Electrochemical reduction of CO_(2)(CO_(2)RR)to value-added chemicals is an attractive strategy for greenhouse gas mitigation and carbon recycle.Carbon material is one of most promising electrocatalysts but its produc...Electrochemical reduction of CO_(2)(CO_(2)RR)to value-added chemicals is an attractive strategy for greenhouse gas mitigation and carbon recycle.Carbon material is one of most promising electrocatalysts but its product selectivity is limited by few modulating approaches for active sites.Herein,the predominant pyridinic N-B sites(accounting for 80%to all N species)are fabricated in hierarchically porous structure of graphene nanoribbons/amorphous carbon.The graphene nanoribbons and porous structure can accelerate electron and ion/gas transport during CO_(2)RR,respectively.This carbon electrocatalyst exhibits excellent selectivity toward CO_(2)reduction to CH_(4)with the faradaic efficiency of 68%at−0.50 V vs.RHE.As demonstrated by density functional theory,a proper adsorbed energy of∗CO and∗CH_(2)O are generated on the pyridinic N-B site resulting into high CH_(4)selectivity.Therefore,this study provides a novel method to modulate active sites of carbon-based electrocatalyst to obtain high CH_(4)selectivity.展开更多
The B-cell lymphoma-extra large (Bcl-xL) is a mitochondrial anti-apoptotic protein that plays a role in neuroprotection. However, during excitotoxic stimulation, Bcl-xL undergoes caspase-dependent cleavage and produ...The B-cell lymphoma-extra large (Bcl-xL) is a mitochondrial anti-apoptotic protein that plays a role in neuroprotection. However, during excitotoxic stimulation, Bcl-xL undergoes caspase-dependent cleavage and produces a fragmented form, △N-Bcl-xL. Accumulation of △N-Bcl-xL is associated with mitochon- drial dysfunction and neuronal death. Therefore, strategies to inhibit the activity or formation of △N-Bcl- xL protect the brain against excitotoxic injuries. Our team found that the pharmacological inhibitor △BT- 737 exerts dose dependent effects in primary neurons. When primary hippocampal neurons were treated with 1 μM ABT-737, glutamate-mediated mitochondrial damage and neuronal death were exacerbated, whereas 10 nM △BT-737, a 100-fold lower concentration, protected mitochondrial function and enhanced neuronal viability against glutamate toxicity. In addition, we suggested acute vs. prolonged formation of △N-Bcl-xL may have different effects on mitochondrial or neuronal functions. Unlike acute production of △N-Bcl-xL by glutamate, overexpression of △N-Bcl-xL did not cause drastic changes in neuronal viability. We predicted that neurons undergo adaptation and may activate altered metabolism to compensate for △N-Bcl-xL-mediated mitochondrial dysfunction. Although the detailed mechanism of ABT-mediated neurotoxicity neuroprotection is still unclear, our study shows that the mitochondrial membrane protein △N-Bcl-xL is a central target for interventions.展开更多
Iron-chromium redox flow battery(ICRFB)is an electrochemical energy storage technology that plays a vital role in dealing with the problems of discontinuity and instability of massive new energy generation and improvi...Iron-chromium redox flow battery(ICRFB)is an electrochemical energy storage technology that plays a vital role in dealing with the problems of discontinuity and instability of massive new energy generation and improving the acceptance capacity of the power grid.Carbon cloth electrode(CC)is the main site where the electrochemical reaction occurs,which always suffers from the disadvantages of poor electrochemical reactivity.A new N-B codoped co-regulation Ti composite CC electrode(T-B-CC)is firstly generated and applied to ICRFB,where the REDOX reaction can be promoted significantly owing to the plentiful active sites generated on the modified electrode.As contrasted with ICRFB with normal CC electrode,after 50 battery charge/discharge cycles,the discharge capacity(1,990.3 mAh vs 1,155.8 mAh)and electrolyte utilization(61.88%vs 35.94%)of ICRFB with CC electrode(T-B-CC)are significantly improved.Furthermore,the energy efficiency(EE)is maintained at about 82.7%under 50 cycles,which is 9.3%higher than that of the pristine electrically assembled cells.The comodulation of heteroatom doping and the introduction of Ti catalysts is a simple and easy method to improve the dynamics of the Cr^(3+)/Cr^(2+)and Fe^(3+)/Fe^(2+)reactions,enhancing the performance of ICRFBs.展开更多
基金supported by the Foundation of Jiangsu Key Lab of Biomass Energy and Material(No.JSBEM-S-202101)National Natural Science Foundation of China(No.51902162)+1 种基金the Foundation Research Project of Jiangsu Province(No.BK20221338)Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources,International Innovation Center for Forest Chemicals and Materials,Nanjing Forestry University,merit-based funding for Nanjing innovation and technology projects.
