The development of high-performance transition metal sulfide(TMS)/carbon composites to replace conventional graphite anode remains a critical challenge for advancing lithium-ion batteries(LIBs).In this study,a facile ...The development of high-performance transition metal sulfide(TMS)/carbon composites to replace conventional graphite anode remains a critical challenge for advancing lithium-ion batteries(LIBs).In this study,a facile self-sacrifice template method is developed to prepare FeS encapsulated into N,S co-doped carbon(FeS/NSC)composite using melamine-cyanuric acid(MCA)supermolecule as a multifunctional template precursor.The function of MCA supermolecule for material synthesis is explored,revealing its special function as a dispersant,dopant and pore-forming agent.Furthermore,the effect of Fe source dosage on the morphology,structure and composition of the final products is explored.The resultant FeS/NSC-0.1(where 0.1 represents the mass of added Fe source)exhibits the most optimal proportion,characterized by a good dispersion status of FeS within the NSC matrix,effective N,S co-doping and ample porosity.Benefiting from these merits,the FeS/NSC-0.1 anode demonstrates significantly improved cycling stability and rate capability when compared to the counterparts.Undoubtedly,this work offers a universal method to produce advanced transition metal sulfide/carbon composite electrodes for energy storage and conversion systems.展开更多
Since the inaugural international collaboration under the framework of the Collaboratory for the Study of Earthquake Predictability(CSEP)in 2007,numerous forecast models have been developed and operated for earthquake...Since the inaugural international collaboration under the framework of the Collaboratory for the Study of Earthquake Predictability(CSEP)in 2007,numerous forecast models have been developed and operated for earthquake forecasting experiments across CSEP testing centers(Schorlemmer et al.,2018).Over more than a decade,efforts to compare forecasts with observed earthquakes using numerous statistical test methods and insights into earthquake predictability,which have become a highlight of the CSEP platform.展开更多
Seven-day-old maize (Zea mays) plants were grown hydroponically for ten days in deprived nutrient solutions against the corresponding control grown under full nutrition;the effects of S-, N- or P-deprivation on lamina...Seven-day-old maize (Zea mays) plants were grown hydroponically for ten days in deprived nutrient solutions against the corresponding control grown under full nutrition;the effects of S-, N- or P-deprivation on laminas’ mean stomatal conductance (gs), transpiration rate (E) and photosynthetic rate (A) were monitored, along with the impact on the laminas’ total dry mass (DM), water amount (W), length and surface area (Sa). Furthermore, a time series analysis of each parameter’s response ratios (Rr), i.e. the treatment’s value divided by the corresponding control’s one, was performed. Under S-deprivation, the Rr of laminas’ mean gs, E, and A presented oscillations within a ±15% fluctuation zone, notably the “control” zone, whilst those of laminas’ total DM, water amount, surface area, and length included oscillation during the first days and deviation later on, presenting deviation during d10. Under the N-deprivation conditions all Rr time courses except the A one, included early deviations from the control zone without recovering. The deviation from the control zone appeared at d4. Under P-deprivation, all Rr time courses represented oscillations within the control zone. P-deprivation’s patterns resembled those of S-deprivation. Compared to the one of the S-deprivation, the P-one’s oscillations took place within a broader zone. Linear relationships among the various Rr patterns were found between gs-E, gs-A, E-A, DM-W and DM-Sa. In conclusion, the impact of P-deprivation appeared in an early stage and included an alleviation action, the one of N-deprivation appeared early with no alleviation action, whilst that of S-deprivation appeared later, being rather weaker when compared to the impact of the P-deprivation’s impact.展开更多
Biomass-derived heteroatom self-doped cathode catalysts has attracted considerable interest for electrochemical advanced oxidation processes(EAOPs)due to its high performance and sustainable synthesis.Herein,we illust...Biomass-derived heteroatom self-doped cathode catalysts has attracted considerable interest for electrochemical advanced oxidation processes(EAOPs)due to its high performance and sustainable synthesis.Herein,we illustrated the morphological fates of waste leaf-derived graphitic carbon(WLGC)produced from waste ginkgo leaves via pyrolysis temperature regulation and used as bifunctional cathode catalyst for simultaneous H_(2)O_(2) electrochemical generation and organic pollutant degradation,discovering S/N-self-doping shown to facilitate a synergistic effect on reactive oxygen species(ROS)generation.Under the optimum temperature of 800℃,the WLGC exhibited a H_(2)O_(2) selectivity of 94.2%and tetracycline removal of 99.3%within 60 min.Density functional theory calculations and in-situ Fourier transformed infrared spectroscopy verified that graphitic N was the critical site for H_(2)O_(2) generation.While pyridinic N and thiophene S were the main active sites responsible for OH generation,N vacancies were the active sites to produce ^(1)O_(2) from O_(2).The performance of the novel cathode for tetracycline degradation remains well under a wide pH range(3–11),maintaining excellent stability in 10 cycles.It is also industrially applicable,achieving satisfactory performance treating in real water matrices.This system facilitates both radical and non-radical degradation,offering valuable advances in the preparation of cost-effective and sustainable electrocatalysts and hold strong potentials in metal-free EAOPs for organic pollutant degradation.展开更多
