as the research object.The mechanical behaviors and deformation mechanisms of the FCC and B2 single crystals with different orientations and the FCC/B2 composites with K-S orientation relationship during nanoindentation processes are systematically studied by molecular dynamics simulations.The results show that the mechanical behaviors of FCC single crystals are significantly orientation-dependent,meanwhile,the indentation force of[110]single crystal is the lowest at the elastic-plastic transition point,and that for[100]single crystal is the lowest in plastic deformation stage.Compared with FCC,the stress for B2 single crystals at the elastic-plastic transition point is higher.However,more deformation systems such as stacking faults,twins and dislocation loops are activated in FCC single crystal during the plastic deformation process,resulting in higher indentation force.For composites,the flow stress increases with the increase of B2 phase thickness during the initial stage of deformation.When indenter penetrates heterogeneous interface,the significantly increased deformation system in FCC phase leads to a significant increase in indentation force.The mechanical behaviors and deformation mechanisms depend on the component single crystal.When the thickness of the component layer is less than 15 nm,the heterogeneous interfaces fail to prevent the dislocation slip and improve the indentation force.The results will enrich the plastic deformation mechanisms of multi-principal eutectic alloys and provide guidance for the design of nanocrystalline metallic materials.展开更多
文摘A two-body regularization for N-body problem based on perturbation theory for Keplerian problem is discussed. We provide analytical estimations of accuracy and conduct N-body experiments in order to compare it with state-of-the-art Hermite integrator. It is shown that this regularization keeps some features that allow overcoming KS-regularization in some particular cases.
文摘The theoretical foundation of a new N-body simulation method for the dynamics of large numbers (N > 106) of gravitating bodies is described. The new approach is founded on the probability description of the physical parameters and a similarity method which permits a manifold reduction of the calculation time for the evolution of “large” systems. This is done by averaging the results of calculations over an ensemble of many “small” systems with total particle number in the ensemble equal to the number of stars in the large system. The method is valid for the approximate calculation of the evolution of large systems, including dissipative systems like AGN containing a supermassive black hole, accretion disc, and the surrounding stellar cluster.
文摘We have shown the outcome of N-body simulations of the interactions of two disc galaxies without gas with the same mass. Both disc galaxies have halos of dark matter, central bulges and initial supermassive black hole (SMBH) seeds at their centers. The purpose of this work is to study the mass and dynamical evolution of the initial SMBH seed during a Hubble cosmological time. It is a complementation of our previous paper with different initial orbit conditions and by introducing the SMBH seed in the initial galaxy. The disc of the secondary galaxy has a coplanar or polar orientation in relation to the disc of the primary galaxy and their initial orbit are eccentric and prograde. The primary and secondary galaxies have mass and size of Milky Way with an initial SMBH seed. We have found that the merger of the primary and secondary discs can result in a final normal disc or a final warped disc. After the fusion of discs, the final one is thicker and larger than the initial disc. The tidal effects are very important, modifying the evolution of the SMBH in the primary and secondary galaxy differently. The mass of the SMBH of the primary galaxy has increased by a factor ranging from 52 to 64 times the initial seed mass, depending on the experiment. However, the mass of the SMBH of the secondary galaxy has increased by a factor ranging from 6 to 33 times the initial SMBH seed mass, depending also on the experiment. Most of the accreted particles have come from the bulge and from the halo, depleting their particles. This could explain why the observations show that the SMBH with masses of approximatelyis found in many bulgeless galaxies. Only a small number of the accreted particles has come from the disc. In some cases of final merging stage of the two galaxies, the final SMBH of the secondary galaxy was ejected out of the galaxy.