文摘Electrochemical reduction of CO_(2)(CO_(2)RR)to value-added chemicals is an attractive strategy for greenhouse gas mitigation and carbon recycle.Carbon material is one of most promising electrocatalysts but its product selectivity is limited by few modulating approaches for active sites.Herein,the predominant pyridinic N-B sites(accounting for 80%to all N species)are fabricated in hierarchically porous structure of graphene nanoribbons/amorphous carbon.The graphene nanoribbons and porous structure can accelerate electron and ion/gas transport during CO_(2)RR,respectively.This carbon electrocatalyst exhibits excellent selectivity toward CO_(2)reduction to CH_(4)with the faradaic efficiency of 68%at−0.50 V vs.RHE.As demonstrated by density functional theory,a proper adsorbed energy of∗CO and∗CH_(2)O are generated on the pyridinic N-B site resulting into high CH_(4)selectivity.Therefore,this study provides a novel method to modulate active sites of carbon-based electrocatalyst to obtain high CH_(4)selectivity.
文摘The B-cell lymphoma-extra large (Bcl-xL) is a mitochondrial anti-apoptotic protein that plays a role in neuroprotection. However, during excitotoxic stimulation, Bcl-xL undergoes caspase-dependent cleavage and produces a fragmented form, △N-Bcl-xL. Accumulation of △N-Bcl-xL is associated with mitochon- drial dysfunction and neuronal death. Therefore, strategies to inhibit the activity or formation of △N-Bcl- xL protect the brain against excitotoxic injuries. Our team found that the pharmacological inhibitor △BT- 737 exerts dose dependent effects in primary neurons. When primary hippocampal neurons were treated with 1 μM ABT-737, glutamate-mediated mitochondrial damage and neuronal death were exacerbated, whereas 10 nM △BT-737, a 100-fold lower concentration, protected mitochondrial function and enhanced neuronal viability against glutamate toxicity. In addition, we suggested acute vs. prolonged formation of △N-Bcl-xL may have different effects on mitochondrial or neuronal functions. Unlike acute production of △N-Bcl-xL by glutamate, overexpression of △N-Bcl-xL did not cause drastic changes in neuronal viability. We predicted that neurons undergo adaptation and may activate altered metabolism to compensate for △N-Bcl-xL-mediated mitochondrial dysfunction. Although the detailed mechanism of ABT-mediated neurotoxicity neuroprotection is still unclear, our study shows that the mitochondrial membrane protein △N-Bcl-xL is a central target for interventions.
基金National Nature Science Foudation of China(No.22308378)Science Foundation of China University of Petroleum(2462023XKBH005,ZX20230078).
文摘Iron-chromium redox flow battery(ICRFB)is an electrochemical energy storage technology that plays a vital role in dealing with the problems of discontinuity and instability of massive new energy generation and improving the acceptance capacity of the power grid.Carbon cloth electrode(CC)is the main site where the electrochemical reaction occurs,which always suffers from the disadvantages of poor electrochemical reactivity.A new N-B codoped co-regulation Ti composite CC electrode(T-B-CC)is firstly generated and applied to ICRFB,where the REDOX reaction can be promoted significantly owing to the plentiful active sites generated on the modified electrode.As contrasted with ICRFB with normal CC electrode,after 50 battery charge/discharge cycles,the discharge capacity(1,990.3 mAh vs 1,155.8 mAh)and electrolyte utilization(61.88%vs 35.94%)of ICRFB with CC electrode(T-B-CC)are significantly improved.Furthermore,the energy efficiency(EE)is maintained at about 82.7%under 50 cycles,which is 9.3%higher than that of the pristine electrically assembled cells.The comodulation of heteroatom doping and the introduction of Ti catalysts is a simple and easy method to improve the dynamics of the Cr^(3+)/Cr^(2+)and Fe^(3+)/Fe^(2+)reactions,enhancing the performance of ICRFBs.