期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Effects of microcystin-LR on hippocampal N-acetylaspartate and neurobehaviors in rats 被引量:1
1
作者 李云晖 周珏 +5 位作者 张敏辉 杨明 李晓波 刘冉 尹立红 浦跃朴 《Journal of Southeast University(English Edition)》 EI CAS 2015年第4期577-581,共5页
The effects of low-doses of microcystin-leucinearginine ( MC-LR ) exposure on neurobehaviors and N-acetylaspartate (NAA) expression in the hippocampus of rats were investigated. After male Sprague-Dawley (SD) ra... The effects of low-doses of microcystin-leucinearginine ( MC-LR ) exposure on neurobehaviors and N-acetylaspartate (NAA) expression in the hippocampus of rats were investigated. After male Sprague-Dawley (SD) rats were treated intra-gastrically with different doses of MC-LR for 90 d, the locomotor activity, spatial learning and memory function were evaluated in the rats after treatment using open field tests and Morris water maze tests. The results show that MC-LR exposure can lead to impairment of the spatial learning capacity and locomotor activity in rats at the dose of 2. 00 p,g/kg. The levels of NAA in the hippocampus were measured by magnetic resonance spectroscopy (MRI). A significant decrease of NAA/Cr ratio ( P 〈 0. 05) was observed in the hippocampous. This study indicates that intra-gastrical exposure to low-doses of MC-LR has adverse effects on neuronal behavior and NAA levels in the hippocampous. 展开更多
关键词 low-doses of microcystin-leucine-arginine (MC- LR) n-acetylaspartate (NAA) neurobeha-viors magnetic resonance spectroscopy NEURO
暂未订购
Association between brain N-acetylaspartate levels and sensory and motor dysfunction in patients who have spinal cord injury with spasticity:an observational case-control study 被引量:1
2
作者 Jia-Yi Liu Ya-Jing Li +4 位作者 Xin-Ying Cong Zuliyaer Talifu Xin Zhang Feng Gao Jian-Jun Li 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第3期582-586,共5页
Spinal cord injury is a severe and devastating disease,and spasticity is a common and severe complication that is notoriously refractory to treatment.However,the pathophysiological mechanisms underlying spasticity and... Spinal cord injury is a severe and devastating disease,and spasticity is a common and severe complication that is notoriously refractory to treatment.However,the pathophysiological mechanisms underlying spasticity and its development remain largely unknown.The goal of the present study was to find differences,if any,in metabolites of the left precentral gyrus and basal ganglia of patients who have spinal cord injury with or without spasticity,and to explore the relationship between the brain metabolite concentrations and clinical status.Thirty-six participants were recruited for magnetic resonance spectroscopic examination:23 with spinal cord injury(12 with spasticity and 11 without spasticity)and 13 healthy controls.We acquired localized proton spectra from the precentral gyrus and basal ganglia via 10 mm^(3) voxels.Notably,univariate linear regression analysis demonstrated that the lower that the N-acetylaspartate concentration(a marker for neuronal loss)was in the precentral gyrus of the patients,the lower their ASIA(American Spinal Injury Association)light-touch scores,pinprick scores,and motor scores.Additionally,longer durations of injury were associated with higher N-acetylaspartate levels in the precentral gyrus.Compared with the healthy participants and patients without spasticity,N-acetylaspartate levels in the patients with spasticity were significantly lower in both the precentral gyrus and basal ganglia.Lower N-acetylaspartate levels also correlated with greater sensory and motor dysfunction in the patients who had spinal cord injury with spasticity. 展开更多
关键词 ASIA motor score ASIA sensory score basal ganglia central nervous system duration of injury magnetic resonance spectroscopy n-acetylaspartate precentral gyrus SPASTICITY spinal cord injury
暂未订购
Value of Magnetic Resonance Spectroscopy for Examining Fetal Brain Development in Mid-to Late Pregnancy 被引量:1
3
作者 Dejuan Shan Yi Zhang +3 位作者 Maobo Wang Yanyan Liu Yudong Wang Lianxiang Xiao 《iRADIOLOGY》 2025年第3期209-213,共5页