Doping engineering is an effective strategy for graphitic carbon nitride(g-C_(3)N_(4))to improve its photocat-alytic hydrogen evolution reaction(HER)performance.In this work,a novel nitrogen and sulfur co-doped g-C_(3...Doping engineering is an effective strategy for graphitic carbon nitride(g-C_(3)N_(4))to improve its photocat-alytic hydrogen evolution reaction(HER)performance.In this work,a novel nitrogen and sulfur co-doped g-C_(3)N_(4)(N,S-g-C_(3)N_(4))is elaborately designed on the basis of theoretical predictions of first-principle density functional theory(DFT).The calculated Gibbs free energy of adsorbed hydrogen(ΔGH∗)for N,S-g-C_(3)N_(4) at the N-doping active sites is extremely close to zero(0.01 eV).Inspired by the theoretical predictions,the N,S-g-C_(3)N_(4) is successfully fabricated through ammonia-rich pyrolysis synthesis strategy,in which ammonia is in-situ obtained by pyrolyzing melamine.Subsequent characterizations indicate that the N,S-g-C_(3)N_(4) possesses high specific surface area,outstanding light utilization,good hydrophilicity,and efficient carrier transfer efficiency.Consequently,the N,S-g-C_(3)N_(4) displays an extremely high H2 evolution rate of 8269.9μmol g−1 h−1,achieves an apparent quantum efficiency(AQE)of 3.24%,and also possesses outsatnding durability.Theoretical calculations further demonstrate that N and S dopants can not only introduce doping energy level to reduce the band gap,but also induce charge redistribution to facilitate hydrogen adsorption,thus promoting the photocatalytic HER process.Moreover,femtosecond transient absorption(fs-TA)spectroscopy further corroborates the efficient photogenerated carrier transport of N,S-g-C_(3)N_(4).This research highlights a promising and reliable strategy to achieve superior photocatalytic activity,and exhibits significant guidance for precise designing high-efficiency photocatalysts.展开更多
The paper discusses the quantitative definition of the s/n (signal to noise ratio) by means of new computational parameters derived (and computed) by the Fourier analysis. The theme is of great relevance when the geom...The paper discusses the quantitative definition of the s/n (signal to noise ratio) by means of new computational parameters derived (and computed) by the Fourier analysis. The theme is of great relevance when the geomagnetic observed field has high transient noise and high energy content (i.e.geomagnetic signal interfered by human activity magnetic band) and when the signal analysis action is oriented to the detection of magnetic sources characterized by quasi-punctiform size, low energy level and kinetic mechanical status (i.e.uw armed terrorist). The paper shows the results obtained introducing two new informative spectral parameters: the informative capability “C” and the enhanced informative capability “eC”. These parameters are depending on the comparison of the energy of the target signal with total field energy and they are characteristics of each elementary signal. C classifies the energy of the spectrum in two metrological bands: elementary signal informative energy EI (band or single signal) and passive energy EP. This metrological classification of the energy overtakes the concept of noise: each signal is part of the noise band when it is not under observation and becomes out of the band when it is under observation (numerical observation→computation). C (and eC) allows to compute the value of the “visibility” of the informative signals in a high energy geomagnetic field (or spectrum). C is a fundamental parameter for the evaluation of the effectiveness of singularity magnetic metrology in the passive detection of small magnetic sources in high noised magnetic field.展开更多
