Population growth and expanding urbanization have caused persistent shortages and contamination of groundwater resources in Mali,Africa.The increase in groundwater salinity makes it more difficult for residents to obt...Population growth and expanding urbanization have caused persistent shortages and contamination of groundwater resources in Mali,Africa.The increase in groundwater salinity makes it more difficult for residents to obtain drinking water,it is necessary to clarify the causes and control factors of groundwater mineralization in Gao region,northern Mali.Based on the analysis of the hydrochemical composition of groundwater in 24 boreholes,Piper and Sch?eller diagrams,principal component analysis(PCA)and hierarchical cluster analysis(HCA)are used to carry out multivariate statistical analysis on the main ions.The results show that the groundwater samples are weakly alkaline,with pH values ranging from 5.83 to 8.40,and the average values of boreholes are 7.50,respectively.The average electrical conductivity(EC)value is 354.4(μS/cm),and the extreme value is between 124.0 and 1247(μS/cm).Water is usually mineralized and presents nine types of water phase.The three principal components explain 84.42%of the total variance for 13 parameters.The factor F1(58.85%),the factor F2(16.88%)and the factor F3(8.69%)present for the majority of the total data set.In addition,multivariate statistical analysis confirmed the genetic relationship among aquifers and identified three main clusters.Clustering related to groundwater mineralization(F1),clustering related to oxide reduction and iron enrichment(F2),and clustering of groundwater pollution caused by nitrate and magnesium(F3).We found that agriculture,weathering activities and dissolution of geological materials promote the mineralization of groundwater.Groundwater quality in the Gao region is becoming less and less potable because of increasing salinity.展开更多
[Objective] The plankton and macrobenthos samples in municipal polluted river were analyzed by different methods, so as to explore the method suitable for biological data analysis in heavy polluted area. [Method] Shan...[Objective] The plankton and macrobenthos samples in municipal polluted river were analyzed by different methods, so as to explore the method suitable for biological data analysis in heavy polluted area. [Method] Shannon-Wiener diversity index, cluster analysis of multivariate statistical analysis and MDS (Non-matric Multi- dimentional Scaling)analysis were used to analyze biological data of phytoplankton, zooplankton and Zoobenthos collected from the representative municipal polluted river in Pearl River Delta. The sediment samples were also collected to determine. Pb, Cd, Hg, Cr, As, Cu, Ni, Zn, as well as CODe, and NH3-N of porewater. Hakanson potential ecological risk index method was used to evaluate the ecological risk. [Re- suit] Shannon-Wiener diversity index analysis results can not effectively reflect the difference of pollution status of various stations in heavy polluted area; despite the presence of some problems, multivariate analysis method is superior to the Shannon-Wiener diversity index method in biological monitoring of heavy polluted river in the city. [Conclusion] The paper provided theoretical basis for biological data analysis in heavy polluted area.展开更多
[Objectives]To study the factors influencing the tourism economy in Henan Province.[Methods]Using tourism-related data from Henan Province covering the period from 2000 to 2020,this study constructs a regression model...[Objectives]To study the factors influencing the tourism economy in Henan Province.[Methods]Using tourism-related data from Henan Province covering the period from 2000 to 2020,this study constructs a regression model based on multivariate statistical methods to investigate the determinants of the tourism economy.The dependent variable in the model is the domestic tourism revenue of Henan Province,while the independent variables comprise the number of tourist arrivals,total operational railway mileage,the number of travel agencies,and the per capita disposable income of urban residents.[Results]Both the total railway mileage and the per capita disposable income of urban residents are the primary factors influencing the development of Henan's tourism economy.[Conclusions]It is recommended to reduce uncertainty and liquidity constraints to mitigate residents'precautionary savings behavior,actively expand domestic demand to leverage tourism as an economic driver,and improve infrastructure to support tourism development.展开更多
Data-driven process monitoring is an effective approach to assure safe operation of modern manufacturing and energy systems,such as thermal power plants being studied in this work.Industrial processes are inherently d...Data-driven process monitoring is an effective approach to assure safe operation of modern manufacturing and energy systems,such as thermal power plants being studied in this work.Industrial processes are inherently dynamic and need to be monitored using dynamic algorithms.Mainstream dynamic algorithms rely on concatenating current measurement with past data.This work proposes a new,alternative dynamic process monitoring algorithm,using dot product feature analysis(DPFA).DPFA computes the dot product of consecutive samples,thus naturally capturing the process dynamics through temporal correlation.At the same time,DPFA's online computational complexity is lower than not just existing dynamic algorithms,but also classical static algorithms(e.g.,principal component analysis and slow feature analysis).The detectability of the new algorithm is analyzed for three types of faults typically seen in process systems:sensor bias,process fault and gain change fault.Through experiments with a numerical example and real data from a thermal power plant,the DPFA algorithm is shown to be superior to the state-of-the-art methods,in terms of better monitoring performance(fault detection rate and false alarm rate)and lower computational complexity.展开更多
