期刊文献+
共找到75篇文章
< 1 2 4 >
每页显示 20 50 100
Multivariate Statistical Analysis of Dominating Groundwater Mineralization and Hydrochemical Evolution in Gao,Northern Mali
1
作者 Adiaratou Traore Xumei Mao +2 位作者 Alhousseyni Traore Yahaya Yakubu Aboubacar Modibo Sidibe 《Journal of Earth Science》 SCIE CAS CSCD 2024年第5期1692-1703,共12页
Population growth and expanding urbanization have caused persistent shortages and contamination of groundwater resources in Mali,Africa.The increase in groundwater salinity makes it more difficult for residents to obt... Population growth and expanding urbanization have caused persistent shortages and contamination of groundwater resources in Mali,Africa.The increase in groundwater salinity makes it more difficult for residents to obtain drinking water,it is necessary to clarify the causes and control factors of groundwater mineralization in Gao region,northern Mali.Based on the analysis of the hydrochemical composition of groundwater in 24 boreholes,Piper and Sch?eller diagrams,principal component analysis(PCA)and hierarchical cluster analysis(HCA)are used to carry out multivariate statistical analysis on the main ions.The results show that the groundwater samples are weakly alkaline,with pH values ranging from 5.83 to 8.40,and the average values of boreholes are 7.50,respectively.The average electrical conductivity(EC)value is 354.4(μS/cm),and the extreme value is between 124.0 and 1247(μS/cm).Water is usually mineralized and presents nine types of water phase.The three principal components explain 84.42%of the total variance for 13 parameters.The factor F1(58.85%),the factor F2(16.88%)and the factor F3(8.69%)present for the majority of the total data set.In addition,multivariate statistical analysis confirmed the genetic relationship among aquifers and identified three main clusters.Clustering related to groundwater mineralization(F1),clustering related to oxide reduction and iron enrichment(F2),and clustering of groundwater pollution caused by nitrate and magnesium(F3).We found that agriculture,weathering activities and dissolution of geological materials promote the mineralization of groundwater.Groundwater quality in the Gao region is becoming less and less potable because of increasing salinity. 展开更多
关键词 hydrochemical composition multivariate statistical analysis MINERALIZATION hydro-chemical evolution GAO northern Mali HYDROGEOLOGY
原文传递
Dynamic Process Monitoring Based on Dot Product Feature Analysis for Thermal Power Plants
2
作者 Xin Ma Tao Chen Youqing Wang 《IEEE/CAA Journal of Automatica Sinica》 2025年第3期563-574,共12页
Data-driven process monitoring is an effective approach to assure safe operation of modern manufacturing and energy systems,such as thermal power plants being studied in this work.Industrial processes are inherently d... Data-driven process monitoring is an effective approach to assure safe operation of modern manufacturing and energy systems,such as thermal power plants being studied in this work.Industrial processes are inherently dynamic and need to be monitored using dynamic algorithms.Mainstream dynamic algorithms rely on concatenating current measurement with past data.This work proposes a new,alternative dynamic process monitoring algorithm,using dot product feature analysis(DPFA).DPFA computes the dot product of consecutive samples,thus naturally capturing the process dynamics through temporal correlation.At the same time,DPFA's online computational complexity is lower than not just existing dynamic algorithms,but also classical static algorithms(e.g.,principal component analysis and slow feature analysis).The detectability of the new algorithm is analyzed for three types of faults typically seen in process systems:sensor bias,process fault and gain change fault.Through experiments with a numerical example and real data from a thermal power plant,the DPFA algorithm is shown to be superior to the state-of-the-art methods,in terms of better monitoring performance(fault detection rate and false alarm rate)and lower computational complexity. 展开更多
关键词 Computational complexity dot product feature analysis(DPFA) dynamic process multivariate statistics process monitoring
在线阅读 下载PDF
Using Multivariate Statistical and Geostatistical Methods to Identify Spatial Variability of Trace Elements in Agricultural Soils in Dongguan City,Guangdong,China 被引量:6
3
作者 窦磊 周永章 +6 位作者 马瑾 李勇 成秋明 谢淑云 杜海燕 游远航 万洪富 《Journal of China University of Geosciences》 SCIE CSCD 2008年第4期343-353,共11页
