期刊文献+
共找到484篇文章
< 1 2 25 >
每页显示 20 50 100
Adapting to the stream:an instance-attention GNN method for irregular multivariate time series data
1
作者 Kun HAN Abigail M Y KOAY +2 位作者 Ryan K L KO Weitong CHEN Miao XU 《Frontiers of Computer Science》 2025年第8期23-35,共13页
Multivariate time series(MTS)data are vital for various applications,particularly in machine learning tasks.However,challenges such as sensor failures can result in irregular and misaligned data with missing values,th... Multivariate time series(MTS)data are vital for various applications,particularly in machine learning tasks.However,challenges such as sensor failures can result in irregular and misaligned data with missing values,thereby complicating their analysis.While recent advancements use graph neural networks(GNNs)to manage these Irregular Multivariate Time Series(IMTS)data,they generally require a reliable graph structure,either pre-existing or inferred from adequate data to properly capture node correlations.This poses a challenge in applications where IMTS data are often streamed and waiting for future data to estimate a suitable graph structure becomes impractical.To overcome this,we introduce a dynamic GNN model suited for streaming characteristics of IMTS data,incorporating an instance-attention mechanism that dynamically learns and updates graph edge weights for real-time analysis.We also tailor strategies for high-frequency and low-frequency data to enhance prediction accuracy.Empirical results on real-world datasets demonstrate the superiority of our proposed model in both classification and imputation tasks. 展开更多
关键词 multivariate time series irregular multivariate time series graph neural networks
原文传递
A prediction comparison between univariate and multivariate chaotic time series 被引量:3
2
作者 王海燕 朱梅 《Journal of Southeast University(English Edition)》 EI CAS 2003年第4期414-417,共4页
The methods to determine time delays and embedding dimensions in the phase space delay reconstruction of multivariate chaotic time series are proposed. Three nonlinear prediction methods of multivariate chaotic tim... The methods to determine time delays and embedding dimensions in the phase space delay reconstruction of multivariate chaotic time series are proposed. Three nonlinear prediction methods of multivariate chaotic time series including local mean prediction, local linear prediction and BP neural networks prediction are considered. The simulation results obtained by the Lorenz system show that no matter what nonlinear prediction method is used, the prediction error of multivariate chaotic time series is much smaller than the prediction error of univariate time series, even if half of the data of univariate time series are used in multivariate time series. The results also verify that methods to determine the time delays and the embedding dimensions are correct from the view of minimizing the prediction error. 展开更多
关键词 multivariate chaotic time series phase space reconstruction PREDICTION neural networks
在线阅读 下载PDF
Generating Adversarial Samples on Multivariate Time Series using Variational Autoencoders 被引量:10
3
作者 Samuel Harford Fazle Karim Houshang Darabi 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第9期1523-1538,共16页
Classification models for multivariate time series have drawn the interest of many researchers to the field with the objective of developing accurate and efficient models.However,limited research has been conducted on... Classification models for multivariate time series have drawn the interest of many researchers to the field with the objective of developing accurate and efficient models.However,limited research has been conducted on generating adversarial samples for multivariate time series classification models.Adversarial samples could become a security concern in systems with complex sets of sensors.This study proposes extending the existing gradient adversarial transformation network(GATN)in combination with adversarial autoencoders to attack multivariate time series classification models.The proposed model attacks classification models by utilizing a distilled model to imitate the output of the multivariate time series classification model.In addition,the adversarial generator function is replaced with a variational autoencoder to enhance the adversarial samples.The developed methodology is tested on two multivariate time series classification models:1-nearest neighbor dynamic time warping(1-NN DTW)and a fully convolutional network(FCN).This study utilizes 30 multivariate time series benchmarks provided by the University of East Anglia(UEA)and University of California Riverside(UCR).The use of adversarial autoencoders shows an increase in the fraction of successful adversaries generated on multivariate time series.To the best of our knowledge,this is the first study to explore adversarial attacks on multivariate time series.Additionally,we recommend future research utilizing the generated latent space from the variational autoencoders. 展开更多