In Shamir’s(t,n) threshold of the secret sharing scheme, a secret is divided into n shares by a dealer and is shared among n shareholders in such a way that (a) the secret can be reconstructed when there are t or mor...In Shamir’s(t,n) threshold of the secret sharing scheme, a secret is divided into n shares by a dealer and is shared among n shareholders in such a way that (a) the secret can be reconstructed when there are t or more than t shares;and (b) the secret cannot be obtained when there are fewer than t shares. In the secret reconstruction, participating users can be either legitimate shareholders or attackers. Shamir’s scheme only considers the situation when all participating users are legitimate shareholders. In this paper, we show that when there are more than t users participating and shares are released asynchronously in the secret reconstruction, an attacker can always release his share last. In such a way, after knowing t valid shares of legitimate shareholders, the attacker can obtain the secret and therefore, can successfully impersonate to be a legitimate shareholder without being detected. We propose a simple modification of Shamir’s scheme to fix this security problem. Threshold cryptography is a research of group-oriented applications based on the secret sharing scheme. We show that a similar security problem also exists in threshold cryptographic applications. We propose a modified scheme to fix this security problem as well.展开更多
Hepatitis C virus(HCV) replication is associated with the endoplasmic reticulum, where the virus can induce cellular stress. Oxidative cell damage plays an important role in HCV physiopathology. Oxidative stress is tr...Hepatitis C virus(HCV) replication is associated with the endoplasmic reticulum, where the virus can induce cellular stress. Oxidative cell damage plays an important role in HCV physiopathology. Oxidative stress is triggered when the concentration of oxygen species in the extracellular or intracellular environment exceeds antioxidant defenses. Cells are protected and modulate oxidative stress through the interplay of intracellular antioxidant agents, mainly glutathione system(GSH) and thioredoxin; and antioxidant enzyme systems such as superoxide dismutase, catalase, GSH peroxidase, and heme oxygenase-1. Also, the use of natural and synthetic antioxidants(vitamin C and E, N-acetylcysteine, glycyrrhizin, polyenylphosphatidyl choline, mitoquinone, quercetin, S-adenosylmethionine and silymarin) has already shown promising results as co-adjuvants in HCV therapy. Despite all the available information, it is not known how different agents with antiviral activity can interfere with the modulation of the cell redox state induced by HCV and decrease viral replication. This review describes an evidence-based consensus on molecular mechanisms involved in HCV replication and their relationship with cell damage induced by oxidative stress generated by the virus itself and cell antiviral machinery. It also describes some molecules that modify the levels of oxidative stress in HCV-infected cells.展开更多
Metallic Sn has provoked tremendous progress as an anode material for sodium-ion batteries(SIBs).However,Sn anodes suffer from a dramatic capacity fading,owing to pulverization induced by drastic volume expansion duri...Metallic Sn has provoked tremendous progress as an anode material for sodium-ion batteries(SIBs).However,Sn anodes suffer from a dramatic capacity fading,owing to pulverization induced by drastic volume expansion during cycling.Herein,a flexible three-dimensional(3D)hierarchical conductive network electrode is designed by constructing Sn quantum dots(QDs)encapsulated in one-dimensional N,S codoped carbon nanofibers(NS-CNFs)sheathed within two-dimensional(2D)reduced graphene oxide(rGO)scrolls.In this ingenious strategy,1D NS-CNFs are regarded as building blocks to prevent the aggregation and pulverization of Sn QDs during sodiation/desodiation,2D rGO acts as electrical roads and“bridges”among NS-CNFs to improve the conductivity of the electrode and enlarge the contact area with electrolyte.Because of the unique structural merits,the flexible 3D hierarchical conductive network was directly used as binder-and current collectorfree anode for SIBs,exhibiting ultra-long cycling life(373 mAh g?1 after 5000 cycles at 1 A g?1),and excellent high-rate capability(189 mAh g?1 at 10 A g?1).This work provides a facile and efficient engineering method to construct 3D hierarchical conductive electrodes for other flexible energy storage devices.展开更多
The Ni(Ⅱ)-chiral(4S,4'S)-2,2'-(4,6-dibenzofurandiyl)bis[4,5-dihydro-4-phenyloxazole](DBFOX/Ph)-catalyzed asymmetric 1,3-dipolar cycloadditions of nitrile imines to N-α,β-unsaturated acylpyrazoles was presen...The Ni(Ⅱ)-chiral(4S,4'S)-2,2'-(4,6-dibenzofurandiyl)bis[4,5-dihydro-4-phenyloxazole](DBFOX/Ph)-catalyzed asymmetric 1,3-dipolar cycloadditions of nitrile imines to N-α,β-unsaturated acylpyrazoles was presented.This tactic rendered a facile and feasible route to prepare the optically active tetrasubstituted 5-3,5-dimethylpyrazole acyl dihydropyrazole cy-cloadducts bearing one or two contiguous stereocenters in good yields(up to 97%yield)with high regioselectivities(100%)and enantioselectivities(up to 97.5%ee).Following that,chiral cycloadducts could be obtained consistently in good chemical yields with excellent enantioselectivities within the gram scale process,additionally,toward five kinds of derivatization reac-tions like nucleophilic and reduction for further conversion of chiral cycloadducts to related chiral dihydropyrazole derivatives encompassing different substituents.展开更多
Whether or not there is inherited basis for prostate cancer aggressiveness is not clear, but advances in DNA analysis should provide an answer to this question in the very near future.