Dongguan (东莞) City, located in the Pearl River Delta, South China, is famous for its rapid industrialization in the past 30 years. A total of 90 topsoil samples have been collected from agricultural fields, includ... Dongguan (东莞) City, located in the Pearl River Delta, South China, is famous for its rapid industrialization in the past 30 years. A total of 90 topsoil samples have been collected from agricultural fields, including vegetable and orchard soils in the city, and eight heavy metals (As, Cu, Cd, Cr, Hg, Ni, Pb, and Zn) and other items (pH values and organic matter) have been analyzed, to evaluate the influence of anthropic activities on the environmental quality of agricultural soils and to identify the spatial distribution of trace elements and possible sources of trace elements. The elements Hg, Pb, and Cd have accumulated remarkably here, incomparison with the soil background content of elements in Guangdong (广东) Province. Pollution is more serious in the western plain and the central region, which are heavily distributed with industries and rivers. Multivariate and geostatistical methods have been applied to differentiate the influences of natural processes and human activities on the pollution of heavy metals in topsoils in the study area. The results of cluster analysis (CA) and factor analysis (FA) show that Ni, Cr, Cu, Zn, and As are grouped in factor F1, Pb in F2, and Cd and Hg in F3, respectively. The spatial pattern of the three factors may be well demonstrated by geostatistical analysis. It is shown that the first factor could be considered as a natural source controlled by parent rocks. The second factor could be referred to as "industrial and traffic pollution sources". The source of the third factor is mainly controlled by long-term anthropic activities, as a consequence of agricultural activities, fossil fuel consumption, and atmospheric deposition. 展开更多
关键词 trace metal spatial distribution source multivariate statistics GEOstatistics Pearl River Delta (South China)
在线阅读 下载PDF
Multivariate analysis and geochemical investigations of groundwater in a semi-arid region, case of superficial aquifer in Ghriss Basin, Northwest Algeria 被引量:3
4
作者 Laouni Benadela Belkacem Bekkoussa Laouni Gaidi 《Journal of Groundwater Science and Engineering》 2022年第3期233-249,共17页
This study aims to investigate the hydrochemical characteristics of shallow aquifer in a semi-arid region situated in northwest Algeria,and to understand the major factors governing groundwater quality.The study area ... This study aims to investigate the hydrochemical characteristics of shallow aquifer in a semi-arid region situated in northwest Algeria,and to understand the major factors governing groundwater quality.The study area is suffering from recurring droughts,groundwater resource over-exploitation and groundwater quality degradation.The approach used is a combination of traditional hydrochemical analysis methods of multivariate statistical techniques,principal component analysis(PCA),and ratios of major ions,based on the data derived from 33 groundwater samples collected in February 2014.Results show that groundwater in the study area are highly mineralized and collectively has a high concentration of chloride(as Cl^(−)).The dominant water types are Na-Cl(27%),Mg-HCO_(3)(24%)and Mg-Cl(24%).According to the(PCA)approach,salinization is the main process that controls the hydrochemical variability.The PCA analysis reveal the impact of anthropogenic factor especially the agricultural activities on the groundwater quality.The PCA highlighted two types of recharge:Superficial recharge from effective rainfall and excess irrigation water distinguished by the presence of nitrate and lateral recharge or vertical leakage from carbonate formations marked by the omnipresence of HCO_(3)^(−).Additionally,three categories of samples were identified:(1)samples characterized by good water quality and receiving notable recharge from carbonate formations;(2)samples impacted by the natural salinization process;and(3)samples contaminated by anthropogenic activities.The major natural processes influencing water chemistry are the weathering of carbonate and silicate rocks,dissolution of evaporite as halite,evaporation and cation exchange.The study results can provide the basis for local decision makers to ensure the sustainable management of groundwater and the safety of drinking water. 展开更多
关键词 HYDROCHEMISTRY multivariate statistics PCA factors mapping Ratio of major ions Plio-quaternary aquifer Ghriss Basin
在线阅读 下载PDF
Identification of the Nonlinear Distributions of Elements with Multifractal: A Case Study of the Er’renshan Ore Field, NW China
5
作者 GONG Qiuli LIU Yanpeng 《Acta Geologica Sinica(English Edition)》 2025年第5期1509-1526,共18页