Understanding the controlling factor of groundwater quality can enhance promoting sustainable development of groundwater resources. To this end, multivariate statistical analysis(MA) and hydrochemical analysis were ...Understanding the controlling factor of groundwater quality can enhance promoting sustainable development of groundwater resources. To this end, multivariate statistical analysis(MA) and hydrochemical analysis were introduced in this work. The results indicate that the canonical discriminant function with 7 parameters was established using the discriminant analysis(DA) method, which can afford 100% correct assignation according to the 3 different clusters(good water(GW), poor water(PW), and very poor water(VPW)) obtained from cluster analysis(CA). According to factor analysis(FA), 8 factors were extracted from 25 hydrochemical elements and account for 80.897% of the total data variance, suggesting that groundwater with higher concentrations of sodium, calcium, magnesium, chloride, and sulfate in southeastern study area are mainly affected by the natural process; the higher level of arsenic and chromium in groundwater extracted from northwestern part of study area are derived by industrial activities; domestic and agriculture sewage have important contribution to copper, iron, iodine, and phosphate in the northern study area. Therefore, this work can help identify the main controlling factor of groundwater quality in North China plain so as to make better and more informed decisions about how to achieve groundwater resources sustainable development.展开更多
To overcome the too fine-grained granularity problem of multivariate grey incidence analysis and to explore the comprehensive incidence analysis model, three multivariate grey incidences degree models based on princip...To overcome the too fine-grained granularity problem of multivariate grey incidence analysis and to explore the comprehensive incidence analysis model, three multivariate grey incidences degree models based on principal component analysis (PCA) are proposed. Firstly, the PCA method is introduced to extract the feature sequences of a behavioral matrix. Then, the grey incidence analysis between two behavioral matrices is transformed into the similarity and nearness measure between their feature sequences. Based on the classic grey incidence analysis theory, absolute and relative incidence degree models for feature sequences are constructed, and a comprehensive grey incidence model is proposed. Furthermore, the properties of models are researched. It proves that the proposed models satisfy the properties of translation invariance, multiple transformation invariance, and axioms of the grey incidence analysis, respectively. Finally, a case is studied. The results illustrate that the model is effective than other multivariate grey incidence analysis models.展开更多
Multivariate pattern analysis(MVPA) is a recently-developed approach for functional magnetic resonance imaging(fMRI) data analyses.Compared with the traditional univariate methods,MVPA is more sensitive to subtle ...Multivariate pattern analysis(MVPA) is a recently-developed approach for functional magnetic resonance imaging(fMRI) data analyses.Compared with the traditional univariate methods,MVPA is more sensitive to subtle changes in multivariate patterns in fMRI data.In this review,we introduce several significant advances in MVPA applications and summarize various combinations of algorithms and parameters in different problem settings.The limitations of MVPA and some critical questions that need to be addressed in future research are also discussed.展开更多
In this study,the analytical data set of 26 groundwater samples from the alluvial aquifer of Boumerzoug-E1 khroub valley has been processed simultaneously with Multivariate analysis,geostatistical modeling,WQI,and geo...In this study,the analytical data set of 26 groundwater samples from the alluvial aquifer of Boumerzoug-E1 khroub valley has been processed simultaneously with Multivariate analysis,geostatistical modeling,WQI,and geochemical modeling.Cluster analysis identified three main water types based on the major ion contents,where mineralization increased from group 1 to group 3.These groups were confirmed by FA/PCA,which demonstrated that groundwater quality is influenced by geochemical processes(water-rock interaction)and human practice(irrigation).The exponential semivariogram model WQI.Groundwater chemistry has a strong spatial structure for Mg,Na,Cl,and NO3,and a moderate spatial structure for EC,Ca,K,HCO3,and SO4.Water quality maps generated using ordinary Kriging are consistent with the HCA and PCA results.All water groups are supersaturated with respect to carbonate minerals,and dissolution of kaolinite and Ca-smectite is one of the processes responsible for hydrochemical evolution in the area.展开更多
Many complex traits are highly correlated rather than independent. By taking the correlation structure of multiple traits into account, joint association analyses can achieve both higher statistical power and more acc...Many complex traits are highly correlated rather than independent. By taking the correlation structure of multiple traits into account, joint association analyses can achieve both higher statistical power and more accurate estimation. To develop a statistical approach to joint association analysis that includes allele detection and genetic effect estimation, we combined multivariate partial least squares regression with variable selection strategies and selected the optimal model using the Bayesian Information Criterion(BIC). We then performed extensive simulations under varying heritabilities and sample sizes to compare the performance achieved using our method with those obtained by single-trait multilocus methods. Joint association analysis has measurable advantages over single-trait methods, as it exhibits superior gene detection power, especially for pleiotropic genes. Sample size, heritability,polymorphic information content(PIC), and magnitude of gene effects influence the statistical power, accuracy and precision of effect estimation by the joint association analysis.展开更多
