The blockchain trilemma—balancing decentralization,security,and scalability—remains a critical challenge in distributed ledger technology.Despite significant advancements,achieving all three attributes simultaneousl...The blockchain trilemma—balancing decentralization,security,and scalability—remains a critical challenge in distributed ledger technology.Despite significant advancements,achieving all three attributes simultaneously continues to elude most blockchain systems,often forcing trade-offs that limit their real-world applicability.This review paper synthesizes current research efforts aimed at resolving the trilemma,focusing on innovative consensus mechanisms,sharding techniques,layer-2 protocols,and hybrid architectural models.We critically analyze recent breakthroughs,including Directed Acyclic Graph(DAG)-based structures,cross-chain interoperability frameworks,and zero-knowledge proof(ZKP)enhancements,which aimto reconcile scalability with robust security and decentralization.Furthermore,we evaluate the trade-offs inherent in these approaches,highlighting their practical implications for enterprise adoption,decentralized finance(DeFi),and Web3 ecosystems.By mapping the evolving landscape of solutions,this review identifies gaps in currentmethodologies and proposes future research directions,such as adaptive consensus algorithms and artificial intelligence-driven(AI-driven)governance models.Our analysis underscores that while no universal solution exists,interdisciplinary innovations are progressively narrowing the trilemma’s constraints,paving the way for next-generation blockchain infrastructures.展开更多
Energy security is a crucial aspect of modern societies,as it directly impacts the availability,accessibility,and reliability of energy sources.The reliance on natural resources and geopolitical factors in shaping ene...Energy security is a crucial aspect of modern societies,as it directly impacts the availability,accessibility,and reliability of energy sources.The reliance on natural resources and geopolitical factors in shaping energy security has gained significant attention in recent years.Natural resources and geopolitical risk are examined in 38 countries at risk of geopolitical conflict between 1990 and 2021 by examining CO_(2) emissions,renewable energy consumption,and foreign direct investment as controlling variables.The long-run analysis conducted in this study focused on slope heterogeneity,Westerlund cointegration,and dynamic panel data estimation.The findings indicated that the energy security index is positively associated with various determinants,including natural resources,geopolitical risk,CO_(2) emissions,and renewable energy consumption.However,foreign direct investment was found to be negatively associated with the energy security index among the selected 38 geopolitical risk countries.The role of natural resources and geopolitical risk in energy security cannot be overlooked.Natural resources provide the raw materials for generating electricity and powering our societies,while geopolitical risks can disrupt energy supply chains and threaten stability.Achieving sustainable energy security requires a comprehensive approach that addresses both aspects of energy provision.Transitioning to renewable energy sources,improving energy efficiency,diversifying energy supplies,promoting international cooperation,and conserving natural resources are essential steps towards a more sustainable and resilient energy future.展开更多
The Pfitzinger reaction has long served as a notable synthesis pathway for quinoline-4-carboxylic acids.Although recognized for its synthetic potential since its discovery>138 years ago,a truly catalytic variant ha...The Pfitzinger reaction has long served as a notable synthesis pathway for quinoline-4-carboxylic acids.Although recognized for its synthetic potential since its discovery>138 years ago,a truly catalytic variant has remained elusive until now.Herein,we present a novel 2-tert-butyl-1,1,3,3-tetramethylguanidine(BTMG)-catalyzed Pfitzinger reaction that employs N-[(α-trifluoromethyl)vinyl]isatins with amines and alcohols,providing direct routes to 2-CF_(3)-quinoline-4-carboxamides and carboxylic esters.This method is not only green and environmentally benign but also accommodates the introduction of other functional groups like CF_(2)H and CO_(2)Me at the C2 position of quinoline skeleton.The utility of this methodology was demonstrated by the broad substrate scope,the late-stage modification of commercial drugs,and the diverse derivatization of quinoline framework.More importantly,this work not only opens up a new avenue for the activation of amide C-N bonds in catalytic reaction development,but also unlocks the huge potential of some 2-trifluoromethyl quinolines with strong inhibitory activity against PTP1B or optoelectronic application in organic light-emitting diodes.展开更多
In this paper,a novel contingency-aware method for N-2 security-constrained transmission expansion planning is proposed.To ensure that the transmission construction plan satisfies the N-2 security criterion,the propos...In this paper,a novel contingency-aware method for N-2 security-constrained transmission expansion planning is proposed.To ensure that the transmission construction plan satisfies the N-2 security criterion,the proposed method takes advantage of the adjustable robust optimization(ARO)framework and upgrades it.We construct a discrete uncertainty set in which component failures are treated as uncertain events that are handled as binary variables.In addition to the failure of existing lines and generators,we explicitly model the failure of candidate lines.The proposed model comprises a master problem that makes the transmission construction decision,and a series of subproblems that can detect not only the worst contingency,but also the potential contingencies.Computational studies on the IEEE RTS 24-bus and IEEE 118-bus test systems are carried out to validate the effectiveness of the proposed method.Compared with the deterministic method and ARO method in the literature,the proposed method has higher computational efficiency.展开更多
文摘The blockchain trilemma—balancing decentralization,security,and scalability—remains a critical challenge in distributed ledger technology.Despite significant advancements,achieving all three attributes simultaneously continues to elude most blockchain systems,often forcing trade-offs that limit their real-world applicability.This review paper synthesizes current research efforts aimed at resolving the trilemma,focusing on innovative consensus mechanisms,sharding techniques,layer-2 protocols,and hybrid architectural models.We critically analyze recent breakthroughs,including Directed Acyclic Graph(DAG)-based structures,cross-chain interoperability frameworks,and zero-knowledge proof(ZKP)enhancements,which aimto reconcile scalability with robust security and decentralization.Furthermore,we evaluate the trade-offs inherent in these approaches,highlighting their practical implications for enterprise adoption,decentralized finance(DeFi),and Web3 ecosystems.By mapping the evolving landscape of solutions,this review identifies gaps in currentmethodologies and proposes future research directions,such as adaptive consensus algorithms and artificial intelligence-driven(AI-driven)governance models.Our analysis underscores that while no universal solution exists,interdisciplinary innovations are progressively narrowing the trilemma’s constraints,paving the way for next-generation blockchain infrastructures.
