期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
华新镇空巢老人心理健康干预疗效分析 被引量:1
1
作者 杨拥峰 《中国社区医师》 2015年第21期154-155,共2页
目的:探讨心理健康关爱对缓解空巢老人的常见心理问题是否有效。方法:随机抽取112例空巢老人进行一般状况调查及GDS、UCLA、MUSH三大量表测定,然后进行心理健康干预,干预后重新进行三大量表测定,再进行前后对照分析。结果:心理健康干预... 目的:探讨心理健康关爱对缓解空巢老人的常见心理问题是否有效。方法:随机抽取112例空巢老人进行一般状况调查及GDS、UCLA、MUSH三大量表测定,然后进行心理健康干预,干预后重新进行三大量表测定,再进行前后对照分析。结果:心理健康干预后抑郁得分、孤独得分明显下降,差异有统计学意义(P<0.05)。干预前后在职组的抑郁感及孤独感都比非在职组变化明显,干预后非在职的幸福度下降,而在职组的幸福度却升高。结论:心理健康干预对于空巢老人抑郁感、孤独感的改善有明显的效果,而对于幸福度的提升仅对在职组有一定的效果。 展开更多
关键词 空巢老人 GDS UCLA MUSH 心理健康干预
在线阅读 下载PDF
从物理视角看花岗质岩浆在非运移过程中的结晶分异 被引量:11
2
作者 陈晨 丁兴 +4 位作者 李睿 张维骐 欧阳东剑 杨雷 孙卫东 《中国科学:地球科学》 CSCD 北大核心 2018年第3期261-275,共15页
花岗岩是地球区别于太阳系其他行星的重要特征,研究花岗岩的演化对于理解现今地球大陆地壳的形成有重要意义.结晶分异是岩浆演化的主要机制之一.然而,由于花岗质岩浆黏度高,为非牛顿流体,结晶分异在酸性岩浆中有效与否仍有争议.本文侧... 花岗岩是地球区别于太阳系其他行星的重要特征,研究花岗岩的演化对于理解现今地球大陆地壳的形成有重要意义.结晶分异是岩浆演化的主要机制之一.然而,由于花岗质岩浆黏度高,为非牛顿流体,结晶分异在酸性岩浆中有效与否仍有争议.本文侧重物理分析方法,以此审视花岗质岩浆在非运移过程——在岩浆房中及岩浆就位后的结晶分异作用.通过物理计算及分析,我们认为,花岗质岩浆高黏度的特性使得一般的矿物颗粒在岩浆房中受阻沉降速度极小(~10^(-9)~10^(-7)m s^(-1)),因而在存在岩浆对流时,颗粒的堆晶过程将受到影响,岩浆成分趋于均一;当岩浆房演化至晶粥状态(结晶度F>~40~50%)后,岩浆对流基本停止,此时粒间熔体可通过颗粒的受阻沉降及压实作用挤出,汇聚成高硅熔体层.高硅熔体层可进一步形成高硅花岗岩、流纹岩.在岩浆房演化至不同程度时,晶粥体多期次的活化及岩浆的上侵可能形成成分变化的复式岩体.此外,以华南富锂氟花岗岩为代表的特殊花岗岩类,相对于一般花岗质岩浆具有更低的黏度和固相线,可能以结晶分异作用产生矿物组合及成分上的垂向分带.而侵入体中小尺度的成分变化结构不是重力分异的结果,流动分异或许起着关键作用.综合来说,花岗质岩浆能够发生结晶分异;高分异特征的高硅花岗岩及火山岩可能是酸性岩浆结晶分异的产物,而花岗岩可能是结晶分异形成的堆晶. 展开更多
关键词 花岗岩 结晶分异 岩浆对流 层状构造 Mush模型 高分异花岗岩 复式岩体 富锂氟花岗岩
原文传递
Crystal fractionation of granitic magma during its non-transport processes: A physics-based perspective 被引量:10
3
作者 CHEN Chen DING Xing +4 位作者 LI Rui ZHANG WeiQi OUYANG DongJian YANG Lei SUN WeiDong 《Science China Earth Sciences》 SCIE EI CAS CSCD 2018年第2期190-204,共15页
Granitic continental crust distinguishes the Earth from other planets in the Solar System. Consequently, for understanding terrestrial continent development, it is of great significance to investigate the formation an... Granitic continental crust distinguishes the Earth from other planets in the Solar System. Consequently, for understanding terrestrial continent development, it is of great significance to investigate the formation and evolution of granite.Crystal fractionation is one of principal magma evolution mechanisms. Nevertheless, it is controversial whether crystal fractionation can effectively proceed in felsic magma systems because of the high viscosity and non-Newtonian behavior associated with granitic magmas. In this paper, we focus on the physical processes and evaluate the role of crystal fractionation in the evolution of granitic magmas during non-transport processes, i.e., in magma chambers and after emplacement. Based on physical calculations and analyses, we suggest that general mineral particles can settle only at tiny speed(~10^(-9)–10^(-7) m s^(-1))in a granitic magma body due to high viscosity of the magma; however, the cumulating can be interrupted with convection in magma chambers, and the components of magma chambers will tend to be homogeneous. Magma convection ceases once the magma chamber develops into a mush(crystallinity, F>~40–50%). The interstitial melts can be extracted by hindered settling and compaction, accumulating gradually and forming a highly silicic melt layer. The high silica melts can further evolve into high-silica granite or high-silica rhyolite. At various crystallinities, multiple rejuvenation of the mush and the following magma intrusion may generate a granite complex with various components. While one special type of granites, represented by the South China lithium-and fluoride-rich granite, has lower viscosity and solidus relative to general granitic magmas, and may form vertical zonation in mineral-assemblage and composition through crystal fractionation. Similar fabrics in general intrusions that show various components on small lengthscales are not the result of gravitational settling. Rather, the flowage differentiation may play a key role. In general, granitic magma can undergo effective crystal fractionation; high-silica granite and volcanics with highly fractionated characteristics may be the products of crystal fractionation of felsic magmas, and many granitoids may be cumulates. 展开更多
关键词 GRANITE Crystal fractionation Magma convection Layering structure Mush model Highly fractionated granite Granite complex Li-F granite
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部