The effects of low-doses of microcystin-leucinearginine ( MC-LR ) exposure on neurobehaviors and N-acetylaspartate (NAA) expression in the hippocampus of rats were investigated. After male Sprague-Dawley (SD) ra...The effects of low-doses of microcystin-leucinearginine ( MC-LR ) exposure on neurobehaviors and N-acetylaspartate (NAA) expression in the hippocampus of rats were investigated. After male Sprague-Dawley (SD) rats were treated intra-gastrically with different doses of MC-LR for 90 d, the locomotor activity, spatial learning and memory function were evaluated in the rats after treatment using open field tests and Morris water maze tests. The results show that MC-LR exposure can lead to impairment of the spatial learning capacity and locomotor activity in rats at the dose of 2. 00 p,g/kg. The levels of NAA in the hippocampus were measured by magnetic resonance spectroscopy (MRI). A significant decrease of NAA/Cr ratio ( P 〈 0. 05) was observed in the hippocampous. This study indicates that intra-gastrical exposure to low-doses of MC-LR has adverse effects on neuronal behavior and NAA levels in the hippocampous.展开更多
Spinal cord injury is a severe and devastating disease,and spasticity is a common and severe complication that is notoriously refractory to treatment.However,the pathophysiological mechanisms underlying spasticity and...Spinal cord injury is a severe and devastating disease,and spasticity is a common and severe complication that is notoriously refractory to treatment.However,the pathophysiological mechanisms underlying spasticity and its development remain largely unknown.The goal of the present study was to find differences,if any,in metabolites of the left precentral gyrus and basal ganglia of patients who have spinal cord injury with or without spasticity,and to explore the relationship between the brain metabolite concentrations and clinical status.Thirty-six participants were recruited for magnetic resonance spectroscopic examination:23 with spinal cord injury(12 with spasticity and 11 without spasticity)and 13 healthy controls.We acquired localized proton spectra from the precentral gyrus and basal ganglia via 10 mm^(3) voxels.Notably,univariate linear regression analysis demonstrated that the lower that the N-acetylaspartate concentration(a marker for neuronal loss)was in the precentral gyrus of the patients,the lower their ASIA(American Spinal Injury Association)light-touch scores,pinprick scores,and motor scores.Additionally,longer durations of injury were associated with higher N-acetylaspartate levels in the precentral gyrus.Compared with the healthy participants and patients without spasticity,N-acetylaspartate levels in the patients with spasticity were significantly lower in both the precentral gyrus and basal ganglia.Lower N-acetylaspartate levels also correlated with greater sensory and motor dysfunction in the patients who had spinal cord injury with spasticity.展开更多
Background:Magnetic resonance spectroscopy(MRS)represents a significant advancement in the noninvasive assessment of brain metabolism.MRS can provide valuable metabolic information and facilitate more accurate diagnos...Background:Magnetic resonance spectroscopy(MRS)represents a significant advancement in the noninvasive assessment of brain metabolism.MRS can provide valuable metabolic information and facilitate more accurate diagnoses of intrauterine fetal brain development than was previously possible.To obtain information regarding normal intrauterine fetal brain metabolism and to establish gestational age-specific reference values for normal fetal brain metabolites for subsequent use in MRS,we conducted MRS scans of normal fetal brains during mid-to late-term pregnancies,along with related processing.Methods:In this prospective study,MRS scans were conducted on 109 fetuses,with a total of 54 normal fetal brains enrolled on the basis of specific inclusion and exclusion criteria.We analyzed metabolic ratios,including the sum of N-acetylaspartate(NAA)and total N-acetylaspartate(tNAA),total choline(tCho),inositol(Ins),and total creatine(tCr),in relation to gestational age.Results:Gestational age was significantly correlated with specific metabolic ratios(Ins/tCr:r=-0.75,p<0.0001;tCho/tCr:r=-0.50,p<0.0001),especially tNAA/tCho(tNAA/tCho:r=0.54,p<0.0001)and tNAA/Ins(r=0.56,p<0.0001),providing a baseline for fetal brain metabolic assessment.Linear regression analysis was used to calculate regression lines for fetal brain metabolite ratios.Slopes were tested at p of 0.05.Conclusions:The current findings confirmed a significant correlation between fetal brain metabolites and gestational age,supporting the feasibility of establishing standard values for these metabolites in fetal brain assessment.展开更多
