Wenlan FENG,Pierre MARIOTTE,Jun GU,XiaodongSONG,JinlingYANG,Fei YANG,Yuguo ZHAOand Ganlin ZHANG In the fourth and fifth lines of the study area section on Page 903,the mean annual temperature(MAT)and precipitation(MAP...Wenlan FENG,Pierre MARIOTTE,Jun GU,XiaodongSONG,JinlingYANG,Fei YANG,Yuguo ZHAOand Ganlin ZHANG In the fourth and fifth lines of the study area section on Page 903,the mean annual temperature(MAT)and precipitation(MAP)values are incorrect.They should be—17 to 24.2°C and 18.3 to 3155 mm,respectively.展开更多
Phytoplankton play a crucial role in maintaining the health of river ecosystems,and their communities are closely linked to river hydrodynamics.In inland waterways,disturbances generated by ship propellers alter flow ...Phytoplankton play a crucial role in maintaining the health of river ecosystems,and their communities are closely linked to river hydrodynamics.In inland waterways,disturbances generated by ship propellers alter flow dynamics and may affect phytoplankton communities.To clarify it,phytoplankton communities in the Zhenjiang section of the Beijing-Hangzhou Grand Canal(BHGC)in China,the world's longest canal,were studied and compared them with its undisturbed tributaries.The results revealed major alternations in seasonal patterns of phytoplankton communities in the BHGC,shifting the peak of phytoplankton density from spring to autumn and the lowest diversity from summer to autumn.Ship disturbances increased water turbidity and created optimal N/P ratios,which provided Cyanobacteria with a competitive advantage in autumn.The proliferation of Cyanobacteria resulted in a phytoplankton density in the BHGC,exceeding that in the tributaries by more than tenfold,accompanied by a decrease in diversity to its lowest level.Due to habitat alterations,functional groups emerged that are resilient to strong disturbances and high turbidity.The findings add to the understanding of the impact of ship traffic on river ecosystems.展开更多
A novel lateral Si 0 7 Ge 0.3 /Si p i n photodetector which is suitable for high speed operation with low voltage and at 0 7~1 1μm wavelengths is demonstrated.The fabrication of the device is carried ...A novel lateral Si 0 7 Ge 0.3 /Si p i n photodetector which is suitable for high speed operation with low voltage and at 0 7~1 1μm wavelengths is demonstrated.The fabrication of the device is carried out on a SOI substrate by using a UHV/CVD SiGe/Si heteroepitaxy technology and a CMOS/SOI process.Biased at 3 0V,the photodetector attained a responsivity of 0 38A/W at its peak response wavelength 0 93μm and exhibited extremely low dark current of less than 1nA,small parasitic capacitance of less than 1 0pF,and short rise time of 2 5ns.The distinct characteristics and process compatibility make it applicable to integrate the photodetector with other silicon based devices to meet the needs of high speed near infrared signal detections.展开更多
Highly oriented voids-free 3C-SiC heteroepitaxial layers are grown onφ50mm Si (100) substrates by low pressure chemical vapor deposition (LPCVD).The initial stage of carbonization and the surface morphology of carbon...Highly oriented voids-free 3C-SiC heteroepitaxial layers are grown onφ50mm Si (100) substrates by low pressure chemical vapor deposition (LPCVD).The initial stage of carbonization and the surface morphology of carbonization layers of Si (100) are studied using reflection high energy electron diffraction (RHEED) and scanning electron microscopy (SEM).It is shown that the optimized carbonization temperature for the growth of voids-free 3C-SiC on Si (100) substrates is 1100℃.The electrical properties of SiC layers are characterized using Van der Pauw method.The I-V,C-V,and the temperature dependence of I-V characteristics in n-3C-SiC/p-Si heterojunctions with AuGeNi and Al electrical pads are investigated.It is shown that the maximum reverse breakdown voltage of the n-3C-SiC/p-Si heterojunction diodes reaches to 220V at room temperature.These results indicate that the SiC/Si heterojunction diode can be used to fabricate the wide bandgap emitter SiC/Si heterojunction bipolar transistors (HBT's).展开更多
Effective spin-polarized injection from magnetic semiconductor (MS) to nonmagnetic semiconductor (NMS) has been highlighted in recent years. In this paper we study theoretically the dependence of nonequilibrium sp...Effective spin-polarized injection from magnetic semiconductor (MS) to nonmagnetic semiconductor (NMS) has been highlighted in recent years. In this paper we study theoretically the dependence of nonequilibrium spin polarization (NESP) in NMS during spin-polarized injection through the magnetic p-n junction. Based on the theory in semiconductor physics, a model is established and the boundary conditions are determined in the case of no external spin-polarized injection and low bias. The control parameters that may influence the NESP in NMS are indicated by calculating the distribution of spin polarization. They are the doping concentrations, the equilibrium spin polarization in MS and the bias. The effective spin-polarized injection can be realized more easily by optimizing the above parameters.展开更多