Abstract Data-driven tools, such as principal component analysis (PCA) and independent component analysis (ICA) have been applied to different benchmarks as process monitoring methods. The difference between the t...Abstract Data-driven tools, such as principal component analysis (PCA) and independent component analysis (ICA) have been applied to different benchmarks as process monitoring methods. The difference between the two methods is that the components of PCA are still dependent while ICA has no orthogonality constraint and its latentvariables are independent. Process monitoring with PCA often supposes that process data or principal components is Gaussian distribution. However, this kind of constraint cannot be satisfied by several practical processes. To ex-tend the use of PCA, a nonparametric method is added to PCA to overcome the difficulty, and kernel density estimation (KDE) is rather a good choice. Though ICA is based on non-Gaussian distribution intormation, .KDE can help in the close monitoring of the data. Methods, such as PCA, ICA, PCA.with .KDE(KPCA), and ICA with KDE,(KICA), are demonstrated and. compared by applying them to a practical industnal Spheripol craft polypropylene catalyzer reactor instead of a laboratory emulator.展开更多
This study aims to extend the multivariate adaptive regression splines(MARS)-Monte Carlo simulation(MCS) method for reliability analysis of slopes in spatially variable soils. This approach is used to explore the infl...This study aims to extend the multivariate adaptive regression splines(MARS)-Monte Carlo simulation(MCS) method for reliability analysis of slopes in spatially variable soils. This approach is used to explore the influences of the multiscale spatial variability of soil properties on the probability of failure(P_f) of the slopes. In the proposed approach, the relationship between the factor of safety and the soil strength parameters characterized with spatial variability is approximated by the MARS, with the aid of Karhunen-Loeve expansion. MCS is subsequently performed on the established MARS model to evaluate Pf.Finally, a nominally homogeneous cohesive-frictional slope and a heterogeneous cohesive slope, which are both characterized with different spatial variabilities, are utilized to illustrate the proposed approach.Results showed that the proposed approach can estimate the P_f of the slopes efficiently in spatially variable soils with sufficient accuracy. Moreover, the approach is relatively robust to the influence of different statistics of soil properties, thereby making it an effective and practical tool for addressing slope reliability problems concerning time-consuming deterministic stability models with low levels of P_f.Furthermore, disregarding the multiscale spatial variability of soil properties can overestimate or underestimate the P_f. Although the difference is small in general, the multiscale spatial variability of the soil properties must still be considered in the reliability analysis of heterogeneous slopes, especially for those highly related to cost effective and accurate designs.展开更多
OBJECTIVE: To estimate the operative mortality in patients with malignant obstructive jaundice. METHODS: Twelve risk factors were analyzed using multivariate discriminant analysis in 90 patients who had been operated ...OBJECTIVE: To estimate the operative mortality in patients with malignant obstructive jaundice. METHODS: Twelve risk factors were analyzed using multivariate discriminant analysis in 90 patients who had been operated on. RESULTS: Operative mortality was significantly related to the following factors: age, duration of jaundice, packed RBC volume, white blood cell count and concentration of blood urine nitrogen; it was not significantly related to diseases and types of operation. The following formula was obtained: packed RBC volume×0.09954-age×0. 04018-blood urine nitrogen×0. 23693-duration of jaundice× 2. 07388-WBC count×0. 21118+5. 26593. With this formula, an operative mortality of 77. 8% was predicted. CONCLUSION: With a positive value from the formula, the patient should be operated on; otherwise non-operative treatment is advocated.展开更多
Meretricis concha is a kind of marine traditional Chinese medicine(TCM), and has been commonly used for the treatment of asthma and scald burns. In order to investigate the relationship between the inorganic elemental...Meretricis concha is a kind of marine traditional Chinese medicine(TCM), and has been commonly used for the treatment of asthma and scald burns. In order to investigate the relationship between the inorganic elemental fingerprint and the geographical origin identification of Meretricis concha, the elemental contents of M. concha from five sampling points in Rushan Bay have been determined by means of inductively coupled plasma optical emission spectrometry(ICP-OES). Based on the contents of 14 inorganic elements(Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se, and Zn), the inorganic elemental fingerprint which well reflects the elemental characteristics was constructed. All the data from the five sampling points were discriminated with accuracy through hierarchical cluster analysis(HCA) and principle component analysis(PCA), indicating that a four-factor model which could explain approximately 80% of the detection data was established, and the elements Al, As, Cd, Cu, Ni and Pb could be viewed as the characteristic elements. This investigation suggests that the inorganic elemental fingerprint combined with multivariate statistical analysis is a promising method for verifying the geographical origin of M. concha, and this strategy should be valuable for the authenticity discrimination of some marine TCM.展开更多
A recent method for assessing the local influence is introduced by Cook(1986), in which the normal curvature of the influence graph based on the likelihood displacement is used to monitor the influence of small pertur...A recent method for assessing the local influence is introduced by Cook(1986), in which the normal curvature of the influence graph based on the likelihood displacement is used to monitor the influence of small perturbation. Since then this method has been applied to various kind of models. However, the local influence in multivariate analysis is still an unexplored area because the influence for many statistics in multivariate analysis is not convenient to handle based on the Cook's likelihood displacement. In this paper, we suggest a method with a slight modification in Cook's approach to assess the local influence of small perturbation on a certain statistic. The local influence of the perturbation on eigenvalue and eigenvector of variance-covariance matrix in theoretical and sample version is assessed, some results for the other statistics in multivariate analysis such as generalized variance, canonical correlations are studied. Finally, two examples are analysed for illustration.展开更多