The effects of CO2 enrichment on the growth and glueosinolate (GS) concentrations in the bolting stem of Chinese kale (Brassica alboglabra L.) treated with three nitrogen (N) concentrations (5, 10, and 20 mmol/...The effects of CO2 enrichment on the growth and glueosinolate (GS) concentrations in the bolting stem of Chinese kale (Brassica alboglabra L.) treated with three nitrogen (N) concentrations (5, 10, and 20 mmol/L) were investigated. Height, stem thickness, and dry weights of the total aerial parts, bolting stems, and roots, as well as the root to shoot ratio, significantly increased as CO2 concentration was elevated from 350 to 800 μl/L at each N concentration. In the edible part of the bolting stem, 11 individual GSs were identified, including 7 aliphatic and 4 indolyl GSs. GS concentration was affected by the elevated CO2 concentration, N concentration, and CO2×N interaction. At 5 and 10 mmol N/L, the concentrations of aliphatic GSs and total GSs significantly increased, whereas those ofindolyl GSs were not affected, by elevated atmospheric CO2. However, at 20 mmol N/L, elevated CO2 had no significant effects on the concentrations of total GSs and total indolyl GSs, but the concentrations of total aliphatic GSs significantly increased. Moreover, the bolting stem carbon (C) content increased, whereas the N and sulfur (S) contents decreased under elevated CO2 concentration in the three N treatments, resulting in changes in the C/N and N/S ratios. Also the C/N ratio is not a reliable predictor of change of GS concentration, while the changes in N and S contents and the N/S ratio at the elevated CO2 concentration may influence the GS concentration in Chinese kale bolting stems. The results demonstrate that high nitrogen supply is beneficial for the growth of Chinese kale, but not for the GS concentration in bolting stems, under elevated CO2 condition.展开更多
The N,S co-doped porous carbon nanofibers were fabricated by the carbonization of[Zn_(2)(tdc)_(2)(MA)]n MOFs/polyacrylonitrile nanofibers composite,which was produced by the electrospinning technology.The electrochemi...The N,S co-doped porous carbon nanofibers were fabricated by the carbonization of[Zn_(2)(tdc)_(2)(MA)]n MOFs/polyacrylonitrile nanofibers composite,which was produced by the electrospinning technology.The electrochemical results show that the N,S co-doped porous carbon nanofibers can achieve capacity of 201.2 mAh·g^(-1)at the current density of 0.05 A·g^(-1).Furthermore,the reversible capacity still has 161.3 mAh·g^(-1)even at a high current density of 1 A·g^(-1)after 600 cycles.The superior electrochemical performance shows that the N,S co-doped porous carbon nanofibers electrode material can be used as an ideal anode material for sodium-ion batteries.展开更多
The interface mechanism between catalyst and carbon substrate has been the focus of research.In this paper,the FeCo alloy embedded N,S co-doped carbon substrate bifunctional catalyst(FeCo/S-NC)is obtained by a simple ...The interface mechanism between catalyst and carbon substrate has been the focus of research.In this paper,the FeCo alloy embedded N,S co-doped carbon substrate bifunctional catalyst(FeCo/S-NC)is obtained by a simple one-step pyrolysis strategy.The experimental results and density functional theory(DFT)calculation show that the formation of FeCo alloy is conducive to promoting electron transfer,and the introduction of S atom can enhance the interaction between FeCo alloy and carbon substrate,thus inhibiting the migration and agglomeration of particles on the surface of carbon material.The FeCo/SNC catalysts show outstanding performance for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).FeCo/S-NC shows a high half-wave potential(E_(1/2)=0.8823 V)for ORR and a low overpotential at 10 mA cm^(-2)(E_(j=10)=299 mV)for OER.In addition,compared with Pt/C+RuO_(2) assembled Zn-air battery(ZAB),the FeCo/S-NC assembled ZAB exhibits a larger power density(198.8 mW cm^(-2)),a higher specific capacity(786.1 mA h g_(zn)~(-1)),and ultra-stable cycle performance.These results confirm that the optimized composition and the interfacial interaction between catalyst and carbon substrate synergistically enhance the electrochemical performance.展开更多
The transformation of Li_(2)S_(2)-Li_(2)S is indubitably the most crucial and labored rate-limiting step among the sophisticated reactions for the lithium-sulfur batteries(LSBs),the adjustment of which is anticipated ...The transformation of Li_(2)S_(2)-Li_(2)S is indubitably the most crucial and labored rate-limiting step among the sophisticated reactions for the lithium-sulfur batteries(LSBs),the adjustment of which is anticipated to impede the shuttle effect.Herein,a N,Se dual-doped carbon nanocages embedded by Co-CoSe_(2)nanoparticles(Co-CoSe_(2)@NSeC)is employed as a functional coating layer on commercial separator to improve the performance of LSBs.The well-designed N,Se co-doped nanostructures endow the modified layer with a satisfactory capacity for blocking polysulfides.Both calculations and experiments jointly disclose that the Li_(2)S_(2)to Li_(2)S reaction,including the liquid-solid conversion,was prominently expedited both thermodynamically and electrodynamically.Consequently,the batteries fabricated with Co-CoSe_(2)@NSeC modified separator can deliver a favorable 764.2 mAh g^(−1)with 8.0 C,accompanied by a salient long cycling lifespan(only 0.066%at 1 C and 0.061%under 2 C after 1000 and 2000 cycles),and a desired anode protection.In addition,despite a raised areal loading of 7.53 mg cm^(−2)was introduced,the cells assembled by Co-CoSe_(2)@NSeC@PP are allowed to produce an outstanding initial behavior of 8.71 mAh cm^(−2)under 0.2 C.This work may reinforce further explorations and serve with valuable insights into N,Se dual-doping materials for high-performance LSBs.展开更多
基金supported by the Science Technology Talents Lifting Project of Hunan Province(No.2022TJ-N16)the Natural Science Foundation of Hunan Province(Nos.2024JJ4022,2023JJ30277,2025JJ60382)+3 种基金the China Postdoctoral Fellowship Program(GZC20233205)the Scientifc Research Fund of Hunan Provincial Education Department,China(No.24B0270)the National Natural Science Foundation of China(No.32201646)the Key Project of Jiangxi Provincial Research and Development Program(No.20243BBI91001).