Increasing levels of pollution within water bodies can cause eutrophication and an associated rapid growth in and reproduction of phytoplankton. Although most frequently occurring in bodies of water such as lakes and ...Increasing levels of pollution within water bodies can cause eutrophication and an associated rapid growth in and reproduction of phytoplankton. Although most frequently occurring in bodies of water such as lakes and dams, in recent years an increasing number of river systems in China have suffered serious algal blooms. The community structure of phytoplankton may differ, however, dependent on the hydrodynamic conditions and nutrient levels within the water body. The field investigation results obtained from a stagnant river in Suzhou City and Taihu Lake, China, showed that in water with higher concentrations of nitrogen and phosphorus, Chlorophyta became the predominant species and in water with lower concentrations of nitrogen and phosphorus, Cyanobacteria became the predominant species. Growth experiments with competitive species, Microcystis aeruginosa Kutz and Scenedesmus quadricauda (Turp.), were conducted at three different nutrient levels. The biomass of algae in pure and mixed cultures was measured under conditions of different N/P ratios at oligotrophic, eutrophic and hypertrophic nutrient levels. The results indicated that the most suitable state for the growth and reproduction of M. aeruginosa and S. quadricauda were eutrophic conditions in both pure and mixed cultures. Under competition, however, the lower medium nutrient levels favoured M. aeruginosa, while the higher medium nutrient levels better suited S. quadricauda. Under similar hydrodynamic conditions, the community structure of phytoplankton in the water body was determined by the dominant species in competition for nutrients.展开更多
Due to the Tibetan Plateau’s unique high altitude and low temperature climate conditions,the region’s alpine steppe ecosystem is highly fragile and is suffering from severe degradation under the stress of increasing...Due to the Tibetan Plateau’s unique high altitude and low temperature climate conditions,the region’s alpine steppe ecosystem is highly fragile and is suffering from severe degradation under the stress of increasing population,overgrazing,and climate change.The soil stoichiometry,a crucial part of ecological stoichiometry,provides a fundamental approach for understanding ecosystem processes by examining the relative proportions and balance of the three elements.Understanding the impact of degradation on the soil stoichiometry is vital for conservation and management in the alpine steppe on the Tibetan Plateau.This study aims to examine the response of soil stoichiometry to degradation and explore the underlying biotic and abiotic mechanisms in the alpine steppe.We conducted a field survey in a sequent degraded alpine steppe with seven levels inNorthern Tibet.The plant species,aboveground biomass,and physical and chemical soil properties such as the moisture content,temperature,pH,compactness,total carbon(C),total nitrogen(N),and total phosphorus(P)were measured and recorded.The results showed that the contents of soil C/N,C/P,and N/P consistently decreased along intensifying degradation gradients.Using regression analysis and a structural equation model(SEM),we found that the C/N,C/P,and N/P ratios were positively affected by the soil compactness,soil moisture content and species richness of graminoids but negatively affected by soil pH and the proportion of aboveground biomass of forbs.The soil temperature had a negative effect on the C/N ratio but showed positive effect on the C/P and N/P ratios.The current study shows that degradation-induced changes in abiotic and biotic conditions such as soil warming and drying,which accelerated the soil organic carbon mineralization,as well as the increase in the proportion of forbs,whichwere difficult to decompose and input less organic carbon into soil,resulted in the decreases in soil C/N,C/P,and N/P contents to a great extent.Our results provide a sound basis for sustainable conservation and management of the alpine steppe.展开更多
Land use practice significantly affects soil properties. Soil is a major sink for atmospheric carbon, and soil organic carbon (SOC) is considered as an essential indicator of soil quality. The objective of this stud...Land use practice significantly affects soil properties. Soil is a major sink for atmospheric carbon, and soil organic carbon (SOC) is considered as an essential indicator of soil quality. The objective of this study was to assess the effects of N and P applied to Suaeda salsa on biomass production, SOC concentration, labile organic carbon (LOC) concentration, SOC pool and carbon management index (CMI) as well as the effect of the land use practice on soil quality of coastal tidal lands in east coastal region of China. The study provided relevant references for coastal exploitation, tidal land management and related study in other countries and regions. The field experiment was laid out in a randomized complete block design, consisting of four N-fertilization rates (0 (NO), 60 (N1), 120 (N2) and 180 kg ha-1 (N3)), three P-fertilization rates (0 (P0), 70 (P1) and 105 kg ha-~ (P2)) and bare land without vegetation. N and P applied to S. salsa on coastal tidal lands significantly affected biomass production (above-ground biomass and roots), bulk density (Pb), available N and P, SOC, LOC, SOC pool and CMI. Using statistical analysis, significantly interactions in N and P were observed for biomass production and the dominant factor for S. salsa production was N in continuous 2-yr experiments. There were no significant interactions between N and P for SOC concentration, LOC concentration and SOC pool. However, significant interaction was obtained for CMI at the 0-20 cm depth and N played a dominant role in the variation of CMI. There were significant improvements for soil measured attributes and parameters, which suggested that increasing the rates of N and P significantly decreased Pb at the 0-20 cm depth and increased available N and P, SOC, LOC, SOC pool as well as CMI at both the 0-20 and 20-40 cm depth, respectively. By correlation analysis, there were significantly positive correlations between biomass (above- ground biomass and roots) and SOC as well as LOC in 2010 and 2011 across all soil depth, respectively. The treatment with N at 180 kg ha-~ and P at 105 kg ha-1 was superior to the other treatments. The results from the 2-yr continuous experiments indicated that, in short-term, there were a few accumulation of SOC and LOC concentrations by means of N and P application to S. salsa, whereas in the long run, S. salsa with N and P application was recommended for coastal tidal lands because of its great potential of carbon sequestration, improvements of soil nutrition status and promotion of soil quality.展开更多