关键词 Adversarial machine learning deep learning multivariate time series perturbation methods
在线阅读 下载PDF
Multivariate time series prediction based on AR_CLSTM 被引量:2
4
作者 QIAO Gangzhu SU Rong ZHANG Hongfei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第3期322-330,共9页
Time series is a kind of data widely used in various fields such as electricity forecasting,exchange rate forecasting,and solar power generation forecasting,and therefore time series prediction is of great significanc... Time series is a kind of data widely used in various fields such as electricity forecasting,exchange rate forecasting,and solar power generation forecasting,and therefore time series prediction is of great significance.Recently,the encoder-decoder model combined with long short-term memory(LSTM)is widely used for multivariate time series prediction.However,the encoder can only encode information into fixed-length vectors,hence the performance of the model decreases rapidly as the length of the input sequence or output sequence increases.To solve this problem,we propose a combination model named AR_CLSTM based on the encoder_decoder structure and linear autoregression.The model uses a time step-based attention mechanism to enable the decoder to adaptively select past hidden states and extract useful information,and then uses convolution structure to learn the internal relationship between different dimensions of multivariate time series.In addition,AR_CLSTM combines the traditional linear autoregressive method to learn the linear relationship of the time series,so as to further reduce the error of time series prediction in the encoder_decoder structure and improve the multivariate time series Predictive effect.Experiments show that the AR_CLSTM model performs well in different time series predictions,and its root mean square error,mean square error,and average absolute error all decrease significantly. 展开更多
关键词 encoder_decoder attention mechanism CONVOLUTION autoregression model multivariate time series
暂未订购
Multivariate Time Series Anomaly Detection Based on Spatial-Temporal Network and Transformer in Industrial Internet of Things 被引量:1
5
作者 Mengmeng Zhao Haipeng Peng +1 位作者 Lixiang Li Yeqing Ren 《Computers, Materials & Continua》 SCIE EI 2024年第8期2815-2837,共23页
In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.A... In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.Although many anomaly detection methods have been proposed,the temporal correlation of the time series over the same sensor and the state(spatial)correlation between different sensors are rarely considered simultaneously in these methods.Owing to the superior capability of Transformer in learning time series features.This paper proposes a time series anomaly detection method based on a spatial-temporal network and an improved Transformer.Additionally,the methods based on graph neural networks typically include a graph structure learning module and an anomaly detection module,which are interdependent.However,in the initial phase of training,since neither of the modules has reached an optimal state,their performance may influence each other.This scenario makes the end-to-end training approach hard to effectively direct the learning trajectory of each module.This interdependence between the modules,coupled with the initial instability,may cause the model to find it hard to find the optimal solution during the training process,resulting in unsatisfactory results.We introduce an adaptive graph structure learning method to obtain the optimal model parameters and graph structure.Experiments on two publicly available datasets demonstrate that the proposed method attains higher anomaly detection results than other methods. 展开更多
关键词 multivariate time series anomaly detection spatial-temporal network TRANSFORMER
在线阅读 下载PDF
A Memory-Guided Anomaly Detection Model with Contrastive Learning for Multivariate Time Series 被引量:1
6
作者 Wei Zhang Ping He +2 位作者 Ting Li Fan Yang Ying Liu 《Computers, Materials & Continua》 SCIE EI 2023年第11期1893-1910,共18页