Hyperbaric oxygen therapy has been widely applied and recognized in the treatment of brain injury; however, the correlation between the protective effect of hyperbaric oxygen therapy and changes of metabolites in the ...Hyperbaric oxygen therapy has been widely applied and recognized in the treatment of brain injury; however, the correlation between the protective effect of hyperbaric oxygen therapy and changes of metabolites in the brain remains unclear. To investigate the effect and potential mechanism of hy- perbaric oxygen therapy on cognitive functioning in rats, we established traumatic brain injury models using Feeney's free falling method. We treated rat models with hyperbaric oxygen therapy at 0.2 MPa for 60 minutes per day. The Morris water maze test for spatial navigation showed that the average escape latency was significantly prolonged and cognitive function decreased in rats with brain injury. After treatment with hyperbaric oxygen therapy for 1 and 2 weeks, the rats' spatial learning and memory abilities were improved. Hydrogen proton magnetic resonance spectroscopy analysis showed that the N-acetylaspartate/creatine ratio in the hippocampal CA3 region was sig- nificantly increased at 1 week, and the N-acetylaspartate/choline ratio was significantly increased at 2 weeks after hyperbaric oxygen therapy. Nissl staining and immunohistochemical staining showed that the number of nerve cells and Nissl bodies in the hippocampal CA3 region was significantly increased, and glial fibrillary acidic protein positive cells were decreased after a 2-week hyperbaric oxygen therapy treatment. Our findings indicate that hyperbaric oxygen therapy significantly im- proves cognitive functioning in rats with traumatic brain injury, and the potential mechanism is me- diated by metabolic changes and nerve cell restoration in the hippocampal CA3 region.展开更多
3.0T magnetic resonance spectroscopic imaging brain function in Alzheimer's disease. However, is a commonly used method in the research ot the role of 7.0T high-field magnetic resonance spectroscopic imaging in brain...3.0T magnetic resonance spectroscopic imaging brain function in Alzheimer's disease. However, is a commonly used method in the research ot the role of 7.0T high-field magnetic resonance spectroscopic imaging in brain function of Alzheimer's disease remains unclear. In this study, 7.0T magnetic resonance spectroscopy showed that in the hippocampus of Alzheimer's disease rats, the N-acetylaspartate wave crest was reduced, and the creatine and choline wave crest was elevated. This finding was further supported by hematoxylin-eosin staining, which showed a loss of hippocampal neurons and more glial cells. Moreover, electron microscopy showed neuronal shrinkage and mitochondrial rupture, and scanning electron microscopy revealed small size hippocampal synaptic vesicles, incomplete synaptic structure, and reduced number. Overall, the results revealed that 7.0T high-field nuclear magnetic resonance spectroscopy detected the lesions and functional changes in hippocampal neurons of Alzheimer's disease rats in vivo, allowing the possibility for assessing the success rate and grading of the amyloid beta (1-40) animal model of Alzheimer's disease.展开更多
Anterior cingulated cortex (ACC) is involved in “the state in which patients do not care much about pain despite its presence” which is a goal of psychosomatic treatment. To investigate the absolute concentration of...Anterior cingulated cortex (ACC) is involved in “the state in which patients do not care much about pain despite its presence” which is a goal of psychosomatic treatment. To investigate the absolute concentration of N-acetylaspartate (NAA) in the anterior cingulated cortex (ACC) as predictors of patients that may benefit from cognitive behavioural therapy in the treatment of chronic pain. Proton magnetic resonance spectroscopy (1H-MRS) was performed with a 1.5 T MR system on a voxel in the bilateral ACC in 85 chronic pain patients and 20 age-matched normal control subjects. Eighteen out of 24 (75.0%) patients whose NAA concentration decreased significantly in the ACC, respectively, compared to the mean NAA concentration of the normal control subjects, needed cognitive behavioural therapy. Our results suggest that decreased NAA concentration in the ACC is associated with the necessity of cognitive behavioural therapy. 1H-MRS may serve as a useful non-invasive tool for evaluating chronic pain patients.展开更多
In our previous studies, we showed that frontal lobe and brainstem functions were abnormal in online game addicts. In this study, 14 students with Internet addiction disorder and 14 matched healthy controls underwent ...In our previous studies, we showed that frontal lobe and brainstem functions were abnormal in online game addicts. In this study, 14 students with Internet addiction disorder and 14 matched healthy controls underwent proton-magnetic resonance spectroscopy to measure cerebral function. Results demonstrated that the ratio of N-acetylaspartate to creatine decreased, but the ratio of cho- line-containing compounds to creatine increased in the bilateral frontal lobe white matter in people with Internet addiction disorder. However, these ratios were mostly unaltered in the brainstem, suggesting that frontal lobe function decreases in people with Internet addiction disorder.展开更多
基金The National Natural Science Foundation of China(No.8107225881273123)
文摘The effects of low-doses of microcystin-leucinearginine ( MC-LR ) exposure on neurobehaviors and N-acetylaspartate (NAA) expression in the hippocampus of rats were investigated. After male Sprague-Dawley (SD) rats were treated intra-gastrically with different doses of MC-LR for 90 d, the locomotor activity, spatial learning and memory function were evaluated in the rats after treatment using open field tests and Morris water maze tests. The results show that MC-LR exposure can lead to impairment of the spatial learning capacity and locomotor activity in rats at the dose of 2. 00 p,g/kg. The levels of NAA in the hippocampus were measured by magnetic resonance spectroscopy (MRI). A significant decrease of NAA/Cr ratio ( P 〈 0. 05) was observed in the hippocampous. This study indicates that intra-gastrical exposure to low-doses of MC-LR has adverse effects on neuronal behavior and NAA levels in the hippocampous.