Background:Magnetic resonance spectroscopy(MRS)represents a significant advancement in the noninvasive assessment of brain metabolism.MRS can provide valuable metabolic information and facilitate more accurate diagnos... Background:Magnetic resonance spectroscopy(MRS)represents a significant advancement in the noninvasive assessment of brain metabolism.MRS can provide valuable metabolic information and facilitate more accurate diagnoses of intrauterine fetal brain development than was previously possible.To obtain information regarding normal intrauterine fetal brain metabolism and to establish gestational age-specific reference values for normal fetal brain metabolites for subsequent use in MRS,we conducted MRS scans of normal fetal brains during mid-to late-term pregnancies,along with related processing.Methods:In this prospective study,MRS scans were conducted on 109 fetuses,with a total of 54 normal fetal brains enrolled on the basis of specific inclusion and exclusion criteria.We analyzed metabolic ratios,including the sum of N-acetylaspartate(NAA)and total N-acetylaspartate(tNAA),total choline(tCho),inositol(Ins),and total creatine(tCr),in relation to gestational age.Results:Gestational age was significantly correlated with specific metabolic ratios(Ins/tCr:r=-0.75,p<0.0001;tCho/tCr:r=-0.50,p<0.0001),especially tNAA/tCho(tNAA/tCho:r=0.54,p<0.0001)and tNAA/Ins(r=0.56,p<0.0001),providing a baseline for fetal brain metabolic assessment.Linear regression analysis was used to calculate regression lines for fetal brain metabolite ratios.Slopes were tested at p of 0.05.Conclusions:The current findings confirmed a significant correlation between fetal brain metabolites and gestational age,supporting the feasibility of establishing standard values for these metabolites in fetal brain assessment. 展开更多
关键词 CHOLINE CREATINE fetal brain metabolism magnetic resonance spectroscopy n-acetylaspartate
暂未订购
Hyperbaric oxygen therapy improves cognitive functioning after brain injury 被引量:18
4
作者 Su Liu Guangyu Shen +3 位作者 Shukun Deng Xiubin Wang Qinfeng Wu Aisong Guo 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第35期3334-3343,共10页
Hyperbaric oxygen therapy has been widely applied and recognized in the treatment of brain injury; however, the correlation between the protective effect of hyperbaric oxygen therapy and changes of metabolites in the ... Hyperbaric oxygen therapy has been widely applied and recognized in the treatment of brain injury; however, the correlation between the protective effect of hyperbaric oxygen therapy and changes of metabolites in the brain remains unclear. To investigate the effect and potential mechanism of hy- perbaric oxygen therapy on cognitive functioning in rats, we established traumatic brain injury models using Feeney's free falling method. We treated rat models with hyperbaric oxygen therapy at 0.2 MPa for 60 minutes per day. The Morris water maze test for spatial navigation showed that the average escape latency was significantly prolonged and cognitive function decreased in rats with brain injury. After treatment with hyperbaric oxygen therapy for 1 and 2 weeks, the rats' spatial learning and memory abilities were improved. Hydrogen proton magnetic resonance spectroscopy analysis showed that the N-acetylaspartate/creatine ratio in the hippocampal CA3 region was sig- nificantly increased at 1 week, and the N-acetylaspartate/choline ratio was significantly increased at 2 weeks after hyperbaric oxygen therapy. Nissl staining and immunohistochemical staining showed that the number of nerve cells and Nissl bodies in the hippocampal CA3 region was significantly increased, and glial fibrillary acidic protein positive cells were decreased after a 2-week hyperbaric oxygen therapy treatment. Our findings indicate that hyperbaric oxygen therapy significantly im- proves cognitive functioning in rats with traumatic brain injury, and the potential mechanism is me- diated by metabolic changes and nerve cell restoration in the hippocampal CA3 region. 展开更多
关键词 neural regeneration brain injury hyperbaric oxygen magnetic resonance spectroscopy ASTROCYTES IMMUNOHISTOCHEMISTRY CHOLINE CREATINE n-acetylaspartate CA3 region Morris water maze hippocampus NEUROREGENERATION
暂未订购
7.0T nuclear magnetic resonance evaluation of the amyloid beta(1–40) animal model of Alzheimer's disease: comparison of cytology verification 被引量:6
5
作者 Lei Zhang Shuai Dong +1 位作者 Guixiang Zhao Yu Ma 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第4期430-435,共6页