Geochemical surveys are essential for understanding the spatial distribution of ore-forming elements.However,these surveys often involve compositional data,the weight concentrations,which do not meet the requirements ... Geochemical surveys are essential for understanding the spatial distribution of ore-forming elements.However,these surveys often involve compositional data,the weight concentrations,which do not meet the requirements of statistical methods due to the closure effect.In this study,we applied an integrated approach combining compositional data,multifractal,and multivariate statistical analyses to identify the nonlinear complexity of the spatial distributions of elemental concentrations in the Er’renshan ore field.Initially,the raw concentrations were transformed into log-ratios following the principles of composition data theory to alleviate the impact of the closure effect.Multifractal analysis was then conducted to characterise the nonlinear complexity of the concentration distributions.Furthermore,principal component analysis(PCA)and factor analysis(FA)were applied to identify spurious correlations and the potential factors controlling the distribution patterns.The results demonstrate that:a)the raw data are biased,while the log-ratio data are unbiased and more reliable;b)the spatial distributions of elemental concentrations exhibit nonlinear complexity;and c)the elemental distribution in the study area is largely controlled by structural factors. 展开更多
关键词 nonlinear complexity compositional data FRACTAL multivariate statistical analysis element distribution
在线阅读 下载PDF
Spatial distribution of landslides in response to the geomorphometric constraints in Darma Valley,Kumaun Himalaya
6
作者 Mohd SHAWEZ Vikram GUPTA +1 位作者 Anand Kumar GUPTA Gautam RAWAT 《Journal of Mountain Science》 2025年第1期48-70,共23页
The Kumaun Himalaya is well-known as a geologically and tectonically complex region that amplifies mass wasting processes,particularly landslides.This study attempts to investigate the interplay between landslide dist... The Kumaun Himalaya is well-known as a geologically and tectonically complex region that amplifies mass wasting processes,particularly landslides.This study attempts to investigate the interplay between landslide distribution and the lithotectonic regime of Darma Valley,Kumaun Himalaya.A landslide inventory comprising 295 landslides in the area has been prepared and several morphotectonic proxies such as valley floor width to height ratio(Vf),stream length gradient index(SL),and hypsometric integral(HI)have been used to infer tectonic regime.Morphometric analysis,including basic,linear,aerial,and relief aspects,of 59 fourth-order sub-basins,has been carried out to estimate erosion potential in the study area.The result demonstrates that 46.77%of the landslides lie in very high,20.32%in high,21.29%in medium,and 11.61%in low erosion potential zones respectively.In order to determine the key parameters controlling erosion potential,two multivariate statistical methods namely Principal Component Analysis(PCA)and Agglomerative Hierarchical Clustering(AHC)were utilized.PCA reveals that the Higher Himalayan Zone(HHZ)has the highest erosion potential due to the presence of elongated sub-basins characterized by steep slopes and high relief.The clusters created through AHC exhibit positive PCA values,indicating a robust correlation between PCA and AHC.Furthermore,the landslide density map shows two major landslide hotspots.One of these hotspots lies in the vicinity of highly active Munsiyari Thrust(MT),while the other is in the Pandukeshwar formation within the MT's hanging wall,characterized by a high exhumation rate.High SL and low Vf values along these hotspots further corroborate that the occurrence of landslides in the study area is influenced by tectonic activity.This study,by identifying erosionprone areas and elucidating the implications of tectonic activity on landslide distribution,empowers policymakers and government agencies to develop strategies for hazard assessment and effective landslide risk mitigation,consequently safeguarding lives and communities. 展开更多
关键词 LANDSLIDES Geomorphometric analysis multivariate statistical analysis Darma valley Kumaun Himalaya
原文传递
Spatial and temporal characterization of water quality in Bosten Lake,China based on comprehensive water quality index
7
作者 GUO Mengjing BAI Zichen +5 位作者 YUAN Bo WANG Wen ZHANG Tiegang XIANG Ke ZHANG Jiao ZHAO Huiyizhe 《Journal of Arid Land》 2025年第9期1234-1251,共18页