Highly ordered Cu2O coated silicon nanowire arrays (SiNWAs) were fabricated as photocatalyst via depositing Cu nanoparticles on silver-assisted electroless-etched SiNWAs and subsequently annealing. The as-prepared s...Highly ordered Cu2O coated silicon nanowire arrays (SiNWAs) were fabricated as photocatalyst via depositing Cu nanoparticles on silver-assisted electroless-etched SiNWAs and subsequently annealing. The as-prepared samples have been characterized by scanning electron microscopy, X-ray diffraction and UV-VIS-NIR spectrophotometry. The photocatalytic properties of the Cu2O coated SiNWAs were investigated by degradation of Rhodamine B (RhB) under simulated solar light with a cut-off filter (λ 〉 420 nm). The results indicated that H2O2 could greatly improve the photocatalytic properties of Cu2O coated SiNWAs, and exhibited strong synergy effect between them. The hybrid nanowire arrays will be promising photocatalytic materials in the field of energy and environment.展开更多
Passivated niobium/nitrogen(Nb-N) p-n co-doped zinc oxide nanoparticles were created by a simple precipitation process with in-situ self-formed NaCl "cage" to confine the nanoparticle growth followed by the ...Passivated niobium/nitrogen(Nb-N) p-n co-doped zinc oxide nanoparticles were created by a simple precipitation process with in-situ self-formed NaCl "cage" to confine the nanoparticle growth followed by the heat treatment in a flow of ammonia gas. Enhanced optical absorbance into the visible light region was observed in the Nb/N co-doped ZnO nanoparticle photocatalyst due to the Nb/N co-doping effect.It demonstrated a largely enhanced photocatalytic performance in the disinfection of Escherichia coli bacteria under visible light illumination, which could be attributed to the passivated co-doping of NbN to suppress the photogenerated charge carrier recombination on dopants. This robust approach for passivated p-n co-doping may also be applied to other material systems for a wide range of technical applications.展开更多
Background:Large-scale afforestation can significantly change the ground cover and soil physicochemical properties,especially the soil fertility maintenance and water conservation functions of artificial forests,which...Background:Large-scale afforestation can significantly change the ground cover and soil physicochemical properties,especially the soil fertility maintenance and water conservation functions of artificial forests,which are very important in semi-arid mountain ecosystems.However,how different tree species affect soil nutrients and soil physicochemical properties after afforestation,and which is the best plantation species for improving soil fertility and water conservation functions remain largely unknown.Methods:This study investigated the soil nutrient contents of three different plantations(Larix principis-rupprechtii,Picea crassifolia,Pinus tabuliformis),soils and plant-soil feedbacks,as well as the interactions between soil physicochemical properties.Results:The results revealed that the leaves and litter layers strongly influenced soil nutrient availability through biogeochemical processes:P.tabuliformis had higher organic carbon,ratio of organic carbon to total nitrogen(C:N)and organic carbon to total phosphorus(C:P)in the leaves and litter layers than L.principis-rupprechtii or P.crassifolia,suggesting that higher C:N and C:P hindered litter decomposition.As a result,the L.principis-rupprechtii and P.crassifolia plantation forests significantly improved soil nutrients and clay components,compared with the P.tabuliformis plantation forest.Furthermore,the L.principis-rupprechtii and P.crassifolia plantation forests significantly improved the soil capacity,soil total porosity,and capillary porosity,decreased soil bulk density,and enhanced water storage capacity,compared with the P.tabuliformis plantation forest.The results of this study showed that,the strong link between plants and soil was tightly coupled to C:N and C:P,and there was a close correlation between soil particle size distribution and soil physicochemical properties.Conclusions:Therefore,our results recommend planting the L.principis-rupprechtii and P.crassifolia as the preferred tree species to enhance the soil fertility and water conservation functions,especially in semi-arid regions mountain forest ecosystems.展开更多
In this study,CuBi2O4 photocathodes were prepared using a simple electrodeposition method for photoelectrochemical(PEC)hydrogen production.The prepared photocathodes were modified with amorphous TiO2 and a Pt co‐cata...In this study,CuBi2O4 photocathodes were prepared using a simple electrodeposition method for photoelectrochemical(PEC)hydrogen production.The prepared photocathodes were modified with amorphous TiO2 and a Pt co‐catalyst,which resulted in the formation of CuBi2O4/TiO2 p‐n heterojunctions,and enhanced the activities of the as‐prepared photocathodes.The novel Pt/TiO2/CuBi2O4 photocathode exhibited a photocurrent of 0.35 mA/cm2 at 0.60 V vs.Reversible Hydrogen Electrode(RHE),which was nearly twice that of the Pt/CuBi2O4 photocathode.The present study provides a facile method for increasing the efficiency of photocathodes and provides meaningful guidance for the preparation of high‐performance CuBi2O4 photocathodes.展开更多
Objective Loss-of-function mutation of p53,a tumor suppressor gene,is an important mechanism for the development of human cancers. In this study we tried to transfect p53N15-based fusion peptide into H1299,a lung canc...Objective Loss-of-function mutation of p53,a tumor suppressor gene,is an important mechanism for the development of human cancers. In this study we tried to transfect p53N15-based fusion peptide into H1299,a lung cancer cell line,and evaluate the anti-tumor effects of the fusion peptide. Methods Adeno-associated virus (AAV) vectors were used for transfecting p53N15 fusion peptide into p53-null lung adenocarcinoma H1299 cells.展开更多