AIM To assess the relationship between gastric acid output (GAO) and both pattern of gastroesophageal reflux (GER) and esophageal lesions, and to evaluate the role of GAO and other potential pathogenetic factors in t...AIM To assess the relationship between gastric acid output (GAO) and both pattern of gastroesophageal reflux (GER) and esophageal lesions, and to evaluate the role of GAO and other potential pathogenetic factors in the development of esophagitis. METHODS Gastric acid secretory testing and 24 h intraesophageal pH monitoring were performed in 31 patients with esophagitis and concomitant duodenal ulcer (E+DU) and compared with those of 72 patients with esophagitis (E) alone. RESULTS The GAO in patients with E+DU was significantly higher than in patients with E ( P <0 05). There was no significant difference between the two groups of patients as to endoscopicl findings and parameters of GER ( P >0 05). A multiple regression analysis with stepwise deletion showed that the pre sence of hiatal hernia (HH), GER in upright position and age appeared to correlate significantly with the presence of esophagitis. CONCLUSIONS No parallel relationship between GAO and severity of GER or esophageal lesions exists in patients with E+DU, and that GAO is not a major pathogenetic factor in GER disease.展开更多
Fatty acids(FAs) provide energy and also can be used to trace trophic relationships among organisms.Sea cucumber Apostichopus japonicus goes into a state of aestivation during warm summer months.We examined fatty acid...Fatty acids(FAs) provide energy and also can be used to trace trophic relationships among organisms.Sea cucumber Apostichopus japonicus goes into a state of aestivation during warm summer months.We examined fatty acid profiles in aestivated and non-aestivated A.japonicus using multivariate analyses(PERMANOVA,MDS,ANOSIM,and SIMPER).The results indicate that the fatty acid profiles of aestivated and non-aestivated sea cucumbers differed significantly.The FAs that were produced by bacteria and brown kelp contributed the most to the differences in the fatty acid composition of aestivated and nonaestivated sea cucumbers.Aestivated sea cucumbers may synthesize FAs from heterotrophic bacteria during early aestivation,and long chain FAs such as eicosapentaenoic(EPA) and docosahexaenoic acid(DHA) that produced from intestinal degradation,are digested during deep aestivation.Specific changes in the fatty acid composition of A.japonicus during aestivation needs more detailed study in the future.展开更多
This study evaluated the impact of chronicity (onset of injury to admission in-terval) on three domains of functional outcomes for a large group of traumatic brain injured (TBI) survivors. Subjects included 528 TBI ad...This study evaluated the impact of chronicity (onset of injury to admission in-terval) on three domains of functional outcomes for a large group of traumatic brain injured (TBI) survivors. Subjects included 528 TBI adults who were treated in post-hospital residential rehabilitation centers. Subjects were assigned to one of three chronicity groups: 1) Early Interval (EI), 2.00 - 8.00 months n = 245, 2) Mid Interval (MI), 8.01 - 24.00 months n = 129, and (3) Late Interval (LI), 24.01 months and greater n = 154. Functional status was assessed with the MPAI-4. RM MANCOVA was applied to evaluate differences among groups from admission to discharge. Rasch analysis demonstrated satisfactory construct validity and internal consistency (Person reliability = 0.90 - 0.94, Item reliability = 0.99) for the admission and discharge MPAI-4s. Controlling for LOS and age, the RM MANCOVA revealed that each chronicity group showed significant improvement in MPAI-4 abilities, adjustment, and participation indices from admission to discharge (p < 0.001). Improvement observed from admission to discharge was the greatest among the EI group (p < 0.001). This study demonstrated the utility of multivariate statistical approaches for understanding the complexities of TBI treatment outcomes. As measured across three domains of functioning, rehabilitation was effective in reducing disability for participants in each chronicity group. Of the three groups, EI participants presented as the most disabled at admission but also made the greatest gains when assessed at discharge.展开更多
The existing research of process capability indices of multiple quality characteristics mainly focuses on nonconforming of process output, the concept development of tmivariate process capability indices, quality loss...The existing research of process capability indices of multiple quality characteristics mainly focuses on nonconforming of process output, the concept development of tmivariate process capability indices, quality loss function and various comprehensive evaluation methods. The multivariate complexity increases the computation difficulty of multivariate process capability indices(MPCI), which makes them hard to be used in practice. In this paper, a new PCA-based MPCI approach is proposed to assess the production capability of the processes that involve multiple product quality characteristics. This approach first transforms the original quality variables into standardized normal variables. MPCI measures are then provided based on the Taam index. Moreover, the statistical properties of these MPCIs, such as confidence intervals and lower confidence bound, are given to let the practitioners understand the capability indices as random variables instead of deterministic variables. A real manufacturing data set and a synthetic data set are used to demonstrate the effectiveness of the proposed method. An implementation procedure is also provided for quality engineers to apply our MPCI approach in their manufacturing processes. The case studies demonstrate the effectiveness and feasibility of this new kind of MPCI, which is easier to be used in production practice. The proposed research provides a novel approach of MPCI calculation.展开更多