Some reconstruction-based anomaly detection models in multivariate time series have brought impressive performance advancements but suffer from weak generalization ability and a lack of anomaly identification.These li... Some reconstruction-based anomaly detection models in multivariate time series have brought impressive performance advancements but suffer from weak generalization ability and a lack of anomaly identification.These limitations can result in the misjudgment of models,leading to a degradation in overall detection performance.This paper proposes a novel transformer-like anomaly detection model adopting a contrastive learning module and a memory block(CLME)to overcome the above limitations.The contrastive learning module tailored for time series data can learn the contextual relationships to generate temporal fine-grained representations.The memory block can record normal patterns of these representations through the utilization of attention-based addressing and reintegration mechanisms.These two modules together effectively alleviate the problem of generalization.Furthermore,this paper introduces a fusion anomaly detection strategy that comprehensively takes into account the residual and feature spaces.Such a strategy can enlarge the discrepancies between normal and abnormal data,which is more conducive to anomaly identification.The proposed CLME model not only efficiently enhances the generalization performance but also improves the ability of anomaly detection.To validate the efficacy of the proposed approach,extensive experiments are conducted on well-established benchmark datasets,including SWaT,PSM,WADI,and MSL.The results demonstrate outstanding performance,with F1 scores of 90.58%,94.83%,91.58%,and 91.75%,respectively.These findings affirm the superiority of the CLME model over existing stateof-the-art anomaly detection methodologies in terms of its ability to detect anomalies within complex datasets accurately. 展开更多
关键词 Anomaly detection multivariate time series contrastive learning memory network
在线阅读 下载PDF
Generic reconstruction technology based on RST for multivariate time series of complex process industries 被引量:1
7
作者 孔玲爽 阳春华 +2 位作者 李建奇 朱红求 王雅琳 《Journal of Central South University》 SCIE EI CAS 2012年第5期1311-1316,共6页
In order to effectively analyse the multivariate time series data of complex process,a generic reconstruction technology based on reduction theory of rough sets was proposed,Firstly,the phase space of multivariate tim... In order to effectively analyse the multivariate time series data of complex process,a generic reconstruction technology based on reduction theory of rough sets was proposed,Firstly,the phase space of multivariate time series was originally reconstructed by a classical reconstruction technology.Then,the original decision-table of rough set theory was set up according to the embedding dimensions and time-delays of the original reconstruction phase space,and the rough set reduction was used to delete the redundant dimensions and irrelevant variables and to reconstruct the generic phase space,Finally,the input vectors for the prediction of multivariate time series were extracted according to generic reconstruction results to identify the parameters of prediction model.Verification results show that the developed reconstruction method leads to better generalization ability for the prediction model and it is feasible and worthwhile for application. 展开更多
关键词 complex process industry prediction model multivariate time series rough sets
在线阅读 下载PDF
Fine-Grained Multivariate Time Series Anomaly Detection in IoT 被引量:1
8
作者 Shiming He Meng Guo +4 位作者 Bo Yang Osama Alfarraj Amr Tolba Pradip Kumar Sharma Xi’ai Yan 《Computers, Materials & Continua》 SCIE EI 2023年第6期5027-5047,共21页
Sensors produce a large amount of multivariate time series data to record the states of Internet of Things(IoT)systems.Multivariate time series timestamp anomaly detection(TSAD)can identify timestamps of attacks and m... Sensors produce a large amount of multivariate time series data to record the states of Internet of Things(IoT)systems.Multivariate time series timestamp anomaly detection(TSAD)can identify timestamps of attacks and malfunctions.However,it is necessary to determine which sensor or indicator is abnormal to facilitate a more detailed diagnosis,a process referred to as fine-grained anomaly detection(FGAD).Although further FGAD can be extended based on TSAD methods,existing works do not provide a quantitative evaluation,and the performance is unknown.Therefore,to tackle the FGAD problem,this paper first verifies that the TSAD methods achieve low performance when applied to the FGAD task directly because of the excessive fusion of features and the ignoring of the relationship’s dynamic changes between indicators.Accordingly,this paper proposes a mul-tivariate time series fine-grained anomaly detection(MFGAD)framework.To avoid excessive fusion of features,MFGAD constructs two sub-models to independently identify the abnormal timestamp and abnormal indicator instead of a single model and then combines the two kinds of abnormal results to detect the fine-grained anomaly.Based on this framework,an algorithm based on Graph Attention Neural Network(GAT)and Attention Convolutional Long-Short Term Memory(A-ConvLSTM)is proposed,in which GAT learns temporal features of multiple indicators to detect abnormal timestamps and A-ConvLSTM captures the dynamic relationship between indicators to identify abnormal indicators.Extensive simulations on a real-world dataset demonstrate that the proposed algorithm can achieve a higher F1 score and hit rate than the extension of existing TSAD methods with the benefit of two independent sub-models for timestamp and indicator detection. 展开更多