Inspired by the importance of Redfield-type C:N:P ratios in global soils,we looked for analogous patterns in peatlands and aimed at deciphering the potential affecting factors.By analyzing a suite of peatlands soil da...Inspired by the importance of Redfield-type C:N:P ratios in global soils,we looked for analogous patterns in peatlands and aimed at deciphering the potential affecting factors.By analyzing a suite of peatlands soil data(n = 1031),mean soil organic carbon(SOC),total nitrogen(TN) and total phosphorous(TP) contents were 50.51%,1.45% and 0.13%,respectively,while average C:N,C:P and N:P ratios were 26.72,1186.00 and 46.58,respectively.C:N ratios showed smaller variations across different vegetation coverage and had less spatial heterogeneity than C:P and N:P ratios.No consistent C:N:P ratio,though with a general value of 1245:47:1,was found for entire peatland soils in China.The Northeast China,Tibet,Zoigê Plateau and parts of Xinjiang had high soil SOC,TN,TP,and C:P ratio.Qinghai,parts of the lower reaches of the Yangtze River,and the coast zones have low TP and N:P ratio.Significant differences for SOC,TN,TP,C:N,C:P and N:P ratios were observed across groups categorized by predominant vegetation.Moisture,temperature and precipitation all closely related to SOC,TN,TP and their pairwise ratios.The hydrothermal coefficient(RH),defined as annual average precipitation divided by temperature,positively and significantly related to C:N,C:P and N:P ratios,implying that ongoing climate change may prejudice peatlands as carbon sinks during the past 50 years in China.展开更多
Potassium-ion capacitors(KICs)emerge as a promising substitute for the well-developed lithium-ion capacitors(LICs),however,the energy density of KICs is below expectations because of lacking a suitable electrical doub...Potassium-ion capacitors(KICs)emerge as a promising substitute for the well-developed lithium-ion capacitors(LICs),however,the energy density of KICs is below expectations because of lacking a suitable electrical double-layer positive electrode.Using chemical activation of the Aldol reaction product of acetone with KOH,we synthesized a porous ca rbon with a Brunauer-Emmett-Teller surface area of up to 2947 m2/g and a narrow pore size distribution ranging from 1 nm to 3 nm.Half-cell(versus potassium metal)test demonstrates that this porous carbon has high capacitive performance in K+based organic electrolytes.Furthermore,a novel KIC fabricated by this porous carbon as the cathode,yields high values of energy density and power density.The processes used to make this porous carbon are readily low-cost to fabricate metal-ion capacitors.展开更多
To study the effects of low nutrition on pho tosynthetic capacity and accumulation of total nitrogen(N) and phosphorus(P) in three climber plant species Pharbitis nil(Linn.) Choisy, Lonicera japonica Thunb. and Parthe...To study the effects of low nutrition on pho tosynthetic capacity and accumulation of total nitrogen(N) and phosphorus(P) in three climber plant species Pharbitis nil(Linn.) Choisy, Lonicera japonica Thunb. and Parthenocissus tricuspidata(Sieb.et Zucc.) Planch, al climber plants were exposed to low nutrition at 6 levels(Hoagland solution as control, 1/2, 1/4, 1/8, 1/16 and 1/32 strength Hoagland solution) for 30 days. Photosynthetic capacity was determined by measuring leaf chlorophyl fluorescence, chlorophyll content, carbonic anhydrases activity and growth. Accumulation of total N and P was studied by measuring N and P content in plant tissues. Low nutrition decreased the photosynthetic capacity of P. nil while L. japonica maintained high photosynthetic capacity under low nutrition. Photosynthetic apparatus of P. tricu spidata suffered no damage when exposed to low nutrition L. japonica and P. tricuspidata had better adaptability to low nutrition than P. nil. With a faster growth rate, P. ni consumed more nutrition(N and P), and its growth was mainly affected by P deficiency under low nutrition Although L. japonica suffered damage from N and P deficiency simultaneously, but the nutrient deficiency was not serious except for 1/32-strength Hoagland solution P. tricuspidata grew slowly, so its requirement of N and Pwere the least, even if it was mainly affected by the P deficiency, it could still grow well under low nutrition.With the consideration of fertilizing N and P fertilizers in karst areas which were with lower N and P contents, plant species, N/P ratio threshold and low nutrition level should be taken into account synchronously. This study could provide a general consideration for the planning and developing low nutrition resistant plants and fertilizing the three climber plant species in the low nutrition environment.展开更多
Neutron capture therapy with Sulfur-33, similar to boron neutron capture therapy with Boron-10, is effective in treating some types of tumors including ocular melanoma. The key point in sulfur neutron capture therapy ...Neutron capture therapy with Sulfur-33, similar to boron neutron capture therapy with Boron-10, is effective in treating some types of tumors including ocular melanoma. The key point in sulfur neutron capture therapy is whether the neutron beam flux and the resonance capture cross section of ^(33)S(n;α)^(30) Si reaction at 13.5 keV can achieve the requirements of radiotherapy. In this research,the authors investigated the production of 13.5 keV neutron production and moderation based on an accelerator neutron source. A lithium glass detector was used to measure the neutron flux produced via near threshold^7 Li(p,n)~7 Be reaction using the time-of-flight method. Furthermore, the moderation effects of different kinds of materials were investigated using Monte Carlo simulation.展开更多
文摘Wenlan FENG,Pierre MARIOTTE,Jun GU,XiaodongSONG,JinlingYANG,Fei YANG,Yuguo ZHAOand Ganlin ZHANG In the fourth and fifth lines of the study area section on Page 903,the mean annual temperature(MAT)and precipitation(MAP)values are incorrect.They should be—17 to 24.2°C and 18.3 to 3155 mm,respectively.