基金funded by the China's National Natural Science Foundation(No.41440027)。
文摘Population growth and expanding urbanization have caused persistent shortages and contamination of groundwater resources in Mali,Africa.The increase in groundwater salinity makes it more difficult for residents to obtain drinking water,it is necessary to clarify the causes and control factors of groundwater mineralization in Gao region,northern Mali.Based on the analysis of the hydrochemical composition of groundwater in 24 boreholes,Piper and Sch?eller diagrams,principal component analysis(PCA)and hierarchical cluster analysis(HCA)are used to carry out multivariate statistical analysis on the main ions.The results show that the groundwater samples are weakly alkaline,with pH values ranging from 5.83 to 8.40,and the average values of boreholes are 7.50,respectively.The average electrical conductivity(EC)value is 354.4(μS/cm),and the extreme value is between 124.0 and 1247(μS/cm).Water is usually mineralized and presents nine types of water phase.The three principal components explain 84.42%of the total variance for 13 parameters.The factor F1(58.85%),the factor F2(16.88%)and the factor F3(8.69%)present for the majority of the total data set.In addition,multivariate statistical analysis confirmed the genetic relationship among aquifers and identified three main clusters.Clustering related to groundwater mineralization(F1),clustering related to oxide reduction and iron enrichment(F2),and clustering of groundwater pollution caused by nitrate and magnesium(F3).We found that agriculture,weathering activities and dissolution of geological materials promote the mineralization of groundwater.Groundwater quality in the Gao region is becoming less and less potable because of increasing salinity.
基金Supported by National Natural Science Foundation of China(41001341)Natural Science Foundation of Guangdong Province(9152800001000007)+1 种基金Open Fund ofState Key Laboratory of Subtropical Building Science(2011KB12)Basic Scientific Research Expenses Project of Central Universities(2012ZM0082)~~
文摘[Objective] The plankton and macrobenthos samples in municipal polluted river were analyzed by different methods, so as to explore the method suitable for biological data analysis in heavy polluted area. [Method] Shannon-Wiener diversity index, cluster analysis of multivariate statistical analysis and MDS (Non-matric Multi- dimentional Scaling)analysis were used to analyze biological data of phytoplankton, zooplankton and Zoobenthos collected from the representative municipal polluted river in Pearl River Delta. The sediment samples were also collected to determine. Pb, Cd, Hg, Cr, As, Cu, Ni, Zn, as well as CODe, and NH3-N of porewater. Hakanson potential ecological risk index method was used to evaluate the ecological risk. [Re- suit] Shannon-Wiener diversity index analysis results can not effectively reflect the difference of pollution status of various stations in heavy polluted area; despite the presence of some problems, multivariate analysis method is superior to the Shannon-Wiener diversity index method in biological monitoring of heavy polluted river in the city. [Conclusion] The paper provided theoretical basis for biological data analysis in heavy polluted area.
文摘[Objectives]To study the factors influencing the tourism economy in Henan Province.[Methods]Using tourism-related data from Henan Province covering the period from 2000 to 2020,this study constructs a regression model based on multivariate statistical methods to investigate the determinants of the tourism economy.The dependent variable in the model is the domestic tourism revenue of Henan Province,while the independent variables comprise the number of tourist arrivals,total operational railway mileage,the number of travel agencies,and the per capita disposable income of urban residents.[Results]Both the total railway mileage and the per capita disposable income of urban residents are the primary factors influencing the development of Henan's tourism economy.[Conclusions]It is recommended to reduce uncertainty and liquidity constraints to mitigate residents'precautionary savings behavior,actively expand domestic demand to leverage tourism as an economic driver,and improve infrastructure to support tourism development.
基金supported in part by the National Science Fund for Distinguished Young Scholars of China(62225303)the National Natural Science Fundation of China(62303039,62433004)+2 种基金the China Postdoctoral Science Foundation(BX20230034,2023M730190)the Fundamental Research Funds for the Central Universities(buctrc202201,QNTD2023-01)the High Performance Computing Platform,College of Information Science and Technology,Beijing University of Chemical Technology
文摘Data-driven process monitoring is an effective approach to assure safe operation of modern manufacturing and energy systems,such as thermal power plants being studied in this work.Industrial processes are inherently dynamic and need to be monitored using dynamic algorithms.Mainstream dynamic algorithms rely on concatenating current measurement with past data.This work proposes a new,alternative dynamic process monitoring algorithm,using dot product feature analysis(DPFA).DPFA computes the dot product of consecutive samples,thus naturally capturing the process dynamics through temporal correlation.At the same time,DPFA's online computational complexity is lower than not just existing dynamic algorithms,but also classical static algorithms(e.g.,principal component analysis and slow feature analysis).The detectability of the new algorithm is analyzed for three types of faults typically seen in process systems:sensor bias,process fault and gain change fault.Through experiments with a numerical example and real data from a thermal power plant,the DPFA algorithm is shown to be superior to the state-of-the-art methods,in terms of better monitoring performance(fault detection rate and false alarm rate)and lower computational complexity.