基金supported by the National Natural Science Foundation of China,Nos.82071400,81870979the Scientific Research Foundation of China Rehabilitation Research Center,No.2020cz-01the Special Capital Health Research and Development of China,No.2018-1-6011(all to JJL)。
文摘Spinal cord injury is a severe and devastating disease,and spasticity is a common and severe complication that is notoriously refractory to treatment.However,the pathophysiological mechanisms underlying spasticity and its development remain largely unknown.The goal of the present study was to find differences,if any,in metabolites of the left precentral gyrus and basal ganglia of patients who have spinal cord injury with or without spasticity,and to explore the relationship between the brain metabolite concentrations and clinical status.Thirty-six participants were recruited for magnetic resonance spectroscopic examination:23 with spinal cord injury(12 with spasticity and 11 without spasticity)and 13 healthy controls.We acquired localized proton spectra from the precentral gyrus and basal ganglia via 10 mm^(3) voxels.Notably,univariate linear regression analysis demonstrated that the lower that the N-acetylaspartate concentration(a marker for neuronal loss)was in the precentral gyrus of the patients,the lower their ASIA(American Spinal Injury Association)light-touch scores,pinprick scores,and motor scores.Additionally,longer durations of injury were associated with higher N-acetylaspartate levels in the precentral gyrus.Compared with the healthy participants and patients without spasticity,N-acetylaspartate levels in the patients with spasticity were significantly lower in both the precentral gyrus and basal ganglia.Lower N-acetylaspartate levels also correlated with greater sensory and motor dysfunction in the patients who had spinal cord injury with spasticity.
基金supported by China Society for Maternal and Child Health Research(Gant/Award Number:2023CAMCHS003A17).
文摘Background:Magnetic resonance spectroscopy(MRS)represents a significant advancement in the noninvasive assessment of brain metabolism.MRS can provide valuable metabolic information and facilitate more accurate diagnoses of intrauterine fetal brain development than was previously possible.To obtain information regarding normal intrauterine fetal brain metabolism and to establish gestational age-specific reference values for normal fetal brain metabolites for subsequent use in MRS,we conducted MRS scans of normal fetal brains during mid-to late-term pregnancies,along with related processing.Methods:In this prospective study,MRS scans were conducted on 109 fetuses,with a total of 54 normal fetal brains enrolled on the basis of specific inclusion and exclusion criteria.We analyzed metabolic ratios,including the sum of N-acetylaspartate(NAA)and total N-acetylaspartate(tNAA),total choline(tCho),inositol(Ins),and total creatine(tCr),in relation to gestational age.Results:Gestational age was significantly correlated with specific metabolic ratios(Ins/tCr:r=-0.75,p<0.0001;tCho/tCr:r=-0.50,p<0.0001),especially tNAA/tCho(tNAA/tCho:r=0.54,p<0.0001)and tNAA/Ins(r=0.56,p<0.0001),providing a baseline for fetal brain metabolic assessment.Linear regression analysis was used to calculate regression lines for fetal brain metabolite ratios.Slopes were tested at p of 0.05.Conclusions:The current findings confirmed a significant correlation between fetal brain metabolites and gestational age,supporting the feasibility of establishing standard values for these metabolites in fetal brain assessment.