关键词 multivariate time series graph attention neural network fine-grained anomaly detection
在线阅读 下载PDF
Advancing Autoencoder Architectures for Enhanced Anomaly Detection in Multivariate Industrial Time Series
9
作者 Byeongcheon Lee Sangmin Kim +2 位作者 Muazzam Maqsood Jihoon Moon Seungmin Rho 《Computers, Materials & Continua》 SCIE EI 2024年第10期1275-1300,共26页
In the context of rapid digitization in industrial environments,how effective are advanced unsupervised learning models,particularly hybrid autoencoder models,at detecting anomalies in industrial control system(ICS)da... In the context of rapid digitization in industrial environments,how effective are advanced unsupervised learning models,particularly hybrid autoencoder models,at detecting anomalies in industrial control system(ICS)datasets?This study is crucial because it addresses the challenge of identifying rare and complex anomalous patterns in the vast amounts of time series data generated by Internet of Things(IoT)devices,which can significantly improve the reliability and safety of these systems.In this paper,we propose a hybrid autoencoder model,called ConvBiLSTMAE,which combines convolutional neural network(CNN)and bidirectional long short-term memory(BiLSTM)to more effectively train complex temporal data patterns in anomaly detection.On the hardware-in-the-loopbased extended industrial control system dataset,the ConvBiLSTM-AE model demonstrated remarkable anomaly detection performance,achieving F1 scores of 0.78 and 0.41 for the first and second datasets,respectively.The results suggest that hybrid autoencoder models are not only viable,but potentially superior alternatives for unsupervised anomaly detection in complex industrial systems,offering a promising approach to improving their reliability and safety. 展开更多
关键词 Advanced anomaly detection autoencoder innovations unsupervised learning industrial security multivariate time series analysis
在线阅读 下载PDF
AFSTGCN:Prediction for multivariate time series using an adaptive fused spatial-temporal graph convolutional network
10
作者 Yuteng Xiao Kaijian Xia +5 位作者 Hongsheng Yin Yu-Dong Zhang Zhenjiang Qian Zhaoyang Liu Yuehan Liang Xiaodan Li 《Digital Communications and Networks》 SCIE CSCD 2024年第2期292-303,共12页
The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries an... The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries and other fields.Furthermore,it is important to construct a digital twin system.However,existing methods do not take full advantage of the potential properties of variables,which results in poor predicted accuracy.In this paper,we propose the Adaptive Fused Spatial-Temporal Graph Convolutional Network(AFSTGCN).First,to address the problem of the unknown spatial-temporal structure,we construct the Adaptive Fused Spatial-Temporal Graph(AFSTG)layer.Specifically,we fuse the spatial-temporal graph based on the interrelationship of spatial graphs.Simultaneously,we construct the adaptive adjacency matrix of the spatial-temporal graph using node embedding methods.Subsequently,to overcome the insufficient extraction of disordered correlation features,we construct the Adaptive Fused Spatial-Temporal Graph Convolutional(AFSTGC)module.The module forces the reordering of disordered temporal,spatial and spatial-temporal dependencies into rule-like data.AFSTGCN dynamically and synchronously acquires potential temporal,spatial and spatial-temporal correlations,thereby fully extracting rich hierarchical feature information to enhance the predicted accuracy.Experiments on different types of MTS datasets demonstrate that the model achieves state-of-the-art single-step and multi-step performance compared with eight other deep learning models. 展开更多
关键词 Adaptive adjacency matrix Digital twin Graph convolutional network multivariate time series prediction Spatial-temporal graph
在线阅读 下载PDF
Dynamic Ensemble Multivariate Time Series Forecasting Model for PM2.5
11
作者 Narendran Sobanapuram Muruganandam Umamakeswari Arumugam 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期979-989,共11页