Water quality is a pressing issue affecting the sustainable development of lakes.To elucidate the spatial and temporal characteristics of water quality in Bos ten Lake,China,this study constructed a comprehensive wate... Water quality is a pressing issue affecting the sustainable development of lakes.To elucidate the spatial and temporal characteristics of water quality in Bos ten Lake,China,this study constructed a comprehensive water quality index(CWQI) based on key water quality indicators,utilizing water quality data collected from 17 sampling sites spaning from 2011 to 2019.Key water quality indicators were determined using factor analysis,and the spatial and temporal characteristics of key water quality indicators and the CWQI were examined using multivariate statistical analysis.The key water quality indicators included pH,chemical oxygen demand(COD),water transparency(SD),NO3-,total dissolved solids(TDS),Cl-,SO42-,and electrical conductivity(EC).Furthermore,the contribution rates of all water quality indicators to the water quality were quantitatively elucidated using the SHapley Additive explanations(SHAP) values,thereby validating the factor analysis outcomes.Among the eight key water quality indicators,the COD had the most significant influence on the water quality of Bos ten Lake.The water quality condition of Bosten Lake has remained at Class Ⅲ from 2011 to 2019(CWQI ranging from3.19 to 3.90).The water quality of Bos ten Lake was characterized by distinct regional differences that arose from hydrodynamic processes within the lake and upstream water quality.The southwestern region exhibited the best water quality(mean CWQI of 3.47),whereas the northwestern region exhibited the worst(mean CWQI of 3.58).It is crucial to acknowledge that alongside the increase in industrial and agricultural effluent discharge monitoring,a series of ecological restoration projects for the lake basin have been initiated.Over time,the water quality of Bosten Lake showed gradual improvement(improvement rate of CWQI at 0.05/a).This study provides a critical scientific basis for enhancing the understanding and effective management of water quality in the Bosten Lake Basin through a comprehensive analysis of its spatial and temporal evolution and driving mechanisms. 展开更多
关键词 water quality chemical oxygen demand(COD) comprehensive water quality index(CWQI) multivariate statistical analysis SHapley Additive exPlanations(SHAP) Bosten Lake
在线阅读 下载PDF
Multivariate analysis of surface water quality in the Three Gorges area of China and implications for water management 被引量:26
8
作者 Jian Zhao Guo Fu Kun Lei Yanwu Li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2011年第9期1460-1471,共12页
Multivariate statistical techniques,cluster analysis,non-parametric tests,and factor analysis were applied to analyze a water quality dataset including 13 parameters at 37 sites of the Three Gorges area,China,from 200... Multivariate statistical techniques,cluster analysis,non-parametric tests,and factor analysis were applied to analyze a water quality dataset including 13 parameters at 37 sites of the Three Gorges area,China,from 2003–2008 to investigate spatio-temporal variations and identify potential pollution sources.Using cluster analysis,the twelve months of the year were classified into three periods of lowflow (LF),normal-flow (NF),and high-flow (HF);and the 37 monitoring sites were divided into low pollution (LP),moderate pollution (MP),and high pollution (HP).Dissolved oxygen (DO),potassium permanganate index (COD Mn ),and ammonia-nitrogen (NH 4 +-N) were identified as significant variables affecting temporal and spatial variations by non-parametric tests.Factor analysis identified that the major pollutants in the HP region were organic matters and nutrients during NF,heavy metals during LF,and petroleum during HF.In the MP region,the identified pollutants primarily included organic matter and heavy metals year-around,while in the LP region,organic pollution was significant during both NF and HF,and nutrient and heavy metal levels were high during both LF and HF.The main sources of pollution came from domestic wastewater and agricultural activities and runoff;however,they contributed differently to each region in regards to pollution levels.For the HP region,inputs from wastewater treatment plants were significant;but for MP and LP regions,water pollution was more likely from the combined effects of agriculture,domestic wastewater,and chemical industry.These results provide fundamental information for developing better water pollution control strategies for the Three Gorges area. 展开更多
关键词 water quality spatial variations seasonal variations multivariate statistical techniques the Three Gorges
原文传递
Multivariate Statistical Process Monitoring and Control: Recent Developments and Applications to Chemical Industry 被引量:39
9
作者 梁军 钱积新 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第2期191-203,共13页