文摘To address the limitations of existing coupling methods in aero-engine system simulation,which fail to adaptively adjust iterative parameters and coupling relationships,which can result in low efficiency and in⁃stability,this study introduces a‘Dynamic Event-Driven Co-Simulation’algorithm integrated with decision tree algorithms.This algorithm separates the overall coupling relationships and the main solver from the primary mod⁃el,utilizing a dynamic event monitoring module to adaptively adjust simulation strategies,including iteration pa⁃rameters,coupling relationships,and convergence criteria.This facilitates efficient adaptive simulations of dy⁃namic events while balancing solution accuracy and computational efficiency.The research focuses on a twinshaft turbofan engine,establishing six system-level models that encompass overall performance and various sub⁃systems based on three coupling methods,along with a multidisciplinary multi-fidelity simulation framework in⁃corporating a 3D CFD nozzle model.The study tests both model exchange and coupled simulation methods under a 14 s transient acceleration and deceleration scenario.In a 100%throttle condition,a high-fidelity nozzle model is used to analyze the sensitivity of different convergence criteria on computational efficiency and accuracy.Re⁃sults indicate that the accuracy and efficiency achieved with this method are comparable to those of PROOSIS soft⁃ware(18 s and 35 s,respectively),while being 71%more efficient than Simulink software(62 s and 120 s,re⁃spectively).Furthermore,appropriately relaxing the convergence criteria for the 0D model(from 10-6 to 10-4)while enhancing those for the 3D model(from 3000 steps to 6000 steps)can effectively balance computational accuracy and efficiency.
基金supported by the National Natural Science Foundation of China(22438005,22108117).
文摘Self-assembly of block copolymers(BCPs)is highly intricate and is adsorbing extensive experimental and simulation efforts to reveal it for maximizing structural order and device performances.The coarse-grained(CG)molecular dynamics(MD)simulation offers a microscopic angle to view the self-assembly of BCPs.Although some molecular details are sacrificed during CG processes,this method exhibits remarkable computational efficiency.In this study,a comprehensive CG model for polystyrene-block-poly(2-vinylpyridine),PS-b-P2VP,one of the most extensively studied BCPs for its high Flory-Huggins interaction parameter,is constructed,with parameters optimized using target values derived from all-atom MD simulations.The CG model precisely coincides with various classical self-assembling morphologies observed in experimental studies,matching the theoretical phase diagrams.Moreover,the conformational asymmetry of the experimental phase diagram is also clearly revealed by our simulation results,and the phase boundaries obtained from simulations are highly consistent with experimental results.The CG model is expected to extend to simulate the self-assembly behaviors of other BCPs in addition to PS-b-P2VP,thus increasing understanding of the microphase separation of BCPs from the molecular level.
基金Funded by the National Natural Science Foundation of China Academy of Engineering Physics and Jointly Setup"NSAF"Joint Fund(No.U1430119)。
文摘The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope and image processing technology were employed to achieve a quantitative grain size distribution of NiTi alloys so as to provide experimental data for molecular dynamics modeling at the atomic scale.Considering the size effect of molecular dynamics model on material properties,a reasonable modeling size was provided by taking into account three characteristic dimensions from the perspective of macro,meso,and micro scales according to the Buckinghamπtheorem.Then,the corresponding MD simulation on deformation and fracture behavior was investigated to derive a parameterized traction-separation(T-S)law,and then it was embedded into cohesive elements of finite element software.Thus,the crack propagation behavior in NiTi alloys was reproduced by the finite element method(FEM).The experimental results show that the predicted initiation fracture toughness is in good agreement with experimental data.In addition,it is found that the dynamics initiation fracture toughness increases with decreasing grain size and increasing loading velocity.
基金supported by the Science Fund for the Gansu Provincial Natural Science Foundation Project(22JR5RA339).
文摘Land use/cover change(LUCC)constitutes the spatial and temporal patterns of ecological security,and the construction of ecological networks is an effective way to ensure ecological security.Exploring the spatial and temporal change characteristics of ecological network and analyzing the integrated relationship between LUCC and ecological security are crucial for ensuring regional ecological security.Gansu is one of the provinces with fragile ecological environment in China,and rapid changes in land use patterns in recent decades have threatened ecological security.Therefore,taking Gansu Province as the study area,this study simulated its land use pattern in 2050 using patch-generating land use simulation(PLUS)model based on the LUCC trend from 2000 to 2020 and integrated the LUCC into morphological spatial pattern analysis(MSPA)to identify ecological sources and extract the ecological corridors to construct ecological network using circuit theory.The results revealed that,according to the prediction results in 2050,the areas of cultivated land,forest land,grassland,water body,construction land,and unused land would be 63,447.52,39,510.80,148,115.18,4605.21,8368.89,and 161,752.40 km^(2),respectively.The number of ecological sources in Gansu Province would increase to 80,with a total area of 99,927.18 km^(2).The number of ecological corridors would increase to 191,with an estimated total length of 6120.66 km.Both ecological sources and ecological corridors showed a sparse distribution in the northwest and dense distribution in the southeast of the province at the spatial scale.The number of ecological pinch points would reach 312 and the total area would expect to increase to 842.84 km^(2),with the most pronounced increase in the Longdong region.Compared with 2020,the number and area of ecological barriers in 2050 would decrease significantly by 63 and 370.71 km^(2),respectively.In general,based on the prediction results,the connectivity of ecological network of Gansu Province would increase in 2050.To achieve the predicted ecological network in 2050,emphasis should be placed on the protection of cultivated land and ecological land,the establishment of ecological sources in desert areas,the reinforcement of the protection for existing ecological sources,and the construction of ecological corridors to enhance the stability of ecological network.This study provides valuable theoretical support and references for the future construction of ecological networks and regional land resource management decision-making.