基金funded by a grant from the Interdisciplinary Research Institute in New Finance and Economics,Hubei University of Economics(No.JXZD202403).
文摘Energy security is a crucial aspect of modern societies,as it directly impacts the availability,accessibility,and reliability of energy sources.The reliance on natural resources and geopolitical factors in shaping energy security has gained significant attention in recent years.Natural resources and geopolitical risk are examined in 38 countries at risk of geopolitical conflict between 1990 and 2021 by examining CO_(2) emissions,renewable energy consumption,and foreign direct investment as controlling variables.The long-run analysis conducted in this study focused on slope heterogeneity,Westerlund cointegration,and dynamic panel data estimation.The findings indicated that the energy security index is positively associated with various determinants,including natural resources,geopolitical risk,CO_(2) emissions,and renewable energy consumption.However,foreign direct investment was found to be negatively associated with the energy security index among the selected 38 geopolitical risk countries.The role of natural resources and geopolitical risk in energy security cannot be overlooked.Natural resources provide the raw materials for generating electricity and powering our societies,while geopolitical risks can disrupt energy supply chains and threaten stability.Achieving sustainable energy security requires a comprehensive approach that addresses both aspects of energy provision.Transitioning to renewable energy sources,improving energy efficiency,diversifying energy supplies,promoting international cooperation,and conserving natural resources are essential steps towards a more sustainable and resilient energy future.
基金National Natural Science Foundation of China(Nos.22171056,22122402,21801050)Outstanding Youth Project of Guangdong Natural Science Foundation(Nos.2024B1515020036,2021B1515020048)+3 种基金Guangdong Natural Science Foundation(Nos.2023A1515011313,2021A1515010510,2024A1515030037)Tertiary Education Scientific Research Project of Guangzhou Municipal Education Bureau(No.202235305)the Open Fund from Key Laboratory of Organofluorine ChemistryShanghai Engineering Research Center of Molecular Therapeutics and New Drug Development are gratefully acknowledged for financial support.
文摘The Pfitzinger reaction has long served as a notable synthesis pathway for quinoline-4-carboxylic acids.Although recognized for its synthetic potential since its discovery>138 years ago,a truly catalytic variant has remained elusive until now.Herein,we present a novel 2-tert-butyl-1,1,3,3-tetramethylguanidine(BTMG)-catalyzed Pfitzinger reaction that employs N-[(α-trifluoromethyl)vinyl]isatins with amines and alcohols,providing direct routes to 2-CF_(3)-quinoline-4-carboxamides and carboxylic esters.This method is not only green and environmentally benign but also accommodates the introduction of other functional groups like CF_(2)H and CO_(2)Me at the C2 position of quinoline skeleton.The utility of this methodology was demonstrated by the broad substrate scope,the late-stage modification of commercial drugs,and the diverse derivatization of quinoline framework.More importantly,this work not only opens up a new avenue for the activation of amide C-N bonds in catalytic reaction development,but also unlocks the huge potential of some 2-trifluoromethyl quinolines with strong inhibitory activity against PTP1B or optoelectronic application in organic light-emitting diodes.
基金supported by the National Key Research and Development Plan of China(No.2016YFB0900100)National Natural Science Foundation of China(No.51807116).
文摘In this paper,a novel contingency-aware method for N-2 security-constrained transmission expansion planning is proposed.To ensure that the transmission construction plan satisfies the N-2 security criterion,the proposed method takes advantage of the adjustable robust optimization(ARO)framework and upgrades it.We construct a discrete uncertainty set in which component failures are treated as uncertain events that are handled as binary variables.In addition to the failure of existing lines and generators,we explicitly model the failure of candidate lines.The proposed model comprises a master problem that makes the transmission construction decision,and a series of subproblems that can detect not only the worst contingency,but also the potential contingencies.Computational studies on the IEEE RTS 24-bus and IEEE 118-bus test systems are carried out to validate the effectiveness of the proposed method.Compared with the deterministic method and ARO method in the literature,the proposed method has higher computational efficiency.