Multivariate statistical process monitoring and control (MSPM&C) methods for chemical process monitoring with statistical projection techniques such as principal component analysis (PCA) and partial least squares ... Multivariate statistical process monitoring and control (MSPM&C) methods for chemical process monitoring with statistical projection techniques such as principal component analysis (PCA) and partial least squares (PLS) are surveyed in this paper. The four-step procedure of performing MSPM&C for chemical process, modeling of processes, detecting abnormal events or faults, identifying the variable(s) responsible for the faults and diagnosing the source cause for the abnormal behavior, is analyzed. Several main research directions of MSPM&C reported in the literature are discussed, such as multi-way principal component analysis (MPCA) for batch process, statistical monitoring and control for nonlinear process, dynamic PCA and dynamic PLS, and on-line quality control by inferential models. Industrial applications of MSPM&C to several typical chemical processes, such as chemical reactor, distillation column, polymerization process, petroleum refinery units, are summarized. Finally, some concluding remarks and future considerations are made. 展开更多
关键词 multivariate statistical process monitoring and control (MSPM&C) fault detection and isolation (FDI) principal component analysis (PCA) partial least squares (PLS) quality control inferential model
在线阅读 下载PDF
Multivariate Statistical Process Monitoring of an Industrial Polypropylene Catalyzer Reactor with Component Analysis and Kernel Density Estimation 被引量:16
10
作者 熊丽 梁军 钱积新 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第4期524-532,共9页
Abstract Data-driven tools, such as principal component analysis (PCA) and independent component analysis (ICA) have been applied to different benchmarks as process monitoring methods. The difference between the t... Abstract Data-driven tools, such as principal component analysis (PCA) and independent component analysis (ICA) have been applied to different benchmarks as process monitoring methods. The difference between the two methods is that the components of PCA are still dependent while ICA has no orthogonality constraint and its latentvariables are independent. Process monitoring with PCA often supposes that process data or principal components is Gaussian distribution. However, this kind of constraint cannot be satisfied by several practical processes. To ex-tend the use of PCA, a nonparametric method is added to PCA to overcome the difficulty, and kernel density estimation (KDE) is rather a good choice. Though ICA is based on non-Gaussian distribution intormation, .KDE can help in the close monitoring of the data. Methods, such as PCA, ICA, PCA.with .KDE(KPCA), and ICA with KDE,(KICA), are demonstrated and. compared by applying them to a practical industnal Spheripol craft polypropylene catalyzer reactor instead of a laboratory emulator. 展开更多
关键词 multivariate statistical process monitoring principal comPonent analysis kermel density estimation POLYPROPYLENE catalyzer reactor fault detection data-driven tools
在线阅读 下载PDF
Combined Use of Multivariate Statistical Analysis and Hydrochemical Analysis for Groundwater Quality Evolution: A Case Study in North Chain Plain 被引量:8
11
作者 Rong Ma Jiansheng Shi +1 位作者 Jichao Liu Chunlei Gui 《Journal of Earth Science》 SCIE CAS CSCD 2014年第3期587-597,共11页
Understanding the controlling factor of groundwater quality can enhance promoting sustainable development of groundwater resources. To this end, multivariate statistical analysis(MA) and hydrochemical analysis were ... Understanding the controlling factor of groundwater quality can enhance promoting sustainable development of groundwater resources. To this end, multivariate statistical analysis(MA) and hydrochemical analysis were introduced in this work. The results indicate that the canonical discriminant function with 7 parameters was established using the discriminant analysis(DA) method, which can afford 100% correct assignation according to the 3 different clusters(good water(GW), poor water(PW), and very poor water(VPW)) obtained from cluster analysis(CA). According to factor analysis(FA), 8 factors were extracted from 25 hydrochemical elements and account for 80.897% of the total data variance, suggesting that groundwater with higher concentrations of sodium, calcium, magnesium, chloride, and sulfate in southeastern study area are mainly affected by the natural process; the higher level of arsenic and chromium in groundwater extracted from northwestern part of study area are derived by industrial activities; domestic and agriculture sewage have important contribution to copper, iron, iodine, and phosphate in the northern study area. Therefore, this work can help identify the main controlling factor of groundwater quality in North China plain so as to make better and more informed decisions about how to achieve groundwater resources sustainable development. 展开更多
关键词 FACTOR groundwater quality hydrochemical variable industrial activity multivariate statistical analysis.