基金Project supported by the National MCF Energy Research and Development Program of China(Grant No.2018YFE0308101)the National Key Research and Development Program of China(Grant No.2018YFB0704000)+1 种基金the Suqian Science and Technology Program(Grant No.K202337)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.23KJD490001).
文摘Using molecular dynamics methods,simulations of collision cascades in polycrystalline tungsten(W)have been conducted in this study,including different primary-knock-on atom(PKA)directions,grain sizes,and PKA energies between 1 keV and 150 keV.The results indicate that a smaller grain size leads to more defects forming in grain boundary regions during cascade processes.The impact of high-energy PKA may cause a certain degree of distortion of the grain boundaries,which has a higher probability in systems with smaller grain sizes and becomes more pronounced as the PKA energy increases.The direction of PKA can affect the formation and diffusion pathways of defects.When the PKA direction is perpendicular to the grain boundary,defects preferentially form near the grain boundary regions;by contrast,defects are more inclined to form in the interior of the grains.These results are of great significance for comprehending the changes in the performance of polycrystalline W under the high-energy fusion environments and can provide theoretical guidance for further optimization and application of W-based plasma materials.
基金supported by the Science and Technology Project of State Grid Corporation of China(5419-202199552A-0-5-ZN).
文摘Explorations into new electrolytes have highlighted the critical impact of solvation structure on battery performance,Classical molecular dynamics(CMD)using semi-empirical force fields has become an essential tool for simulating solvation structures.However,mainstream force fields often lack accuracy in describing strong ion-solvent interactions,causing disparities between CMD simulations and experimental observations.Although some empirical methods have been employed in some of the studies to address this issue,their effectiveness has been limited.Our CMD research,supported by quantum chemical calculations and experimental data,reveals that the solvation structure is influenced not only by the charge model but also by the polarization description.Previous empirical approaches that focused solely on adjusting ion-solvent interaction strengths overlooked the importance of polarization effects.Building on this insight,we propose integrating the Drude polarization model into mainstream force fields and verify its feasibility in carbonate,ether,and nitrile electrolytes.Our experimental results demonstrate that this approach significantly enhances the accuracy of CMD-simulated solvation structures.This work is expected to provide a more reliable CMD method for electrolyte design,shielding researchers from the pitfalls of erroneous simulation outcomes.
文摘Carbon nanotubes(CNTs),black phosphorus nanotubes(BPNTs),and graphene derivatives exhibit significant promise for applications in nano-electromechanical systems(NEMS),energy storage,and sensing technologies due to their exceptional mechanical,electrical,and thermal properties.This review summarizes recent advances in understanding the dynamic behaviors of these nanomaterials,with a particular focus on insights gained from molecular dynamics(MD)simulations.Key areas discussed include the oscillatory and rotational dynamics of double-walled CNTs,fabrication and stability challenges associated with BPNTs,and the emerging potential of graphyne nanotubes(GNTs).The review also outlines design strategies for enhancing nanodevice performance and underscores the importance of future efforts in experimental validation,multi-scale coupling analyses,and the development of novel nanocomposites to accelerate practical deployment.
基金financially supported by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology)(Grant No.SKLGP2020Z007)。
文摘Deeply buried mountain tunnels are often exposed to the risk of rock bursts,which always cause serious damage to the supporting structures and threaten the safety of the engineers.Due to the limited data available,a suitable approach to predict the rockburst tendency at the preliminary stage becomes very important.In this study,an integrated methodology combining 3D initial stress inversion and rockburst tendency prediction was developed and subsequently applied to a case study of the Sangzhuling Tunnel on the Sichuan–Tibet Railway.The numerical modelling involved inverting the initial stress field using a multiple linear regression method.The tunnel excavation was simulated separately by FDM and DEM,based on a stress boundary condition from the inverted stress field.The comparative analysis demonstrates that the rockburst ratio calculated using DEM(76.70%)exhibits a slight increase compared to FDM(75.38%),and the rockburst location is consistent with the actual situation.This suggests that DEM is more suitable for simulating the stress redistribution during excavation in a jointed rock mass.The numerical simulation combined with the deviatoric stress approach effectively predicts rockburst tendency,meeting the engineering requirements.Despite its limitations,numerical simulation remains a reliable method for predicting rock bursts.