3.0T magnetic resonance spectroscopic imaging brain function in Alzheimer's disease. However, is a commonly used method in the research ot the role of 7.0T high-field magnetic resonance spectroscopic imaging in brain... 3.0T magnetic resonance spectroscopic imaging brain function in Alzheimer's disease. However, is a commonly used method in the research ot the role of 7.0T high-field magnetic resonance spectroscopic imaging in brain function of Alzheimer's disease remains unclear. In this study, 7.0T magnetic resonance spectroscopy showed that in the hippocampus of Alzheimer's disease rats, the N-acetylaspartate wave crest was reduced, and the creatine and choline wave crest was elevated. This finding was further supported by hematoxylin-eosin staining, which showed a loss of hippocampal neurons and more glial cells. Moreover, electron microscopy showed neuronal shrinkage and mitochondrial rupture, and scanning electron microscopy revealed small size hippocampal synaptic vesicles, incomplete synaptic structure, and reduced number. Overall, the results revealed that 7.0T high-field nuclear magnetic resonance spectroscopy detected the lesions and functional changes in hippocampal neurons of Alzheimer's disease rats in vivo, allowing the possibility for assessing the success rate and grading of the amyloid beta (1-40) animal model of Alzheimer's disease. 展开更多
关键词 nerve regeneration Alzheimer's disease AΒ1-40 high-field functional magnetic resonance nuclear magnetic resonance spectroscopy NEUROPATHOLOGY n-acetylaspartate CREATINE CHOLINE hippocampus NSFC grant neural regeneration
暂未订购
H-MR Spectroscopy of the Anterior Cingulated Cortex: Usefulness in the Prediction of Patients That Will Benefit from a Cognitive Behavioural Therapy in the Treatment of Chronic Pain 被引量:1
6
作者 Sei Fuku Masahiro Yoshimura +1 位作者 Katsunori Miyata Nishiyama Junji 《Open Journal of Medical Imaging》 2013年第1期12-16,共5页
Anterior cingulated cortex (ACC) is involved in “the state in which patients do not care much about pain despite its presence” which is a goal of psychosomatic treatment. To investigate the absolute concentration of... Anterior cingulated cortex (ACC) is involved in “the state in which patients do not care much about pain despite its presence” which is a goal of psychosomatic treatment. To investigate the absolute concentration of N-acetylaspartate (NAA) in the anterior cingulated cortex (ACC) as predictors of patients that may benefit from cognitive behavioural therapy in the treatment of chronic pain. Proton magnetic resonance spectroscopy (1H-MRS) was performed with a 1.5 T MR system on a voxel in the bilateral ACC in 85 chronic pain patients and 20 age-matched normal control subjects. Eighteen out of 24 (75.0%) patients whose NAA concentration decreased significantly in the ACC, respectively, compared to the mean NAA concentration of the normal control subjects, needed cognitive behavioural therapy. Our results suggest that decreased NAA concentration in the ACC is associated with the necessity of cognitive behavioural therapy. 1H-MRS may serve as a useful non-invasive tool for evaluating chronic pain patients. 展开更多
关键词 Magnetic Resonance Spectroscopy Chronic PAIN ANTERIOR Cingulated CORTEX n-acetylaspartate
暂未订购
Decreased frontal lobe function in people with Internet addiction disorder
7
作者 Jun Liu Fatema Esmail +7 位作者 Lingjiang Li Zhifeng Kou Weihui Li Xueping Gao Zhiyuan Wang Changlian Tan Yan Zhang Shunke Zhou 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第34期3225-3232,共8页
In our previous studies, we showed that frontal lobe and brainstem functions were abnormal in online game addicts. In this study, 14 students with Internet addiction disorder and 14 matched healthy controls underwent ... In our previous studies, we showed that frontal lobe and brainstem functions were abnormal in online game addicts. In this study, 14 students with Internet addiction disorder and 14 matched healthy controls underwent proton-magnetic resonance spectroscopy to measure cerebral function. Results demonstrated that the ratio of N-acetylaspartate to creatine decreased, but the ratio of cho- line-containing compounds to creatine increased in the bilateral frontal lobe white matter in people with Internet addiction disorder. However, these ratios were mostly unaltered in the brainstem, suggesting that frontal lobe function decreases in people with Internet addiction disorder. 展开更多
关键词 neural regeneration Internet addiction disorder internet gaming addiction magnetic resonanceimaging magnetic resonance spectroscopy n-acetylaspartate choline-containing compounds CREATINE grants-supported paper NEUROREGENERATION
暂未订购
上一页 1 下一页 到第
使用帮助 返回顶部