基金supported by the Major State Basic Research Development Program (No. 2010CB428800)the Geological Survey Projects Foundation of Institute of Hydrogeology and Environmental Geology (No. SK201308)
文摘Understanding the controlling factor of groundwater quality can enhance promoting sustainable development of groundwater resources. To this end, multivariate statistical analysis(MA) and hydrochemical analysis were introduced in this work. The results indicate that the canonical discriminant function with 7 parameters was established using the discriminant analysis(DA) method, which can afford 100% correct assignation according to the 3 different clusters(good water(GW), poor water(PW), and very poor water(VPW)) obtained from cluster analysis(CA). According to factor analysis(FA), 8 factors were extracted from 25 hydrochemical elements and account for 80.897% of the total data variance, suggesting that groundwater with higher concentrations of sodium, calcium, magnesium, chloride, and sulfate in southeastern study area are mainly affected by the natural process; the higher level of arsenic and chromium in groundwater extracted from northwestern part of study area are derived by industrial activities; domestic and agriculture sewage have important contribution to copper, iron, iodine, and phosphate in the northern study area. Therefore, this work can help identify the main controlling factor of groundwater quality in North China plain so as to make better and more informed decisions about how to achieve groundwater resources sustainable development.
基金supported by the National Natural Science Foundation of China(71401052)the Key Project of National Social Science Fund of China(12AZD108)+2 种基金the Doctoral Fund of Ministry of Education(20120094120024)the Philosophy and Social Science Fund of Jiangsu Province Universities(2013SJD630073)the Central University Basic Service Project Fee of Hohai University(2011B09914)
文摘To overcome the too fine-grained granularity problem of multivariate grey incidence analysis and to explore the comprehensive incidence analysis model, three multivariate grey incidences degree models based on principal component analysis (PCA) are proposed. Firstly, the PCA method is introduced to extract the feature sequences of a behavioral matrix. Then, the grey incidence analysis between two behavioral matrices is transformed into the similarity and nearness measure between their feature sequences. Based on the classic grey incidence analysis theory, absolute and relative incidence degree models for feature sequences are constructed, and a comprehensive grey incidence model is proposed. Furthermore, the properties of models are researched. It proves that the proposed models satisfy the properties of translation invariance, multiple transformation invariance, and axioms of the grey incidence analysis, respectively. Finally, a case is studied. The results illustrate that the model is effective than other multivariate grey incidence analysis models.
基金supported by grants from the National Natural Science Foundation of China (30900366,31070905)
文摘Multivariate pattern analysis(MVPA) is a recently-developed approach for functional magnetic resonance imaging(fMRI) data analyses.Compared with the traditional univariate methods,MVPA is more sensitive to subtle changes in multivariate patterns in fMRI data.In this review,we introduce several significant advances in MVPA applications and summarize various combinations of algorithms and parameters in different problem settings.The limitations of MVPA and some critical questions that need to be addressed in future research are also discussed.
文摘In this study,the analytical data set of 26 groundwater samples from the alluvial aquifer of Boumerzoug-E1 khroub valley has been processed simultaneously with Multivariate analysis,geostatistical modeling,WQI,and geochemical modeling.Cluster analysis identified three main water types based on the major ion contents,where mineralization increased from group 1 to group 3.These groups were confirmed by FA/PCA,which demonstrated that groundwater quality is influenced by geochemical processes(water-rock interaction)and human practice(irrigation).The exponential semivariogram model WQI.Groundwater chemistry has a strong spatial structure for Mg,Na,Cl,and NO3,and a moderate spatial structure for EC,Ca,K,HCO3,and SO4.Water quality maps generated using ordinary Kriging are consistent with the HCA and PCA results.All water groups are supersaturated with respect to carbonate minerals,and dissolution of kaolinite and Ca-smectite is one of the processes responsible for hydrochemical evolution in the area.
基金supported by grants from the National Program on the Development of Basic Research (2011CB100100)the Priority Academic Program Development of Jiangsu Higher Education Institutions, the National Natural Science Foundations (31391632, 31200943, 31171187, and 91535103)+3 种基金the National High-tech R&D Program (863 Program) (2014AA10A601-5)the Natural Science Foundations of Jiangsu Province (BK20150010)the Natural Science Foundation of the Jiangsu Higher Education Institutions (14KJA210005)the Innovative Research Team of Universities in Jiangsu Province (KYLX_1352)
文摘Many complex traits are highly correlated rather than independent. By taking the correlation structure of multiple traits into account, joint association analyses can achieve both higher statistical power and more accurate estimation. To develop a statistical approach to joint association analysis that includes allele detection and genetic effect estimation, we combined multivariate partial least squares regression with variable selection strategies and selected the optimal model using the Bayesian Information Criterion(BIC). We then performed extensive simulations under varying heritabilities and sample sizes to compare the performance achieved using our method with those obtained by single-trait multilocus methods. Joint association analysis has measurable advantages over single-trait methods, as it exhibits superior gene detection power, especially for pleiotropic genes. Sample size, heritability,polymorphic information content(PIC), and magnitude of gene effects influence the statistical power, accuracy and precision of effect estimation by the joint association analysis.