基金supported by the National Natural Science Foundation of China(Grants Nos.T2394512,32130061,and 12172366)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(Grant No.GJJSTD20220002).
文摘The formation of donut-shaped penetration pore upon membrane fusion in a closed lipid membrane system is of biological significance,since such the structures extensively exist in living body with various functions.However,the related formation dynamics is unclear because of the limitation of experimental techniques.This work developed a new model of intra-vesicular fusion to elaborate the formation and stabilization of penetration pores by employing molecular dynamics simulations,based on simplified spherical lipid vesicle system,and investigated the regulation of membrane lipid composition.Results showed that penetration pore could be successfully formed based on the strategy of membrane fusion.The ease of intra-vesicular fusion and penetration pore formation was closely correlated with the lipid curvature properties,where negative spontaneous curvature of lipids seemed to be unfavorable for intra-vesicle fusion.Furthermore,the inner membrane tension around the pore was much larger than other regions,which governed the penetration pore size and stability.This work provided basic understanding for vesicle penetration pore formation and stabilization mechanisms.
基金supported by the National Natural Science Foundation of China(Grant Nos.42475016,42192555 and 42305085)the China Postdoctoral Science Foundation(Grant No.2023M741615)the 2023 Graduate Research Innovation Project of Hunan Province(Grant No.CX20230011)。
文摘This paper investigates the impact of the model top and damping layer on the numerical simulation of tropical cyclones(TCs)and reveals the significant role of stratospheric gravity waves(SGWs).TCs can generate SGWs,which propagate upward and outward into the stratosphere.These SGWs can reach the damping layer,which is a consequence of the numerical scheme employed,where they can affect the tangential circulation through the dragging and forcing processes.In models with a higher top boundary,this tangential circulation develops far from the TC and has minimal direct impact on TC intensity.By comparison,in models with a lower top(e.g.,20 km),the damping layer is located just above the top of the TC.The SGW dragging in the damping layer and the consequent tangential force can thus induce ascent outside the eyewall,promote latent heat release,tilt the eyewall,and enlarge the inner-core radius.This process will reduce inner-core vorticity advection within the boundary layer,and eventually inhibits the intensification of the TC.This suggests that when the thickness of the damping layer is 5 km,the TC numerical model top height should be at least higher than 20 km to generate more accurate simulations.
基金the supports provided by the National Natural Science Foundation of China(Nos.52301171,52031012,51971174)the National Science and Technology Major Project,China(Nos.2019-VI-0020-0135)+1 种基金the Key Research and Development Program of Shaanxi Province,China(No.2020ZDLGY13-02)the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China(No.2022-TZ-01)。
文摘γʹvolume fraction(fv)plays a critical role in the mechanical properties of Ni-based single-crystal superalloys.A creep phase-field model is utilized to simulate the microstructure evolution and creep performance during creep under different fv conditions.The influence mechanism of fv on creep properties is investigated based on the analysis of evolutions of internal stress and strain fields.As fv increases,the morphology ofγʹrafts changes from discontinuous to continuous,while the morphological change ofγchannels is opposite,the inclination ofγchannels from the[010]direction to(011)directions during tertiary creep first decreases and then increases,the creep life first increases and then decreases,and the main distribution of creep damage shifts fromγʹtoγʹ/γinterfaces andγchannels.The longest creep life under fv of 0.65 can be attributed to the stableγʹraft structure,the lowest stress and strain inγchannels,and the slowest damage accumulation.
基金supported by the Opening Project of the National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials,Henan University of Science and Technology(No.HKDNM2021016)the National Natural Science Foundation of China(Nos.52101019,52122408,52071023)supported by University of Science and Technology Beijing(USTB),MatCom of Beijing Advanced Innovation Center for Materials Genome Engineering.