基金Jiangsu Provincial Carbon-peak and Carbonneutralization Technology Innovation Project,Grant/Award Number:BK20220041National Natural Science Foundation of China,Grant/Award Numbers:42477073,42277060。
文摘Phytoplankton play a crucial role in maintaining the health of river ecosystems,and their communities are closely linked to river hydrodynamics.In inland waterways,disturbances generated by ship propellers alter flow dynamics and may affect phytoplankton communities.To clarify it,phytoplankton communities in the Zhenjiang section of the Beijing-Hangzhou Grand Canal(BHGC)in China,the world's longest canal,were studied and compared them with its undisturbed tributaries.The results revealed major alternations in seasonal patterns of phytoplankton communities in the BHGC,shifting the peak of phytoplankton density from spring to autumn and the lowest diversity from summer to autumn.Ship disturbances increased water turbidity and created optimal N/P ratios,which provided Cyanobacteria with a competitive advantage in autumn.The proliferation of Cyanobacteria resulted in a phytoplankton density in the BHGC,exceeding that in the tributaries by more than tenfold,accompanied by a decrease in diversity to its lowest level.Due to habitat alterations,functional groups emerged that are resilient to strong disturbances and high turbidity.The findings add to the understanding of the impact of ship traffic on river ecosystems.
文摘A novel lateral Si 0 7 Ge 0.3 /Si p i n photodetector which is suitable for high speed operation with low voltage and at 0 7~1 1μm wavelengths is demonstrated.The fabrication of the device is carried out on a SOI substrate by using a UHV/CVD SiGe/Si heteroepitaxy technology and a CMOS/SOI process.Biased at 3 0V,the photodetector attained a responsivity of 0 38A/W at its peak response wavelength 0 93μm and exhibited extremely low dark current of less than 1nA,small parasitic capacitance of less than 1 0pF,and short rise time of 2 5ns.The distinct characteristics and process compatibility make it applicable to integrate the photodetector with other silicon based devices to meet the needs of high speed near infrared signal detections.
文摘Highly oriented voids-free 3C-SiC heteroepitaxial layers are grown onφ50mm Si (100) substrates by low pressure chemical vapor deposition (LPCVD).The initial stage of carbonization and the surface morphology of carbonization layers of Si (100) are studied using reflection high energy electron diffraction (RHEED) and scanning electron microscopy (SEM).It is shown that the optimized carbonization temperature for the growth of voids-free 3C-SiC on Si (100) substrates is 1100℃.The electrical properties of SiC layers are characterized using Van der Pauw method.The I-V,C-V,and the temperature dependence of I-V characteristics in n-3C-SiC/p-Si heterojunctions with AuGeNi and Al electrical pads are investigated.It is shown that the maximum reverse breakdown voltage of the n-3C-SiC/p-Si heterojunction diodes reaches to 220V at room temperature.These results indicate that the SiC/Si heterojunction diode can be used to fabricate the wide bandgap emitter SiC/Si heterojunction bipolar transistors (HBT's).
基金Project supported by the National Natural Science Foundation of China (Grant No 60606021), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20060003067) and the Key Fundamental Research Foundation of Tsinghua University of China (Grant No Jz2001010).
文摘Effective spin-polarized injection from magnetic semiconductor (MS) to nonmagnetic semiconductor (NMS) has been highlighted in recent years. In this paper we study theoretically the dependence of nonequilibrium spin polarization (NESP) in NMS during spin-polarized injection through the magnetic p-n junction. Based on the theory in semiconductor physics, a model is established and the boundary conditions are determined in the case of no external spin-polarized injection and low bias. The control parameters that may influence the NESP in NMS are indicated by calculating the distribution of spin polarization. They are the doping concentrations, the equilibrium spin polarization in MS and the bias. The effective spin-polarized injection can be realized more easily by optimizing the above parameters.