文摘The development of high-performance transition metal sulfide(TMS)/carbon composites to replace conventional graphite anode remains a critical challenge for advancing lithium-ion batteries(LIBs).In this study,a facile self-sacrifice template method is developed to prepare FeS encapsulated into N,S co-doped carbon(FeS/NSC)composite using melamine-cyanuric acid(MCA)supermolecule as a multifunctional template precursor.The function of MCA supermolecule for material synthesis is explored,revealing its special function as a dispersant,dopant and pore-forming agent.Furthermore,the effect of Fe source dosage on the morphology,structure and composition of the final products is explored.The resultant FeS/NSC-0.1(where 0.1 represents the mass of added Fe source)exhibits the most optimal proportion,characterized by a good dispersion status of FeS within the NSC matrix,effective N,S co-doping and ample porosity.Benefiting from these merits,the FeS/NSC-0.1 anode demonstrates significantly improved cycling stability and rate capability when compared to the counterparts.Undoubtedly,this work offers a universal method to produce advanced transition metal sulfide/carbon composite electrodes for energy storage and conversion systems.
基金granted by the National Natural Science Foundation of China(Grant No.42004038)Earthquake Tracking Orientation Tasks of CEA(Grant No.2024020104)+1 种基金the Special Fund of IEFCEA(Grant No.CEAIEF2022030206)the China Scholarship Council(CSC)exchange program(Grant No.202204190019)。
文摘Since the inaugural international collaboration under the framework of the Collaboratory for the Study of Earthquake Predictability(CSEP)in 2007,numerous forecast models have been developed and operated for earthquake forecasting experiments across CSEP testing centers(Schorlemmer et al.,2018).Over more than a decade,efforts to compare forecasts with observed earthquakes using numerous statistical test methods and insights into earthquake predictability,which have become a highlight of the CSEP platform.
文摘Seven-day-old maize (Zea mays) plants were grown hydroponically for ten days in deprived nutrient solutions against the corresponding control grown under full nutrition;the effects of S-, N- or P-deprivation on laminas’ mean stomatal conductance (gs), transpiration rate (E) and photosynthetic rate (A) were monitored, along with the impact on the laminas’ total dry mass (DM), water amount (W), length and surface area (Sa). Furthermore, a time series analysis of each parameter’s response ratios (Rr), i.e. the treatment’s value divided by the corresponding control’s one, was performed. Under S-deprivation, the Rr of laminas’ mean gs, E, and A presented oscillations within a ±15% fluctuation zone, notably the “control” zone, whilst those of laminas’ total DM, water amount, surface area, and length included oscillation during the first days and deviation later on, presenting deviation during d10. Under the N-deprivation conditions all Rr time courses except the A one, included early deviations from the control zone without recovering. The deviation from the control zone appeared at d4. Under P-deprivation, all Rr time courses represented oscillations within the control zone. P-deprivation’s patterns resembled those of S-deprivation. Compared to the one of the S-deprivation, the P-one’s oscillations took place within a broader zone. Linear relationships among the various Rr patterns were found between gs-E, gs-A, E-A, DM-W and DM-Sa. In conclusion, the impact of P-deprivation appeared in an early stage and included an alleviation action, the one of N-deprivation appeared early with no alleviation action, whilst that of S-deprivation appeared later, being rather weaker when compared to the impact of the P-deprivation’s impact.
基金financially supported by National Key R&D Program International Cooperation Project(2023YFE0108100)Natural Science Foundation of China(No.52170085)+2 种基金Key Project of Natural Science Foundation of Tianjin(No.21JCZDJC00320)Tianjin Post-graduate Students Research and Innovation Project(2021YJSB013)Fundamental Research Funds for the Central Universities,Nankai University.