原文传递
Construction of Inorganic Elemental Fingerprint and Multivariate Statistical Analysis of Marine Traditional Chinese Medicine Meretricis concha from Rushan Bay 被引量:6
12
作者 WU Xia ZHENG Kang +2 位作者 ZHAO Fengjia ZHENG Yongjun LI Yantuan 《Journal of Ocean University of China》 SCIE CAS 2014年第4期712-716,共5页
Meretricis concha is a kind of marine traditional Chinese medicine(TCM), and has been commonly used for the treatment of asthma and scald burns. In order to investigate the relationship between the inorganic elemental... Meretricis concha is a kind of marine traditional Chinese medicine(TCM), and has been commonly used for the treatment of asthma and scald burns. In order to investigate the relationship between the inorganic elemental fingerprint and the geographical origin identification of Meretricis concha, the elemental contents of M. concha from five sampling points in Rushan Bay have been determined by means of inductively coupled plasma optical emission spectrometry(ICP-OES). Based on the contents of 14 inorganic elements(Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se, and Zn), the inorganic elemental fingerprint which well reflects the elemental characteristics was constructed. All the data from the five sampling points were discriminated with accuracy through hierarchical cluster analysis(HCA) and principle component analysis(PCA), indicating that a four-factor model which could explain approximately 80% of the detection data was established, and the elements Al, As, Cd, Cu, Ni and Pb could be viewed as the characteristic elements. This investigation suggests that the inorganic elemental fingerprint combined with multivariate statistical analysis is a promising method for verifying the geographical origin of M. concha, and this strategy should be valuable for the authenticity discrimination of some marine TCM. 展开更多
关键词 Meretricis concha traditional Chinese medicine inorganic elemental fingerprint multivariate statistical analysis Rushan Bay
在线阅读 下载PDF
Application of multivariate statistical techniques in assessment of surface water quality in Second Songhua River basin,China 被引量:4
13
作者 郑力燕 于宏兵 王启山 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第5期1040-1051,共12页
Multivariate statistical techniques,such as cluster analysis(CA),discriminant analysis(DA),principal component analysis(PCA) and factor analysis(FA),were applied to evaluate and interpret the surface water quality dat... Multivariate statistical techniques,such as cluster analysis(CA),discriminant analysis(DA),principal component analysis(PCA) and factor analysis(FA),were applied to evaluate and interpret the surface water quality data sets of the Second Songhua River(SSHR) basin in China,obtained during two years(2012-2013) of monitoring of 10 physicochemical parameters at 15 different sites.The results showed that most of physicochemical parameters varied significantly among the sampling sites.Three significant groups,highly polluted(HP),moderately polluted(MP) and less polluted(LP),of sampling sites were obtained through Hierarchical agglomerative CA on the basis of similarity of water quality characteristics.DA identified p H,F,DO,NH3-N,COD and VPhs were the most important parameters contributing to spatial variations of surface water quality.However,DA did not give a considerable data reduction(40% reduction).PCA/FA resulted in three,three and four latent factors explaining 70%,62% and 71% of the total variance in water quality data sets of HP,MP and LP regions,respectively.FA revealed that the SSHR water chemistry was strongly affected by anthropogenic activities(point sources:industrial effluents and wastewater treatment plants;non-point sources:domestic sewage,livestock operations and agricultural activities) and natural processes(seasonal effect,and natural inputs).PCA/FA in the whole basin showed the best results for data reduction because it used only two parameters(about 80% reduction) as the most important parameters to explain 72% of the data variation.Thus,this work illustrated the utility of multivariate statistical techniques for analysis and interpretation of datasets and,in water quality assessment,identification of pollution sources/factors and understanding spatial variations in water quality for effective stream water quality management. 展开更多
关键词 Second Songhua River basin water quality multivariate statistical techniques cluster analysis discriminant analysis principal component analysis factor analysis
在线阅读 下载PDF
Investigation of Dynamic Multivariate Chemical Process Monitoring 被引量:3
14
作者 谢磊 张建明 王树青 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第5期559-568,共10页