基金supported by the Natural Science Foundation of Jiangsu Province (No.BK2006710) the Hi-Tech Research and Development Program (863) of China (No:2003AA601100)
文摘Increasing levels of pollution within water bodies can cause eutrophication and an associated rapid growth in and reproduction of phytoplankton. Although most frequently occurring in bodies of water such as lakes and dams, in recent years an increasing number of river systems in China have suffered serious algal blooms. The community structure of phytoplankton may differ, however, dependent on the hydrodynamic conditions and nutrient levels within the water body. The field investigation results obtained from a stagnant river in Suzhou City and Taihu Lake, China, showed that in water with higher concentrations of nitrogen and phosphorus, Chlorophyta became the predominant species and in water with lower concentrations of nitrogen and phosphorus, Cyanobacteria became the predominant species. Growth experiments with competitive species, Microcystis aeruginosa Kutz and Scenedesmus quadricauda (Turp.), were conducted at three different nutrient levels. The biomass of algae in pure and mixed cultures was measured under conditions of different N/P ratios at oligotrophic, eutrophic and hypertrophic nutrient levels. The results indicated that the most suitable state for the growth and reproduction of M. aeruginosa and S. quadricauda were eutrophic conditions in both pure and mixed cultures. Under competition, however, the lower medium nutrient levels favoured M. aeruginosa, while the higher medium nutrient levels better suited S. quadricauda. Under similar hydrodynamic conditions, the community structure of phytoplankton in the water body was determined by the dominant species in competition for nutrients.
基金supported by the State Key Research Development Program of China (Grant 2016YFC0502002)Youth Innovation Research Team Project (LENOM2016Q0003)
文摘Due to the Tibetan Plateau’s unique high altitude and low temperature climate conditions,the region’s alpine steppe ecosystem is highly fragile and is suffering from severe degradation under the stress of increasing population,overgrazing,and climate change.The soil stoichiometry,a crucial part of ecological stoichiometry,provides a fundamental approach for understanding ecosystem processes by examining the relative proportions and balance of the three elements.Understanding the impact of degradation on the soil stoichiometry is vital for conservation and management in the alpine steppe on the Tibetan Plateau.This study aims to examine the response of soil stoichiometry to degradation and explore the underlying biotic and abiotic mechanisms in the alpine steppe.We conducted a field survey in a sequent degraded alpine steppe with seven levels inNorthern Tibet.The plant species,aboveground biomass,and physical and chemical soil properties such as the moisture content,temperature,pH,compactness,total carbon(C),total nitrogen(N),and total phosphorus(P)were measured and recorded.The results showed that the contents of soil C/N,C/P,and N/P consistently decreased along intensifying degradation gradients.Using regression analysis and a structural equation model(SEM),we found that the C/N,C/P,and N/P ratios were positively affected by the soil compactness,soil moisture content and species richness of graminoids but negatively affected by soil pH and the proportion of aboveground biomass of forbs.The soil temperature had a negative effect on the C/N ratio but showed positive effect on the C/P and N/P ratios.The current study shows that degradation-induced changes in abiotic and biotic conditions such as soil warming and drying,which accelerated the soil organic carbon mineralization,as well as the increase in the proportion of forbs,whichwere difficult to decompose and input less organic carbon into soil,resulted in the decreases in soil C/N,C/P,and N/P contents to a great extent.Our results provide a sound basis for sustainable conservation and management of the alpine steppe.
基金support of the Special Fund for Public-Welfare Industrial (Agriculture) Research of China (200903001)the National Natural Science Foundation of China (41171181,41101199)+1 种基金the Key Technology R&D Program of Jiangsu Province, China (BE2010313)the Prospective Project of Production Education Research Cooperation of Jiangsu Province, China (BY2010013)
文摘Land use practice significantly affects soil properties. Soil is a major sink for atmospheric carbon, and soil organic carbon (SOC) is considered as an essential indicator of soil quality. The objective of this study was to assess the effects of N and P applied to Suaeda salsa on biomass production, SOC concentration, labile organic carbon (LOC) concentration, SOC pool and carbon management index (CMI) as well as the effect of the land use practice on soil quality of coastal tidal lands in east coastal region of China. The study provided relevant references for coastal exploitation, tidal land management and related study in other countries and regions. The field experiment was laid out in a randomized complete block design, consisting of four N-fertilization rates (0 (NO), 60 (N1), 120 (N2) and 180 kg ha-1 (N3)), three P-fertilization rates (0 (P0), 70 (P1) and 105 kg ha-~ (P2)) and bare land without vegetation. N and P applied to S. salsa on coastal tidal lands significantly affected biomass production (above-ground biomass and roots), bulk density (Pb), available N and P, SOC, LOC, SOC pool and CMI. Using statistical analysis, significantly interactions in N and P were observed for biomass production and the dominant factor for S. salsa production was N in continuous 2-yr experiments. There were no significant interactions between N and P for SOC concentration, LOC concentration and SOC pool. However, significant interaction was obtained for CMI at the 0-20 cm depth and N played a dominant role in the variation of CMI. There were significant improvements for soil measured attributes and parameters, which suggested that increasing the rates of N and P significantly decreased Pb at the 0-20 cm depth and increased available N and P, SOC, LOC, SOC pool as well as CMI at both the 0-20 and 20-40 cm depth, respectively. By correlation analysis, there were significantly positive correlations between biomass (above- ground biomass and roots) and SOC as well as LOC in 2010 and 2011 across all soil depth, respectively. The treatment with N at 180 kg ha-~ and P at 105 kg ha-1 was superior to the other treatments. The results from the 2-yr continuous experiments indicated that, in short-term, there were a few accumulation of SOC and LOC concentrations by means of N and P application to S. salsa, whereas in the long run, S. salsa with N and P application was recommended for coastal tidal lands because of its great potential of carbon sequestration, improvements of soil nutrition status and promotion of soil quality.