文摘Biomass-derived heteroatom self-doped cathode catalysts has attracted considerable interest for electrochemical advanced oxidation processes(EAOPs)due to its high performance and sustainable synthesis.Herein,we illustrated the morphological fates of waste leaf-derived graphitic carbon(WLGC)produced from waste ginkgo leaves via pyrolysis temperature regulation and used as bifunctional cathode catalyst for simultaneous H_(2)O_(2) electrochemical generation and organic pollutant degradation,discovering S/N-self-doping shown to facilitate a synergistic effect on reactive oxygen species(ROS)generation.Under the optimum temperature of 800℃,the WLGC exhibited a H_(2)O_(2) selectivity of 94.2%and tetracycline removal of 99.3%within 60 min.Density functional theory calculations and in-situ Fourier transformed infrared spectroscopy verified that graphitic N was the critical site for H_(2)O_(2) generation.While pyridinic N and thiophene S were the main active sites responsible for OH generation,N vacancies were the active sites to produce ^(1)O_(2) from O_(2).The performance of the novel cathode for tetracycline degradation remains well under a wide pH range(3–11),maintaining excellent stability in 10 cycles.It is also industrially applicable,achieving satisfactory performance treating in real water matrices.This system facilitates both radical and non-radical degradation,offering valuable advances in the preparation of cost-effective and sustainable electrocatalysts and hold strong potentials in metal-free EAOPs for organic pollutant degradation.
基金supported by the National Natural Science Foun-dation of China(No.62004143)the Key R&D Program of Hubei Province(No.2022BAA084)the Natural Science Foundation of Hubei Province(No.2021CFB133).
文摘Doping engineering is an effective strategy for graphitic carbon nitride(g-C_(3)N_(4))to improve its photocat-alytic hydrogen evolution reaction(HER)performance.In this work,a novel nitrogen and sulfur co-doped g-C_(3)N_(4)(N,S-g-C_(3)N_(4))is elaborately designed on the basis of theoretical predictions of first-principle density functional theory(DFT).The calculated Gibbs free energy of adsorbed hydrogen(ΔGH∗)for N,S-g-C_(3)N_(4) at the N-doping active sites is extremely close to zero(0.01 eV).Inspired by the theoretical predictions,the N,S-g-C_(3)N_(4) is successfully fabricated through ammonia-rich pyrolysis synthesis strategy,in which ammonia is in-situ obtained by pyrolyzing melamine.Subsequent characterizations indicate that the N,S-g-C_(3)N_(4) possesses high specific surface area,outstanding light utilization,good hydrophilicity,and efficient carrier transfer efficiency.Consequently,the N,S-g-C_(3)N_(4) displays an extremely high H2 evolution rate of 8269.9μmol g−1 h−1,achieves an apparent quantum efficiency(AQE)of 3.24%,and also possesses outsatnding durability.Theoretical calculations further demonstrate that N and S dopants can not only introduce doping energy level to reduce the band gap,but also induce charge redistribution to facilitate hydrogen adsorption,thus promoting the photocatalytic HER process.Moreover,femtosecond transient absorption(fs-TA)spectroscopy further corroborates the efficient photogenerated carrier transport of N,S-g-C_(3)N_(4).This research highlights a promising and reliable strategy to achieve superior photocatalytic activity,and exhibits significant guidance for precise designing high-efficiency photocatalysts.
文摘The paper discusses the quantitative definition of the s/n (signal to noise ratio) by means of new computational parameters derived (and computed) by the Fourier analysis. The theme is of great relevance when the geomagnetic observed field has high transient noise and high energy content (i.e.geomagnetic signal interfered by human activity magnetic band) and when the signal analysis action is oriented to the detection of magnetic sources characterized by quasi-punctiform size, low energy level and kinetic mechanical status (i.e.uw armed terrorist). The paper shows the results obtained introducing two new informative spectral parameters: the informative capability “C” and the enhanced informative capability “eC”. These parameters are depending on the comparison of the energy of the target signal with total field energy and they are characteristics of each elementary signal. C classifies the energy of the spectrum in two metrological bands: elementary signal informative energy EI (band or single signal) and passive energy EP. This metrological classification of the energy overtakes the concept of noise: each signal is part of the noise band when it is not under observation and becomes out of the band when it is under observation (numerical observation→computation). C (and eC) allows to compute the value of the “visibility” of the informative signals in a high energy geomagnetic field (or spectrum). C is a fundamental parameter for the evaluation of the effectiveness of singularity magnetic metrology in the passive detection of small magnetic sources in high noised magnetic field.
文摘In Shamir’s(t,n) threshold of the secret sharing scheme, a secret is divided into n shares by a dealer and is shared among n shareholders in such a way that (a) the secret can be reconstructed when there are t or more than t shares;and (b) the secret cannot be obtained when there are fewer than t shares. In the secret reconstruction, participating users can be either legitimate shareholders or attackers. Shamir’s scheme only considers the situation when all participating users are legitimate shareholders. In this paper, we show that when there are more than t users participating and shares are released asynchronously in the secret reconstruction, an attacker can always release his share last. In such a way, after knowing t valid shares of legitimate shareholders, the attacker can obtain the secret and therefore, can successfully impersonate to be a legitimate shareholder without being detected. We propose a simple modification of Shamir’s scheme to fix this security problem. Threshold cryptography is a research of group-oriented applications based on the secret sharing scheme. We show that a similar security problem also exists in threshold cryptographic applications. We propose a modified scheme to fix this security problem as well.