基金Supported by the National Natural Science Foundation of China (No.60574047) and the Doctorate Foundation of the State Education Ministry of China (No.20050335018).
文摘Abstract Data-driven tools, such as principal component analysis (PCA) and independent component analysis (ICA) have been applied to different benchmarks as process monitoring methods. The difference between the two methods is that the components of PCA are still dependent while ICA has no orthogonality constraint and its latentvariables are independent. Process monitoring with PCA often supposes that process data or principal components is Gaussian distribution. However, this kind of constraint cannot be satisfied by several practical processes. To ex-tend the use of PCA, a nonparametric method is added to PCA to overcome the difficulty, and kernel density estimation (KDE) is rather a good choice. Though ICA is based on non-Gaussian distribution intormation, .KDE can help in the close monitoring of the data. Methods, such as PCA, ICA, PCA.with .KDE(KPCA), and ICA with KDE,(KICA), are demonstrated and. compared by applying them to a practical industnal Spheripol craft polypropylene catalyzer reactor instead of a laboratory emulator.
基金supported by The Hong Kong Polytechnic University through the project RU3Ythe Research Grant Council through the project PolyU 5128/13E+1 种基金National Natural Science Foundation of China(Grant No.51778313)Cooperative Innovation Center of Engineering Construction and Safety in Shangdong Blue Economic Zone
文摘This study aims to extend the multivariate adaptive regression splines(MARS)-Monte Carlo simulation(MCS) method for reliability analysis of slopes in spatially variable soils. This approach is used to explore the influences of the multiscale spatial variability of soil properties on the probability of failure(P_f) of the slopes. In the proposed approach, the relationship between the factor of safety and the soil strength parameters characterized with spatial variability is approximated by the MARS, with the aid of Karhunen-Loeve expansion. MCS is subsequently performed on the established MARS model to evaluate Pf.Finally, a nominally homogeneous cohesive-frictional slope and a heterogeneous cohesive slope, which are both characterized with different spatial variabilities, are utilized to illustrate the proposed approach.Results showed that the proposed approach can estimate the P_f of the slopes efficiently in spatially variable soils with sufficient accuracy. Moreover, the approach is relatively robust to the influence of different statistics of soil properties, thereby making it an effective and practical tool for addressing slope reliability problems concerning time-consuming deterministic stability models with low levels of P_f.Furthermore, disregarding the multiscale spatial variability of soil properties can overestimate or underestimate the P_f. Although the difference is small in general, the multiscale spatial variability of the soil properties must still be considered in the reliability analysis of heterogeneous slopes, especially for those highly related to cost effective and accurate designs.
文摘OBJECTIVE: To estimate the operative mortality in patients with malignant obstructive jaundice. METHODS: Twelve risk factors were analyzed using multivariate discriminant analysis in 90 patients who had been operated on. RESULTS: Operative mortality was significantly related to the following factors: age, duration of jaundice, packed RBC volume, white blood cell count and concentration of blood urine nitrogen; it was not significantly related to diseases and types of operation. The following formula was obtained: packed RBC volume×0.09954-age×0. 04018-blood urine nitrogen×0. 23693-duration of jaundice× 2. 07388-WBC count×0. 21118+5. 26593. With this formula, an operative mortality of 77. 8% was predicted. CONCLUSION: With a positive value from the formula, the patient should be operated on; otherwise non-operative treatment is advocated.
基金supposed by the Program for Science and Technology of Shandong Province (2011GHY11521)the Department of Education of Shandong Province (No. J11LB07)the Natural Science Foundation of Qingdao City (Nos. 12-1-3-52-(1)-nsh and 12-1-4-16-(7)-jch)
文摘Meretricis concha is a kind of marine traditional Chinese medicine(TCM), and has been commonly used for the treatment of asthma and scald burns. In order to investigate the relationship between the inorganic elemental fingerprint and the geographical origin identification of Meretricis concha, the elemental contents of M. concha from five sampling points in Rushan Bay have been determined by means of inductively coupled plasma optical emission spectrometry(ICP-OES). Based on the contents of 14 inorganic elements(Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se, and Zn), the inorganic elemental fingerprint which well reflects the elemental characteristics was constructed. All the data from the five sampling points were discriminated with accuracy through hierarchical cluster analysis(HCA) and principle component analysis(PCA), indicating that a four-factor model which could explain approximately 80% of the detection data was established, and the elements Al, As, Cd, Cu, Ni and Pb could be viewed as the characteristic elements. This investigation suggests that the inorganic elemental fingerprint combined with multivariate statistical analysis is a promising method for verifying the geographical origin of M. concha, and this strategy should be valuable for the authenticity discrimination of some marine TCM.
