The element of pesedospectral-multiwavelet-Galerkin method, and how tocombine it with penalty method for treating boundary conditions are given. Multiwavelet bases don'toverlap on the given scale, and possess the ...The element of pesedospectral-multiwavelet-Galerkin method, and how tocombine it with penalty method for treating boundary conditions are given. Multiwavelet bases don'toverlap on the given scale, and possess the same compact set in a group of several functions, sothey can be directly used to the numerical discretion on the finite interval. Numerical tests showthat general boundary conditions can be enforced with the penalty method, and thatpesedospectral-multiwavelet-Galerkin method can well track the solutions' development. This alsoproves that pesedospectral-multiwavelet-Galerkin method is effective.展开更多
基金This project is supported by National Natural Science Foundation of China(No. 19971020) Multidiseipline Scientific Research Foundation of Harbin Institute of Technology, China(No.HIT.MD2001.26).
文摘The element of pesedospectral-multiwavelet-Galerkin method, and how tocombine it with penalty method for treating boundary conditions are given. Multiwavelet bases don'toverlap on the given scale, and possess the same compact set in a group of several functions, sothey can be directly used to the numerical discretion on the finite interval. Numerical tests showthat general boundary conditions can be enforced with the penalty method, and thatpesedospectral-multiwavelet-Galerkin method can well track the solutions' development. This alsoproves that pesedospectral-multiwavelet-Galerkin method is effective.