基金supported by the National Natural Science Foundation of China (Grant No.50772006)
文摘Highly ordered Cu2O coated silicon nanowire arrays (SiNWAs) were fabricated as photocatalyst via depositing Cu nanoparticles on silver-assisted electroless-etched SiNWAs and subsequently annealing. The as-prepared samples have been characterized by scanning electron microscopy, X-ray diffraction and UV-VIS-NIR spectrophotometry. The photocatalytic properties of the Cu2O coated SiNWAs were investigated by degradation of Rhodamine B (RhB) under simulated solar light with a cut-off filter (λ 〉 420 nm). The results indicated that H2O2 could greatly improve the photocatalytic properties of Cu2O coated SiNWAs, and exhibited strong synergy effect between them. The hybrid nanowire arrays will be promising photocatalytic materials in the field of energy and environment.
基金supported financially by the Basic Science Innovation Program of Shenyang National Laboratory for Materials Science (Nos.Y4N56R1161 and Y5N56F2161)the National Key Research and Development Program of China (No.2017YFB0406300)+2 种基金the Science and Technology Plan of Guangdong Province (Nos.2014B090907002 and 2017B090907004)the China Postdoctoral Science Foundation (No.2018M631461)the Science and Technology Plan of Shenzhen City (No.JCYJ20170412171554022)
文摘Passivated niobium/nitrogen(Nb-N) p-n co-doped zinc oxide nanoparticles were created by a simple precipitation process with in-situ self-formed NaCl "cage" to confine the nanoparticle growth followed by the heat treatment in a flow of ammonia gas. Enhanced optical absorbance into the visible light region was observed in the Nb/N co-doped ZnO nanoparticle photocatalyst due to the Nb/N co-doping effect.It demonstrated a largely enhanced photocatalytic performance in the disinfection of Escherichia coli bacteria under visible light illumination, which could be attributed to the passivated co-doping of NbN to suppress the photogenerated charge carrier recombination on dopants. This robust approach for passivated p-n co-doping may also be applied to other material systems for a wide range of technical applications.
基金This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA20100101)a Major Special Science and Technology Project of Gansu Province(18ZD2FA009)the National Natural Science Foundation of China(NSFC)(31522013).
文摘Background:Large-scale afforestation can significantly change the ground cover and soil physicochemical properties,especially the soil fertility maintenance and water conservation functions of artificial forests,which are very important in semi-arid mountain ecosystems.However,how different tree species affect soil nutrients and soil physicochemical properties after afforestation,and which is the best plantation species for improving soil fertility and water conservation functions remain largely unknown.Methods:This study investigated the soil nutrient contents of three different plantations(Larix principis-rupprechtii,Picea crassifolia,Pinus tabuliformis),soils and plant-soil feedbacks,as well as the interactions between soil physicochemical properties.Results:The results revealed that the leaves and litter layers strongly influenced soil nutrient availability through biogeochemical processes:P.tabuliformis had higher organic carbon,ratio of organic carbon to total nitrogen(C:N)and organic carbon to total phosphorus(C:P)in the leaves and litter layers than L.principis-rupprechtii or P.crassifolia,suggesting that higher C:N and C:P hindered litter decomposition.As a result,the L.principis-rupprechtii and P.crassifolia plantation forests significantly improved soil nutrients and clay components,compared with the P.tabuliformis plantation forest.Furthermore,the L.principis-rupprechtii and P.crassifolia plantation forests significantly improved the soil capacity,soil total porosity,and capillary porosity,decreased soil bulk density,and enhanced water storage capacity,compared with the P.tabuliformis plantation forest.The results of this study showed that,the strong link between plants and soil was tightly coupled to C:N and C:P,and there was a close correlation between soil particle size distribution and soil physicochemical properties.Conclusions:Therefore,our results recommend planting the L.principis-rupprechtii and P.crassifolia as the preferred tree species to enhance the soil fertility and water conservation functions,especially in semi-arid regions mountain forest ecosystems.
基金the National Natural Science Foundation of China(51602179,21333006,21573135,11374190)the National Basic Research Program of China(973 Program,2013CB632401)~~
文摘In this study,CuBi2O4 photocathodes were prepared using a simple electrodeposition method for photoelectrochemical(PEC)hydrogen production.The prepared photocathodes were modified with amorphous TiO2 and a Pt co‐catalyst,which resulted in the formation of CuBi2O4/TiO2 p‐n heterojunctions,and enhanced the activities of the as‐prepared photocathodes.The novel Pt/TiO2/CuBi2O4 photocathode exhibited a photocurrent of 0.35 mA/cm2 at 0.60 V vs.Reversible Hydrogen Electrode(RHE),which was nearly twice that of the Pt/CuBi2O4 photocathode.The present study provides a facile method for increasing the efficiency of photocathodes and provides meaningful guidance for the preparation of high‐performance CuBi2O4 photocathodes.