Chemical process variables are always driven by random noise and disturbances. The closed-loop con-trol yields process measurements that are auto and cross correlated. The influence of auto and cross correlations on s... Chemical process variables are always driven by random noise and disturbances. The closed-loop con-trol yields process measurements that are auto and cross correlated. The influence of auto and cross correlations on statistical process control (SPC) is investigated in detail by Monte Carlo experiments. It is revealed that in the sense of average performance, the false alarms rates (FAR) of principal component analysis (PCA), dynamic PCA are not affected by the time-series structures of process variables. Nevertheless, non-independent identical distribution will cause the actual FAR to deviate from its theoretic value apparently and result in unexpected consecutive false alarms for normal operating process. Dynamic PCA and ARMA-PCA are demonstrated to be inefficient to remove the influences of auto and cross correlations. Subspace identification-based PCA (SI-PCA) is proposed to improve the monitoring of dynamic processes. Through state space modeling, SI-PCA can remove the auto and cross corre-lations efficiently and avoid consecutive false alarms. Synthetic Monte Carlo experiments and the application in Tennessee Eastman challenge process illustrate the advantages of the proposed approach. 展开更多
关键词 multivariate statistical processes control subspace identification false alarms rate dynamic processes
在线阅读 下载PDF
STUDY ON THE MULTIVARIATE STATISTICAL ESTIMATION OF TROPICAL CYCLONE INTENSITY USING FY-3 MWRI BRIGHTNESS TEMPERATURE DATA 被引量:2
15
作者 张淼 邱红 +1 位作者 方翔 卢乃锰 《Journal of Tropical Meteorology》 SCIE 2017年第2期146-154,共9页
A technique for estimating tropical cyclone(TC) intensity over the Western North Pacific utilizing FY-3Microwave Imager(MWRI) data is developed. As a first step, we investigated the relationship between the FY-3 MWRI ... A technique for estimating tropical cyclone(TC) intensity over the Western North Pacific utilizing FY-3Microwave Imager(MWRI) data is developed. As a first step, we investigated the relationship between the FY-3 MWRI brightness temperature(TB) parameters, which are computed in concentric circles or annuli of different radius in different MWRI frequencies, and the TC maximum wind speed(Vmax) from the TC best track data. We found that the parameters of lower frequency channels' minimum TB, mean TB and ratio of pixels over the threshold TB with a radius of 1.0 or 1.5 degrees from the center give higher correlation. Then by applying principal components analysis(PCA)and multiple regression method, we established an estimation model and evaluated it using independent verification data, with the RMSE being 13 kt. The estimated Vmax is always stronger in the early stages of development, but slightly weaker toward the mature stage, and a reversal of positive and negative bias takes place with a boundary of around 70 kt. For the TC that has a larger error, we found that they are often with less organized and asymmetric cloud pattern, so the classification of TC cloud pattern will help improve the acuracy of the estimated TC intensity, and with the increase of statistical samples the accuracy of the estimated TC intensity will also be improved. 展开更多
关键词 tropical cyclone intensity multivariate statistical estimate FY-3 microwave imager
在线阅读 下载PDF
Spatial variation assessment of groundwater quality using multivariate statistical analysis(Case Study:Fasa Plain,Iran) 被引量:3
16
作者 Mehdi Bahrami Elmira Khaksar Elahe Khaksar 《Journal of Groundwater Science and Engineering》 2020年第3期230-243,共14页
Groundwater is considered as one of the most important sources for water supply in Iran.The Fasa Plain in Fars Province,Southern Iran is one of the major areas of wheat production using groundwater for irrigation.A la... Groundwater is considered as one of the most important sources for water supply in Iran.The Fasa Plain in Fars Province,Southern Iran is one of the major areas of wheat production using groundwater for irrigation.A large population also uses local groundwater for drinking purposes.Therefore,in this study,this plain was selected to assess the spatial variability of groundwater quality and also to identify main parameters affecting the water quality using multivariate statistical techniques such as Cluster Analysis(CA),Discriminant Analysis(DA),and Principal Component Analysis(PCA).Water quality data was monitored at 22 different wells,for five years(2009-2014)with 10 water quality parameters.By using cluster analysis,the sampling wells were grouped into two clusters with distinct water qualities at different locations.The Lasso Discriminant Analysis(LDA)technique was used to assess the spatial variability of water quality.Based on the results,all of the variables except sodium absorption ratio(SAR)are effective in the LDA model with all variables affording 92.80%correct assignation to discriminate between the clusters from the primary 10 variables.Principal component(PC)analysis and factor analysis reduced the complex data matrix into two main components,accounting for more than 95.93%of the total variance.The first PC contained the parameters of TH,Ca2+,and Mg2+.Therefore,the first dominant factor was hardness.In the second PC,Cl-,SAR,and Na+were the dominant parameters,which may indicate salinity.The originally acquired factors illustrate natural(existence of geological formations)and anthropogenic(improper disposal of domestic and agricultural wastes)factors which affect the groundwater quality. 展开更多
关键词 GROUNDWATER Iran multivariate statistical methods POLLUTION
在线阅读 下载PDF
Machining Error Control by Integrating Multivariate Statistical Process Control and Stream of Variations Methodology 被引量:4
17