基金Supported by The CONACYTNo.CB-2011-1-58781 to Ana M Rivas-Estilla(partially)Red CA Fisiopatología de Enfermedades Hepáticas 2015
文摘Hepatitis C virus(HCV) replication is associated with the endoplasmic reticulum, where the virus can induce cellular stress. Oxidative cell damage plays an important role in HCV physiopathology. Oxidative stress is triggered when the concentration of oxygen species in the extracellular or intracellular environment exceeds antioxidant defenses. Cells are protected and modulate oxidative stress through the interplay of intracellular antioxidant agents, mainly glutathione system(GSH) and thioredoxin; and antioxidant enzyme systems such as superoxide dismutase, catalase, GSH peroxidase, and heme oxygenase-1. Also, the use of natural and synthetic antioxidants(vitamin C and E, N-acetylcysteine, glycyrrhizin, polyenylphosphatidyl choline, mitoquinone, quercetin, S-adenosylmethionine and silymarin) has already shown promising results as co-adjuvants in HCV therapy. Despite all the available information, it is not known how different agents with antiviral activity can interfere with the modulation of the cell redox state induced by HCV and decrease viral replication. This review describes an evidence-based consensus on molecular mechanisms involved in HCV replication and their relationship with cell damage induced by oxidative stress generated by the virus itself and cell antiviral machinery. It also describes some molecules that modify the levels of oxidative stress in HCV-infected cells.
基金financially supported by the Natural Science Foundation of Shandong Province,China(ZR2018JL021,ZR2014EMQ011)the Applied Basic Research Foundation of Qingdao City(17-1-1-84-jch)+2 种基金the National Natural Science Foundation of China(51402160)supported by Taishan Scholar Program of Shandong Province,China,and National Demonstration Center for Experimental Applied Physics Education(Qingdao University)support from the China Postdoctoral Science Foundation Funded Project(2018M630747)and Qingdao Postdoctoral Applied Research Project.
文摘Metallic Sn has provoked tremendous progress as an anode material for sodium-ion batteries(SIBs).However,Sn anodes suffer from a dramatic capacity fading,owing to pulverization induced by drastic volume expansion during cycling.Herein,a flexible three-dimensional(3D)hierarchical conductive network electrode is designed by constructing Sn quantum dots(QDs)encapsulated in one-dimensional N,S codoped carbon nanofibers(NS-CNFs)sheathed within two-dimensional(2D)reduced graphene oxide(rGO)scrolls.In this ingenious strategy,1D NS-CNFs are regarded as building blocks to prevent the aggregation and pulverization of Sn QDs during sodiation/desodiation,2D rGO acts as electrical roads and“bridges”among NS-CNFs to improve the conductivity of the electrode and enlarge the contact area with electrolyte.Because of the unique structural merits,the flexible 3D hierarchical conductive network was directly used as binder-and current collectorfree anode for SIBs,exhibiting ultra-long cycling life(373 mAh g?1 after 5000 cycles at 1 A g?1),and excellent high-rate capability(189 mAh g?1 at 10 A g?1).This work provides a facile and efficient engineering method to construct 3D hierarchical conductive electrodes for other flexible energy storage devices.
基金Project supported by the National Natural Science Foundation of China(Nos.22278098,21908034,22008045)the Natural Science Foundation of Heilongjiang Province(Nos.LH2021H001,LH2023B013)。
文摘The Ni(Ⅱ)-chiral(4S,4'S)-2,2'-(4,6-dibenzofurandiyl)bis[4,5-dihydro-4-phenyloxazole](DBFOX/Ph)-catalyzed asymmetric 1,3-dipolar cycloadditions of nitrile imines to N-α,β-unsaturated acylpyrazoles was presented.This tactic rendered a facile and feasible route to prepare the optically active tetrasubstituted 5-3,5-dimethylpyrazole acyl dihydropyrazole cy-cloadducts bearing one or two contiguous stereocenters in good yields(up to 97%yield)with high regioselectivities(100%)and enantioselectivities(up to 97.5%ee).Following that,chiral cycloadducts could be obtained consistently in good chemical yields with excellent enantioselectivities within the gram scale process,additionally,toward five kinds of derivatization reac-tions like nucleophilic and reduction for further conversion of chiral cycloadducts to related chiral dihydropyrazole derivatives encompassing different substituents.
文摘Whether or not there is inherited basis for prostate cancer aggressiveness is not clear, but advances in DNA analysis should provide an answer to this question in the very near future.