文摘Objective Loss-of-function mutation of p53,a tumor suppressor gene,is an important mechanism for the development of human cancers. In this study we tried to transfect p53N15-based fusion peptide into H1299,a lung cancer cell line,and evaluate the anti-tumor effects of the fusion peptide. Methods Adeno-associated virus (AAV) vectors were used for transfecting p53N15 fusion peptide into p53-null lung adenocarcinoma H1299 cells.
基金Under the auspices of National Key Research Program of China(No.2016YFC0500404-5)National Natural Science Foundation of China(No.41671081,41471081,41671087)Foundation of Jilin Province(No.20140520141JH)
文摘Inspired by the importance of Redfield-type C:N:P ratios in global soils,we looked for analogous patterns in peatlands and aimed at deciphering the potential affecting factors.By analyzing a suite of peatlands soil data(n = 1031),mean soil organic carbon(SOC),total nitrogen(TN) and total phosphorous(TP) contents were 50.51%,1.45% and 0.13%,respectively,while average C:N,C:P and N:P ratios were 26.72,1186.00 and 46.58,respectively.C:N ratios showed smaller variations across different vegetation coverage and had less spatial heterogeneity than C:P and N:P ratios.No consistent C:N:P ratio,though with a general value of 1245:47:1,was found for entire peatland soils in China.The Northeast China,Tibet,Zoigê Plateau and parts of Xinjiang had high soil SOC,TN,TP,and C:P ratio.Qinghai,parts of the lower reaches of the Yangtze River,and the coast zones have low TP and N:P ratio.Significant differences for SOC,TN,TP,C:N,C:P and N:P ratios were observed across groups categorized by predominant vegetation.Moisture,temperature and precipitation all closely related to SOC,TN,TP and their pairwise ratios.The hydrothermal coefficient(RH),defined as annual average precipitation divided by temperature,positively and significantly related to C:N,C:P and N:P ratios,implying that ongoing climate change may prejudice peatlands as carbon sinks during the past 50 years in China.
基金supported by National Natural Science Foundation of China(No.51902188)Natural Science Foundation of Jiangsu Province(No.BK20190207)。
文摘Potassium-ion capacitors(KICs)emerge as a promising substitute for the well-developed lithium-ion capacitors(LICs),however,the energy density of KICs is below expectations because of lacking a suitable electrical double-layer positive electrode.Using chemical activation of the Aldol reaction product of acetone with KOH,we synthesized a porous ca rbon with a Brunauer-Emmett-Teller surface area of up to 2947 m2/g and a narrow pore size distribution ranging from 1 nm to 3 nm.Half-cell(versus potassium metal)test demonstrates that this porous carbon has high capacitive performance in K+based organic electrolytes.Furthermore,a novel KIC fabricated by this porous carbon as the cathode,yields high values of energy density and power density.The processes used to make this porous carbon are readily low-cost to fabricate metal-ion capacitors.
基金supported by the‘‘One Hundred Talents Program of The Chinese Academy of Sciences’’the project of the National Natural Science Foundation of China(No.31070365)
文摘To study the effects of low nutrition on pho tosynthetic capacity and accumulation of total nitrogen(N) and phosphorus(P) in three climber plant species Pharbitis nil(Linn.) Choisy, Lonicera japonica Thunb. and Parthenocissus tricuspidata(Sieb.et Zucc.) Planch, al climber plants were exposed to low nutrition at 6 levels(Hoagland solution as control, 1/2, 1/4, 1/8, 1/16 and 1/32 strength Hoagland solution) for 30 days. Photosynthetic capacity was determined by measuring leaf chlorophyl fluorescence, chlorophyll content, carbonic anhydrases activity and growth. Accumulation of total N and P was studied by measuring N and P content in plant tissues. Low nutrition decreased the photosynthetic capacity of P. nil while L. japonica maintained high photosynthetic capacity under low nutrition. Photosynthetic apparatus of P. tricu spidata suffered no damage when exposed to low nutrition L. japonica and P. tricuspidata had better adaptability to low nutrition than P. nil. With a faster growth rate, P. ni consumed more nutrition(N and P), and its growth was mainly affected by P deficiency under low nutrition Although L. japonica suffered damage from N and P deficiency simultaneously, but the nutrient deficiency was not serious except for 1/32-strength Hoagland solution P. tricuspidata grew slowly, so its requirement of N and Pwere the least, even if it was mainly affected by the P deficiency, it could still grow well under low nutrition.With the consideration of fertilizing N and P fertilizers in karst areas which were with lower N and P contents, plant species, N/P ratio threshold and low nutrition level should be taken into account synchronously. This study could provide a general consideration for the planning and developing low nutrition resistant plants and fertilizing the three climber plant species in the low nutrition environment.
文摘Neutron capture therapy with Sulfur-33, similar to boron neutron capture therapy with Boron-10, is effective in treating some types of tumors including ocular melanoma. The key point in sulfur neutron capture therapy is whether the neutron beam flux and the resonance capture cross section of ^(33)S(n;α)^(30) Si reaction at 13.5 keV can achieve the requirements of radiotherapy. In this research,the authors investigated the production of 13.5 keV neutron production and moderation based on an accelerator neutron source. A lithium glass detector was used to measure the neutron flux produced via near threshold^7 Li(p,n)~7 Be reaction using the time-of-flight method. Furthermore, the moderation effects of different kinds of materials were investigated using Monte Carlo simulation.