作者 WANG Pei ZHANG Dinghua LI Shan CHEN Bing 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2012年第6期937-947,共11页
For aircraft manufacturing industries, the analyses and prediction of part machining error during machining process are very important to control and improve part machining quality. In order to effectively control mac... For aircraft manufacturing industries, the analyses and prediction of part machining error during machining process are very important to control and improve part machining quality. In order to effectively control machining error, the method of integrating multivariate statistical process control (MSPC) and stream of variations (SoV) is proposed. Firstly, machining error is modeled by multi-operation approaches for part machining process. SoV is adopted to establish the mathematic model of the relationship between the error of upstream operations and the error of downstream operations. Here error sources not only include the influence of upstream operations but also include many of other error sources. The standard model and the predicted model about SoV are built respectively by whether the operation is done or not to satisfy different requests during part machining process. Secondly, the method of one-step ahead forecast error (OSFE) is used to eliminate autocorrelativity of the sample data from the SoV model, and the T2 control chart in MSPC is built to realize machining error detection according to the data characteristics of the above error model, which can judge whether the operation is out of control or not. If it is, then feedback is sent to the operations. The error model is modified by adjusting the operation out of control, and continually it is used to monitor operations. Finally, a machining instance containing two operations demonstrates the effectiveness of the machining error control method presented in this paper. 展开更多
关键词 machining error multivariate statistical process control stream of variations error modeling one-step ahead forecast error error detection
原文传递
New Method for Multivariate Statistical Process Monitoring 被引量:1
18
作者 裴旭东 陈祥光 刘春涛 《Journal of Beijing Institute of Technology》 EI CAS 2010年第1期92-98,共7页
A new method using discriminant analysis and control charts is proposed for monitoring multivariate process operations more reliably.Fisher discriminant analysis (FDA) is used to derive a feature discriminant direct... A new method using discriminant analysis and control charts is proposed for monitoring multivariate process operations more reliably.Fisher discriminant analysis (FDA) is used to derive a feature discriminant direction (FDD) between each normal and fault operations,and each FDD thus decided constructs the feature space of each fault operation.Individuals control charts (XmR charts) are used to monitor multivariate processes using the process data projected onto feature spaces.Upper control limit (UCL) and lower control limit (LCL) on each feature space from normal process operation are calculated for XmR charts,and are used to distinguish fault from normal.A variation trend on an XmR chart reveals the type of relevant fault operation.Applications to Tennessee Eastman simulation processes show that this proposed method can result in better monitoring performance than principal component analysis (PCA)-based methods and can better identify step type faults on XmR charts. 展开更多
关键词 Fisher discriminant analysis individuals control chart multivariate statistical process monitoring
在线阅读 下载PDF
A quick and effective multivariate statistical strategy for imaging mass spectrometry 被引量:1
19
作者 Fei Tang Yi Chen +4 位作者 Tie-Gang Li Jiu-Ming He Zeper Abliz Gang Huang Xiao-Hao Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2014年第10期1331-1335,共5页
A new multivariate statistical strategy for analyzing large datasets that are produced by imaging mass spectrometry(IMS) techniques is reported.The strategy divides the whole datacube of the sample into several subs... A new multivariate statistical strategy for analyzing large datasets that are produced by imaging mass spectrometry(IMS) techniques is reported.The strategy divides the whole datacube of the sample into several subsets and analyses them one by one to obtain the results.Instead of analyzing the whole datacube at one time,the strategy makes the analysis easier and decreases the computation time greatly.In this report,the IMS data are produced by the air flow-assisted ionization IMS(AFAI-IMS).The strategy can be used in combination with most multivariate statistical analysis methods.In this paper,the strategy was combined with the principal component analysis(PCA) and partial least square analysis(PLS).It was proven to be effective by analyzing the handwriting sample.By using the strategy,the m/z corresponding to the specific lipids in rat brain tissue were distinguished successfully.Moreover the analysis time grew linearly instead of exponentially as the size of sample increased.The strategy developed in this study has enormous potential for searching for the mjz of potential biomarkers quickly and effectively. 展开更多
关键词 Imaging mass spectrometry multivariate statistical analysis Potential biomarkers Quick and effective
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部