A parallel manipulator joint driven by three pneumatic muscles and its posture control strategy are presented. Based on geometric constraints and dynamics, a system model is developed through which some influences on ...A parallel manipulator joint driven by three pneumatic muscles and its posture control strategy are presented. Based on geometric constraints and dynamics, a system model is developed through which some influences on dynamic response and open-loop gain are analyzed including the supply pressure, the initial pressure and the volume of pneumatic muscle. A sliding-mode controller with a nonlinear switching function is applied to control posture, which adopts the combination of a main method that separates control of each muscle and an auxiliary method that postures error evaluation of multiple muscles, especially adopting the segmented and intelligent adjustments of sliding-mode parameters to fit different expected postures and initial states. Experimental results show that this control strategy not only amounts to the steady-state error of 0. 1° without overshoot, but also achieves good trajectory tracking.展开更多
A new hydraulic actuator-hydraulic muscle (HM) is described, and the actuator's features and applications are analyzed, then a position servocontrol system in which HM is main actuator is set up. The mathematical m...A new hydraulic actuator-hydraulic muscle (HM) is described, and the actuator's features and applications are analyzed, then a position servocontrol system in which HM is main actuator is set up. The mathematical model of the system is built up and several control strategies are discussed. Based on the mathematical model, simulation research and experimental investigation with subsection PID control, neural network self-adaptive PID control and single neuron self-adaptive PID control adopted respectively are carried out, and the results indicate that compared with PID control, neural network self-adaptive PID control and single neuron self-adaptive PID control don't need controlled system's accurate model and have fast response, high control accuracy and strong robustness, they are very suitable for HM position servo control system.展开更多
Peripheral nerve stimulation is an effective neuromodulation method in patients with lower extremity movement disorders caused by stroke,spinal cord injury,or other diseases.However,most current studies on rehabilitat...Peripheral nerve stimulation is an effective neuromodulation method in patients with lower extremity movement disorders caused by stroke,spinal cord injury,or other diseases.However,most current studies on rehabilitation using sciatic nerve stimulation focus solely on ankle motor regulation through stimulation of common peroneal and tibial nerves.Using the electrical nerve stimulation method,we here achieved muscle control via different sciatic nerve branches to facilitate the regulation of lower limb movements during stepping and standing.A map of relationships between muscles and nerve segments was established to artificially activate specific nerve fibers with the biomimetic stimulation waveform.Then,characteristic curves depicting the relationship between neural electrical stimulation intensity and joint control were established.Finally,by testing the selected stimulation parameters in anesthetized rats,we confirmed that single-cathode extraneural electrical stimulation could activate combined movements to promote lower limb movements.Thus,this method is effective and reliable for use in treatment for improving and rehabilitating lower limb motor dysfunction.展开更多
Traditional joint-link robots have been widely used in production lines because of their high precision for single tasks.With the development of the manufacturing and service industries,the requirement for the compreh...Traditional joint-link robots have been widely used in production lines because of their high precision for single tasks.With the development of the manufacturing and service industries,the requirement for the comprehensive performance of robotics is growing.Numerous types of bio-inspired robotics have been investigated to realize human-like motion control and manipulation.A study route from inner mechanisms to external structures is proposed to imitate humans and animals better.With this idea,a brain-inspired intelligent robotic system is constructed that contains visual cognition,decision-making,motion control,and musculoskeletal structures.This paper reviews cutting-edge research in brain-inspired visual cognition,decision-making,motion control,and musculoskeletal systems.Two software systems and a corresponding hardware system are established,aiming at the verification and applications of next-generationbrain-inspired musculoskeletal robots.展开更多
基金This project is supported by International Cooperation with Festo.
文摘A parallel manipulator joint driven by three pneumatic muscles and its posture control strategy are presented. Based on geometric constraints and dynamics, a system model is developed through which some influences on dynamic response and open-loop gain are analyzed including the supply pressure, the initial pressure and the volume of pneumatic muscle. A sliding-mode controller with a nonlinear switching function is applied to control posture, which adopts the combination of a main method that separates control of each muscle and an auxiliary method that postures error evaluation of multiple muscles, especially adopting the segmented and intelligent adjustments of sliding-mode parameters to fit different expected postures and initial states. Experimental results show that this control strategy not only amounts to the steady-state error of 0. 1° without overshoot, but also achieves good trajectory tracking.
文摘A new hydraulic actuator-hydraulic muscle (HM) is described, and the actuator's features and applications are analyzed, then a position servocontrol system in which HM is main actuator is set up. The mathematical model of the system is built up and several control strategies are discussed. Based on the mathematical model, simulation research and experimental investigation with subsection PID control, neural network self-adaptive PID control and single neuron self-adaptive PID control adopted respectively are carried out, and the results indicate that compared with PID control, neural network self-adaptive PID control and single neuron self-adaptive PID control don't need controlled system's accurate model and have fast response, high control accuracy and strong robustness, they are very suitable for HM position servo control system.
基金supported by National Key R&D Program of China(grant nos.2018YFB1307301 and 2017YFE0117000).
文摘Peripheral nerve stimulation is an effective neuromodulation method in patients with lower extremity movement disorders caused by stroke,spinal cord injury,or other diseases.However,most current studies on rehabilitation using sciatic nerve stimulation focus solely on ankle motor regulation through stimulation of common peroneal and tibial nerves.Using the electrical nerve stimulation method,we here achieved muscle control via different sciatic nerve branches to facilitate the regulation of lower limb movements during stepping and standing.A map of relationships between muscles and nerve segments was established to artificially activate specific nerve fibers with the biomimetic stimulation waveform.Then,characteristic curves depicting the relationship between neural electrical stimulation intensity and joint control were established.Finally,by testing the selected stimulation parameters in anesthetized rats,we confirmed that single-cathode extraneural electrical stimulation could activate combined movements to promote lower limb movements.Thus,this method is effective and reliable for use in treatment for improving and rehabilitating lower limb motor dysfunction.
基金supported by National Natural Science Foundation of China(Nos.91948303,62203443 and 62203439)the Major Project of Science and Technology Innovation 2030 C Brain Science and Brain-inspired Intelligence(No.2021ZD0200408)+1 种基金the Strategic Priority Research Program of Chinese Academy of Science(No.XDB 32050100)the Science Foundation for Youth of the State Key Laboratory of Management and Control for Complex System(No.2022QN09).
文摘Traditional joint-link robots have been widely used in production lines because of their high precision for single tasks.With the development of the manufacturing and service industries,the requirement for the comprehensive performance of robotics is growing.Numerous types of bio-inspired robotics have been investigated to realize human-like motion control and manipulation.A study route from inner mechanisms to external structures is proposed to imitate humans and animals better.With this idea,a brain-inspired intelligent robotic system is constructed that contains visual cognition,decision-making,motion control,and musculoskeletal structures.This paper reviews cutting-edge research in brain-inspired visual cognition,decision-making,motion control,and musculoskeletal systems.Two software systems and a corresponding hardware system are established,aiming at the verification and applications of next-generationbrain-inspired musculoskeletal robots.