文摘A recent method for assessing the local influence is introduced by Cook(1986), in which the normal curvature of the influence graph based on the likelihood displacement is used to monitor the influence of small perturbation. Since then this method has been applied to various kind of models. However, the local influence in multivariate analysis is still an unexplored area because the influence for many statistics in multivariate analysis is not convenient to handle based on the Cook's likelihood displacement. In this paper, we suggest a method with a slight modification in Cook's approach to assess the local influence of small perturbation on a certain statistic. The local influence of the perturbation on eigenvalue and eigenvector of variance-covariance matrix in theoretical and sample version is assessed, some results for the other statistics in multivariate analysis such as generalized variance, canonical correlations are studied. Finally, two examples are analysed for illustration.
文摘AIM To assess the relationship between gastric acid output (GAO) and both pattern of gastroesophageal reflux (GER) and esophageal lesions, and to evaluate the role of GAO and other potential pathogenetic factors in the development of esophagitis. METHODS Gastric acid secretory testing and 24 h intraesophageal pH monitoring were performed in 31 patients with esophagitis and concomitant duodenal ulcer (E+DU) and compared with those of 72 patients with esophagitis (E) alone. RESULTS The GAO in patients with E+DU was significantly higher than in patients with E ( P <0 05). There was no significant difference between the two groups of patients as to endoscopicl findings and parameters of GER ( P >0 05). A multiple regression analysis with stepwise deletion showed that the pre sence of hiatal hernia (HH), GER in upright position and age appeared to correlate significantly with the presence of esophagitis. CONCLUSIONS No parallel relationship between GAO and severity of GER or esophageal lesions exists in patients with E+DU, and that GAO is not a major pathogenetic factor in GER disease.
基金Supported by the National Marine Public Welfare Research Project(No.201305043)the National Natural Science Foundation of China(No.41106134)the National Key Technology R&D Program of China(Nos.2011BAD13B02,2010BAC68B01)
文摘Fatty acids(FAs) provide energy and also can be used to trace trophic relationships among organisms.Sea cucumber Apostichopus japonicus goes into a state of aestivation during warm summer months.We examined fatty acid profiles in aestivated and non-aestivated A.japonicus using multivariate analyses(PERMANOVA,MDS,ANOSIM,and SIMPER).The results indicate that the fatty acid profiles of aestivated and non-aestivated sea cucumbers differed significantly.The FAs that were produced by bacteria and brown kelp contributed the most to the differences in the fatty acid composition of aestivated and nonaestivated sea cucumbers.Aestivated sea cucumbers may synthesize FAs from heterotrophic bacteria during early aestivation,and long chain FAs such as eicosapentaenoic(EPA) and docosahexaenoic acid(DHA) that produced from intestinal degradation,are digested during deep aestivation.Specific changes in the fatty acid composition of A.japonicus during aestivation needs more detailed study in the future.
文摘This study evaluated the impact of chronicity (onset of injury to admission in-terval) on three domains of functional outcomes for a large group of traumatic brain injured (TBI) survivors. Subjects included 528 TBI adults who were treated in post-hospital residential rehabilitation centers. Subjects were assigned to one of three chronicity groups: 1) Early Interval (EI), 2.00 - 8.00 months n = 245, 2) Mid Interval (MI), 8.01 - 24.00 months n = 129, and (3) Late Interval (LI), 24.01 months and greater n = 154. Functional status was assessed with the MPAI-4. RM MANCOVA was applied to evaluate differences among groups from admission to discharge. Rasch analysis demonstrated satisfactory construct validity and internal consistency (Person reliability = 0.90 - 0.94, Item reliability = 0.99) for the admission and discharge MPAI-4s. Controlling for LOS and age, the RM MANCOVA revealed that each chronicity group showed significant improvement in MPAI-4 abilities, adjustment, and participation indices from admission to discharge (p < 0.001). Improvement observed from admission to discharge was the greatest among the EI group (p < 0.001). This study demonstrated the utility of multivariate statistical approaches for understanding the complexities of TBI treatment outcomes. As measured across three domains of functioning, rehabilitation was effective in reducing disability for participants in each chronicity group. Of the three groups, EI participants presented as the most disabled at admission but also made the greatest gains when assessed at discharge.
基金supported by National Natural Science Foundation of China(Grant Nos.70802043,71225006 and 71002105)
文摘The existing research of process capability indices of multiple quality characteristics mainly focuses on nonconforming of process output, the concept development of tmivariate process capability indices, quality loss function and various comprehensive evaluation methods. The multivariate complexity increases the computation difficulty of multivariate process capability indices(MPCI), which makes them hard to be used in practice. In this paper, a new PCA-based MPCI approach is proposed to assess the production capability of the processes that involve multiple product quality characteristics. This approach first transforms the original quality variables into standardized normal variables. MPCI measures are then provided based on the Taam index. Moreover, the statistical properties of these MPCIs, such as confidence intervals and lower confidence bound, are given to let the practitioners understand the capability indices as random variables instead of deterministic variables. A real manufacturing data set and a synthetic data set are used to demonstrate the effectiveness of the proposed method. An implementation procedure is also provided for quality engineers to apply our MPCI approach in their manufacturing processes. The case studies demonstrate the effectiveness and feasibility of this new kind of MPCI, which is easier to be used in production practice. The proposed research provides a novel approach of MPCI calculation.