文摘Surface nanocrystallization is a practical approach to enhance surface wear resistance,whereas the specific mechanism of how surface nanocrystallization affects the wear resistance of NbMoTaW refractory high-entropy alloys(RHEAs)remains unclear.Herein,we performed molecular dynamics simulations to explore the wear behaviors of nanograined NbMoTaW RHEA during surface scratching.The wear resistance of nanograined models was significantly enhanced compared to the single-crystalline counterpart.As the grain size increases,the dominant plastic deformation mechanism switches from grain boundary deformation to dislocation movement.Notably,the model with a grain size of 20 nm exhibits the highest dislocation density,local stress,and degree of work hardening.At elevated temperatures,the dynamic recrystallization becomes a crucial plastic deformation mechanism and hinders the formation of dislocations,resulting in a decrease in dislocation density and consequently a decline in the wear resistance of NbMoTaW RHEAs.The current study provides insight into the mechanism underlying the enhanced wear resistance of NbMoTaW RHEAs.
基金Project supported by the Xi’an Science and Technology Plan Project of Shaanxi Province of China(Grant No.23GXFW0086).
文摘The effects of temperature and Re content on the mechanical properties,dislocation morphology,and deformation mechanism of γ-γ′phases nickel-based single crystal superalloys are investigated by using the molecular dynamics method through the model of γ-γ′phases containing hole defect.The addition of Re makes the dislocation distribution tend towards the γ phase.The higher the Re content,the earlier theγphase yields,while the γ′phase yields later.Dislocation bends under the combined action of the applied force and the resistance of the Re atoms to form a bend point.The Re atoms are located at the bend points and strengthen the alloy by fixing the dislocation and preventing it from cutting the γ′phase.Dislocations nucleate first in the γ phase,causing theγphase to deform plastically before the γ′phase.As the strain increases,the dislocation length first remains unchanged,then increases rapidly,and finally fluctuates and changes.The dislocation lengths in the γ phase are larger than those in the γ′phase at different temperatures.The dislocation length shows a decreasing tendency with the increase of the temperature.Temperature can affect movement of the dislocation,and superalloys have different plastic deformation mechanisms at low,medium and high temperatures.
基金supported by the Science and Technology Research Project from Education Department of Jilin Province (No. JJKH20231296KJ)the Natural Science Foundation of Science and Technology Department of Jilin Province (Joint Fund Project) (No. YDZJ202201ZYTS340)+9 种基金the Fundamental Research Funds for the Central Universities (No. 2412022ZD013)the Science and Technology Development Plan Project of Jilin Province (Nos. SKL202302030, SKL202402017, 20210204126YY, 20230204113YY, 20240602003RC, 20210402059GH)the National Natural Science Foundation of China (Nos. 22174137, 22322410, 92372102 and 22073094)the Cooperation Funding of Changchun with Chinese Academy of Sciences (No. 22SH13)the Capital Construction Fund Projects within the Budget of Jilin Province (No. 2023C042–5)the University Level Scientific Research Projects of Ordinary Universities in Xinjiang Uygur Autonomous Region (No. 2022YQSN002)the State Key Laboratory of Molecular Engineering of Polymers (Fudan University) (No. K2024–11)the Program for Young Scholars in Regional Development of CASthe essential support of the Network and Computing Center, CIAC, CASthe Computing Center of Jilin Province。
文摘Recent advancements in nanotechnology have spotlighted the catalytic potential of nanozymes, particularly single-atom nanozymes(SANs), which are pivotal for innovations in biosensing and medical diagnostics. Among others, DNA stands out as an ideal biological regulator. Its inherent programmability and interaction capabilities allow it to significantly modulate nanozyme activity. This study delves into the dynamic interplay between DNA and molybdenum-zinc single-atom nanozymes(Mo-Zn SANs). Using molecular dynamics simulations, we uncover how DNA influences the peroxidase-like activities of Mo-Zn SANs, providing a foundational understanding that broadens the application scope of SANs in biosensing.With these insights as a foundation, we developed and demonstrated a model aptasensor for point-ofcare testing(POCT), utilizing a label-free colorimetric approach that leverages DNA-nanozyme interactions to achieve high-sensitivity detection of lysozyme. Our work elucidates the nuanced control DNA exerts over nanozyme functionality and illustrates the application of this molecular mechanism through a smartphone-assisted biosensing platform. This study not only underscores the practical implications of DNA-regulated Mo-Zn SANs in enhancing biosensing platforms, but also highlights the potential of single-atom nanozyme technology to revolutionize diagnostic tools through its inherent versatility and sensitivity.