文摘Hyperbaric oxygen therapy has been widely applied and recognized in the treatment of brain injury; however, the correlation between the protective effect of hyperbaric oxygen therapy and changes of metabolites in the brain remains unclear. To investigate the effect and potential mechanism of hy- perbaric oxygen therapy on cognitive functioning in rats, we established traumatic brain injury models using Feeney's free falling method. We treated rat models with hyperbaric oxygen therapy at 0.2 MPa for 60 minutes per day. The Morris water maze test for spatial navigation showed that the average escape latency was significantly prolonged and cognitive function decreased in rats with brain injury. After treatment with hyperbaric oxygen therapy for 1 and 2 weeks, the rats' spatial learning and memory abilities were improved. Hydrogen proton magnetic resonance spectroscopy analysis showed that the N-acetylaspartate/creatine ratio in the hippocampal CA3 region was sig- nificantly increased at 1 week, and the N-acetylaspartate/choline ratio was significantly increased at 2 weeks after hyperbaric oxygen therapy. Nissl staining and immunohistochemical staining showed that the number of nerve cells and Nissl bodies in the hippocampal CA3 region was significantly increased, and glial fibrillary acidic protein positive cells were decreased after a 2-week hyperbaric oxygen therapy treatment. Our findings indicate that hyperbaric oxygen therapy significantly im- proves cognitive functioning in rats with traumatic brain injury, and the potential mechanism is me- diated by metabolic changes and nerve cell restoration in the hippocampal CA3 region.
基金supported by the National Natural Science Foundation of China,No.81141013a grant for Talents in Beijing,No.2011D003034000019
文摘3.0T magnetic resonance spectroscopic imaging brain function in Alzheimer's disease. However, is a commonly used method in the research ot the role of 7.0T high-field magnetic resonance spectroscopic imaging in brain function of Alzheimer's disease remains unclear. In this study, 7.0T magnetic resonance spectroscopy showed that in the hippocampus of Alzheimer's disease rats, the N-acetylaspartate wave crest was reduced, and the creatine and choline wave crest was elevated. This finding was further supported by hematoxylin-eosin staining, which showed a loss of hippocampal neurons and more glial cells. Moreover, electron microscopy showed neuronal shrinkage and mitochondrial rupture, and scanning electron microscopy revealed small size hippocampal synaptic vesicles, incomplete synaptic structure, and reduced number. Overall, the results revealed that 7.0T high-field nuclear magnetic resonance spectroscopy detected the lesions and functional changes in hippocampal neurons of Alzheimer's disease rats in vivo, allowing the possibility for assessing the success rate and grading of the amyloid beta (1-40) animal model of Alzheimer's disease.
文摘Anterior cingulated cortex (ACC) is involved in “the state in which patients do not care much about pain despite its presence” which is a goal of psychosomatic treatment. To investigate the absolute concentration of N-acetylaspartate (NAA) in the anterior cingulated cortex (ACC) as predictors of patients that may benefit from cognitive behavioural therapy in the treatment of chronic pain. Proton magnetic resonance spectroscopy (1H-MRS) was performed with a 1.5 T MR system on a voxel in the bilateral ACC in 85 chronic pain patients and 20 age-matched normal control subjects. Eighteen out of 24 (75.0%) patients whose NAA concentration decreased significantly in the ACC, respectively, compared to the mean NAA concentration of the normal control subjects, needed cognitive behavioural therapy. Our results suggest that decreased NAA concentration in the ACC is associated with the necessity of cognitive behavioural therapy. 1H-MRS may serve as a useful non-invasive tool for evaluating chronic pain patients.
基金supported by the National Natural Science Foundation of China,No.30830046,30670751,30570695the National Science and Technology Program of China,No.2007BAI17B02+2 种基金the National 973 Program of China,No.2009CB918303the Natural Science Foundation of Hunan Province of China,No.07JJ3042Department of Public Health of Hunan Province of China,No.B2005048
文摘In our previous studies, we showed that frontal lobe and brainstem functions were abnormal in online game addicts. In this study, 14 students with Internet addiction disorder and 14 matched healthy controls underwent proton-magnetic resonance spectroscopy to measure cerebral function. Results demonstrated that the ratio of N-acetylaspartate to creatine decreased, but the ratio of cho- line-containing compounds to creatine increased in the bilateral frontal lobe white matter in people with Internet addiction disorder. However, these ratios were mostly unaltered in the brainstem, suggesting that frontal lobe function decreases in people with Internet addiction disorder.