In forecasting real time environmental factors,large data is needed to analyse the pattern behind the data values.Air pollution is a major threat towards developing countries and it is proliferating every year.Many me... In forecasting real time environmental factors,large data is needed to analyse the pattern behind the data values.Air pollution is a major threat towards developing countries and it is proliferating every year.Many methods in time ser-ies prediction and deep learning models to estimate the severity of air pollution.Each independent variable contributing towards pollution is necessary to analyse the trend behind the air pollution in that particular locality.This approach selects multivariate time series and coalesce a real time updatable autoregressive model to forecast Particulate matter(PM)PM2.5.To perform experimental analysis the data from the Central Pollution Control Board(CPCB)is used.Prediction is car-ried out for Chennai with seven locations and estimated PM’s using the weighted ensemble method.Proposed method for air pollution prediction unveiled effective and moored performance in long term prediction.Dynamic budge with high weighted k-models are used simultaneously and devising an ensemble helps to achieve stable forecasting.Computational time of ensemble decreases with paral-lel processing in each sub model.Weighted ensemble model shows high perfor-mance in long term prediction when compared to the traditional time series models like Vector Auto-Regression(VAR),Autoregressive Integrated with Mov-ing Average(ARIMA),Autoregressive Moving Average with Extended terms(ARMEX).Evaluation metrics like Root Mean Square Error(RMSE),Mean Absolute Error(MAE)and the time to achieve the time series are compared. 展开更多
关键词 Dynamic transfer ensemble model air pollution time series analysis multivariate analysis
在线阅读 下载PDF
Production performance forecasting method based on multivariate time series and vector autoregressive machine learning model for waterflooding reservoirs
12
作者 ZHANG Rui JIA Hu 《Petroleum Exploration and Development》 CSCD 2021年第1期201-211,共11页
A forecasting method of oil well production based on multivariate time series(MTS)and vector autoregressive(VAR)machine learning model for waterflooding reservoir is proposed,and an example application is carried out.... A forecasting method of oil well production based on multivariate time series(MTS)and vector autoregressive(VAR)machine learning model for waterflooding reservoir is proposed,and an example application is carried out.This method first uses MTS analysis to optimize injection and production data on the basis of well pattern analysis.The oil production of different production wells and water injection of injection wells in the well group are regarded as mutually related time series.Then a VAR model is established to mine the linear relationship from MTS data and forecast the oil well production by model fitting.The analysis of history production data of waterflooding reservoirs shows that,compared with history matching results of numerical reservoir simulation,the production forecasting results from the machine learning model are more accurate,and uncertainty analysis can improve the safety of forecasting results.Furthermore,impulse response analysis can evaluate the oil production contribution of the injection well,which can provide theoretical guidance for adjustment of waterflooding development plan. 展开更多
关键词 waterflooding reservoir production prediction machine learning multivariate time series vector autoregression uncertainty analysis
在线阅读 下载PDF
Volatility in High-Frequency Intensive Care Mortality Time Series: Application of Univariate and Multivariate GARCH Models
13
作者 John L. Moran Patricia J. Solomon 《Open Journal of Applied Sciences》 2017年第8期385-411,共27页
Mortality time series display time-varying volatility. The utility of statistical estimators from the financial time-series paradigm, which account for this characteristic, has not been addressed for high-frequency mo... Mortality time series display time-varying volatility. The utility of statistical estimators from the financial time-series paradigm, which account for this characteristic, has not been addressed for high-frequency mortality series. Using daily mean-mortality series of an exemplar intensive care unit (ICU) from the Australian and New Zealand Intensive Care Society adult patient database, joint estimation of a mean and conditional variance (volatility) model for a stationary series was undertaken via univariate autoregressive moving average (ARMA, lags (p, q)), GARCH (Generalised Autoregressive Conditional Heteroscedasticity, lags (p, q)). The temporal dynamics of the conditional variance and correlations of multiple provider series, from rural/ regional, metropolitan, tertiary and private ICUs, were estimated utilising multivariate GARCH models. For the stationary first differenced series, an asymmetric power GARCH model (lags (1, 1)) with t distribution (degrees-of- freedom, 11.6) and ARMA (7,0) for the mean-model, was the best-fitting. The four multivariate component series demonstrated varying trend mortality decline and persistent autocorrelation. Within each MGARCH series no model specification dominated. The conditional correlations were surprisingly low (<0.1) between tertiary series and substantial (0.4 - 0.6) between rural-regional and private series. The conditional-variances of both the univariate and multivariate series demonstrated a slow rate of time decline from periods of early volatility and volatility spikes. 展开更多