基金Project (No. 2007CB109305) supported by the National Basic Research Program (973) of China
文摘The effects of CO2 enrichment on the growth and glueosinolate (GS) concentrations in the bolting stem of Chinese kale (Brassica alboglabra L.) treated with three nitrogen (N) concentrations (5, 10, and 20 mmol/L) were investigated. Height, stem thickness, and dry weights of the total aerial parts, bolting stems, and roots, as well as the root to shoot ratio, significantly increased as CO2 concentration was elevated from 350 to 800 μl/L at each N concentration. In the edible part of the bolting stem, 11 individual GSs were identified, including 7 aliphatic and 4 indolyl GSs. GS concentration was affected by the elevated CO2 concentration, N concentration, and CO2×N interaction. At 5 and 10 mmol N/L, the concentrations of aliphatic GSs and total GSs significantly increased, whereas those ofindolyl GSs were not affected, by elevated atmospheric CO2. However, at 20 mmol N/L, elevated CO2 had no significant effects on the concentrations of total GSs and total indolyl GSs, but the concentrations of total aliphatic GSs significantly increased. Moreover, the bolting stem carbon (C) content increased, whereas the N and sulfur (S) contents decreased under elevated CO2 concentration in the three N treatments, resulting in changes in the C/N and N/S ratios. Also the C/N ratio is not a reliable predictor of change of GS concentration, while the changes in N and S contents and the N/S ratio at the elevated CO2 concentration may influence the GS concentration in Chinese kale bolting stems. The results demonstrate that high nitrogen supply is beneficial for the growth of Chinese kale, but not for the GS concentration in bolting stems, under elevated CO2 condition.
文摘The N,S co-doped porous carbon nanofibers were fabricated by the carbonization of[Zn_(2)(tdc)_(2)(MA)]n MOFs/polyacrylonitrile nanofibers composite,which was produced by the electrospinning technology.The electrochemical results show that the N,S co-doped porous carbon nanofibers can achieve capacity of 201.2 mAh·g^(-1)at the current density of 0.05 A·g^(-1).Furthermore,the reversible capacity still has 161.3 mAh·g^(-1)even at a high current density of 1 A·g^(-1)after 600 cycles.The superior electrochemical performance shows that the N,S co-doped porous carbon nanofibers electrode material can be used as an ideal anode material for sodium-ion batteries.
基金supported by the National Natural Science Foundation of China(52374301 and 22279030)the Fundamental Research Funds for the Central Universities(N2223037)+1 种基金Hebei Key Laboratory of Dielectric and Electrolyte Functional Material,Northeastern University at Qinhuangdao(HKDEFM2021201)the Performance subsidy fund for the Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province(22567627H)。
文摘The interface mechanism between catalyst and carbon substrate has been the focus of research.In this paper,the FeCo alloy embedded N,S co-doped carbon substrate bifunctional catalyst(FeCo/S-NC)is obtained by a simple one-step pyrolysis strategy.The experimental results and density functional theory(DFT)calculation show that the formation of FeCo alloy is conducive to promoting electron transfer,and the introduction of S atom can enhance the interaction between FeCo alloy and carbon substrate,thus inhibiting the migration and agglomeration of particles on the surface of carbon material.The FeCo/SNC catalysts show outstanding performance for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).FeCo/S-NC shows a high half-wave potential(E_(1/2)=0.8823 V)for ORR and a low overpotential at 10 mA cm^(-2)(E_(j=10)=299 mV)for OER.In addition,compared with Pt/C+RuO_(2) assembled Zn-air battery(ZAB),the FeCo/S-NC assembled ZAB exhibits a larger power density(198.8 mW cm^(-2)),a higher specific capacity(786.1 mA h g_(zn)~(-1)),and ultra-stable cycle performance.These results confirm that the optimized composition and the interfacial interaction between catalyst and carbon substrate synergistically enhance the electrochemical performance.
基金supported by the National Natural Science Foundation of China(No.21875039)the Project on the Integration of Industry-Education-Research of Fujian Province(No.2021H6020).
文摘The transformation of Li_(2)S_(2)-Li_(2)S is indubitably the most crucial and labored rate-limiting step among the sophisticated reactions for the lithium-sulfur batteries(LSBs),the adjustment of which is anticipated to impede the shuttle effect.Herein,a N,Se dual-doped carbon nanocages embedded by Co-CoSe_(2)nanoparticles(Co-CoSe_(2)@NSeC)is employed as a functional coating layer on commercial separator to improve the performance of LSBs.The well-designed N,Se co-doped nanostructures endow the modified layer with a satisfactory capacity for blocking polysulfides.Both calculations and experiments jointly disclose that the Li_(2)S_(2)to Li_(2)S reaction,including the liquid-solid conversion,was prominently expedited both thermodynamically and electrodynamically.Consequently,the batteries fabricated with Co-CoSe_(2)@NSeC modified separator can deliver a favorable 764.2 mAh g^(−1)with 8.0 C,accompanied by a salient long cycling lifespan(only 0.066%at 1 C and 0.061%under 2 C after 1000 and 2000 cycles),and a desired anode protection.In addition,despite a raised areal loading of 7.53 mg cm^(−2)was introduced,the cells assembled by Co-CoSe_(2)@NSeC@PP are allowed to produce an outstanding initial behavior of 8.71 mAh cm^(−2)under 0.2 C.This work may reinforce further explorations and serve with valuable insights into N,Se dual-doping materials for high-performance LSBs.