基金supported by the National Natural Science Foundation of China(Grant Nos.12302435 and 12221002)。
文摘Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise results is inefficient in terms of computational resource.This is particularly evident when large-scale fluid field simulations are conducted with significant differences in computational domain size.In this work,a variable-domain-size adaptive mesh enlargement(vAME)method is developed based on the proposed adaptive mesh enlargement(AME)method for modeling multi-explosives explosion problems.The vAME method reduces the division of numerous empty areas or unnecessary computational domains by adaptively suspending enlargement operation in one or two directions,rather than in all directions as in AME method.A series of numerical tests via AME and vAME with varying nonintegral enlargement ratios and different mesh numbers are simulated to verify the efficiency and order of accuracy.An estimate of speedup ratio is analyzed for further efficiency comparison.Several large-scale near-ground explosion experiments with single/multiple explosives are performed to analyze the shock wave superposition formed by the incident wave,reflected wave,and Mach wave.Additionally,the vAME method is employed to validate the accuracy,as well as to investigate the performance of the fluid field and shock wave propagation,considering explosive quantities ranging from 1 to 5 while maintaining a constant total mass.The results show a satisfactory correlation between the overpressure versus time curves for experiments and numerical simulations.The vAME method yields a competitive efficiency,increasing the computational speed to 3.0 and approximately 120,000 times in comparison to AME and the fully fine mesh method,respectively.It indicates that the vAME method reduces the computational cost with minimal impact on the results for such large-scale high-energy release problems with significant differences in computational domain size.
基金supported by the National Natural Science Foundation of China(Grant No.42102145)the Science Foundation of China University of Petroleum,Beijing(Grant No.2462022YXZZ007)。
文摘Shale gas serves as a significant strategic successor resource for future oil and gas reserves and production in China.Thus,a profound understanding of the adsorption mechanism of shale gas in shale reservoirs is crucial to accurately predict and evaluate shale gas reserves.In this study,we utilized two simulation methods,molecular dynamics simulation and Giant Canonical Monte Carlo simulation to examine the adsorption characteristics of kerogen under varying temperature and pressure conditions.We compared the results under identical temperature and pressure conditions for different mineral-kerogen composite models.Moreover,we examined the effects of temperature,pressure,and mineral species on the kerogen adsorption mechanism.The results indicate that shale formations with high organic matter content and a substantial proportion of non-clay inorganic minerals,as well as those subjected to higher temperature and pressure conditions than the shallow layer,possess a greater capacity to accommodate shale gas.This study examined the adsorption mechanism of methane in shale gas using different mineral-kerogen composite models.The findings of this study provide more accurate guidance and support for efficient development of shale gas.
基金supported by the Natural Science Foundation of Hebei Province(E2024209052)the Youth Scholars Promotion Plan of North China University of Science and Technology(QNTJ202307).
文摘Eutectic high entropy alloys are noted for their excellent castability and comprehensive mechanical properties.The excellent mechanical properties are closely related to the activation and evolution of deformation mechanisms at the atomic scale.In this work,AlCoCrFeNi2.1 alloy is taken as the research object.The mechanical behaviors and deformation mechanisms of the FCC and B2 single crystals with different orientations and the FCC/B2 composites with K-S orientation relationship during nanoindentation processes are systematically studied by molecular dynamics simulations.The results show that the mechanical behaviors of FCC single crystals are significantly orientation-dependent,meanwhile,the indentation force of[110]single crystal is the lowest at the elastic-plastic transition point,and that for[100]single crystal is the lowest in plastic deformation stage.Compared with FCC,the stress for B2 single crystals at the elastic-plastic transition point is higher.However,more deformation systems such as stacking faults,twins and dislocation loops are activated in FCC single crystal during the plastic deformation process,resulting in higher indentation force.For composites,the flow stress increases with the increase of B2 phase thickness during the initial stage of deformation.When indenter penetrates heterogeneous interface,the significantly increased deformation system in FCC phase leads to a significant increase in indentation force.The mechanical behaviors and deformation mechanisms depend on the component single crystal.When the thickness of the component layer is less than 15 nm,the heterogeneous interfaces fail to prevent the dislocation slip and improve the indentation force.The results will enrich the plastic deformation mechanisms of multi-principal eutectic alloys and provide guidance for the design of nanocrystalline metallic materials.