关键词 time series MORTALITY INTENSIVE Care Unit ARIMA GARCH multivariate GARCH VOLATILITY
暂未订购
Research on Pattern Matching Method of Multivariate Hydrological Time Series
14
作者 Zhen Gai Yuansheng Lou +1 位作者 Feng Ye Ling Li 《国际计算机前沿大会会议论文集》 2017年第1期16-18,共3页
The existing pattern matching methods of multivariate time series can hardly measure the similarity of multivariate hydrological time series accurately and efficiently.Considering the characteristics of multivariate h... The existing pattern matching methods of multivariate time series can hardly measure the similarity of multivariate hydrological time series accurately and efficiently.Considering the characteristics of multivariate hydrological time series,the continuity and global features of variables,we proposed a pattern matching method,PP-DTW,which is based on dynamic time warping.In this method,the multivariate time series is firstly segmented,and the average of each segment is used as the feature.Then,PCA is operated on the feature sequence.Finally,the weighted DTW distance is used as the measure of similarity in sequences.Carrying out experiments on the hydrological data of Chu River,we conclude that the pattern matching method can effectively describe the overall characteristics of the multivariate time series,which has a good matching effect on the multivariate hydrological time series. 展开更多
关键词 HYDROLOGY multivariate time series PATTERN MATCHING Dynamic time WARPING
在线阅读 下载PDF
Computational Method for Extracting and Modeling Periodicities in Time Series
15
作者 Eduardo González-Rodríguez Héctor Villalobos +1 位作者 Víctor Manuel Gomez-Munoz Alejandro Ramos-Rodríguez 《Open Journal of Statistics》 2015年第6期604-617,共14页
Periodicity is common in natural processes, however, extraction tools are typically difficult and cumbersome to use. Here we report a computational method developed in MATLAB through a function called Periods with the... Periodicity is common in natural processes, however, extraction tools are typically difficult and cumbersome to use. Here we report a computational method developed in MATLAB through a function called Periods with the aim to find the main harmonic components of time series data. This function is designed to obtain the period, amplitude and lag phase of the main harmonic components in a time series (Periods and lag phase components can be related to climate, social or economic events). It is based on methods of periodic regression with cyclic descent and includes statistical significance testing. The proposed method is very easy to use. Furthermore, it does not require full understanding of time series theory, nor require many inputs from the user. However, it is sufficiently flexible to undertake more complex tasks such as forecasting. Additionally, based on previous knowledge, specific periods can be included or excluded easily. The output results are organized into two groups. One contains the parameters of the adjusted model and their F statistics. The other consists of the harmonic parameters that best fit the original series according to their importance and the summarized statistics of the comparisons between successive models in the cyclic descent process. Periods is tested with both, simulated and actual sunspot and Multivariate ENSO Index data to show its performance and accuracy. 展开更多
关键词 time series Cyclic Descent Harmonic PERIODICITY Forecasting SUNSPOT multivariate ENSO Index
暂未订购
基于Time2Vec-BiGRU-SA深度学习模型的碳价格预测
16
作者 杨楠 毕贵红 +3 位作者 李玉洪 孔凡文 骆钊 王瑞 《电力科学与工程》 2025年第9期1-12,共12页
碳交易价格预测对政策制定与市场稳态的维护至关重要,但碳价时间序列的非线性、非平稳性等特征给其精准预测带来困难。为此,提出基于时序特征向量映射模块、双向门控循环单元和自注意力机制融合的深度学习模型。模型集成3个分支:直接处... 碳交易价格预测对政策制定与市场稳态的维护至关重要,但碳价时间序列的非线性、非平稳性等特征给其精准预测带来困难。为此,提出基于时序特征向量映射模块、双向门控循环单元和自注意力机制融合的深度学习模型。模型集成3个分支:直接处理原始碳价时间序列;构建碳价序列多尺度分量矩阵;基于灰色关联度分析与极端随机树方法筛选出与碳价相关的关键变量。各分支均利用时序特征向量映射模块编码时间信息。双向门控循环单元捕捉双向长时依赖。自注意力机制模型加权特征进行综合集成。实证研究显示,该模型单步及多步预测精度高,均优于基准模型,模型具有优越性与稳健性。 展开更多
关键词 深度学习 碳市场价格 多变量时间序列预测 多分支输入 time2Vec
在线阅读 下载PDF
基于自适应GCN与Time-Mixing MLP的多变量时间序列预测模型
17
作者 徐猛猛 吴涛 李振龙 《黑龙江大学自然科学学报》 2025年第2期147-153,共7页
为了更好地处理多变量时间序列中变量交互和尺度交互,提出了多变量时间序列预测模型自适应图卷积网络—时间混合多层感知机(Adaptive graph convolutional network-time-mixing multi-layer perceptron,AGCN-Mixing)。该模型在变量维度... 为了更好地处理多变量时间序列中变量交互和尺度交互,提出了多变量时间序列预测模型自适应图卷积网络—时间混合多层感知机(Adaptive graph convolutional network-time-mixing multi-layer perceptron,AGCN-Mixing)。该模型在变量维度上,利用自适应图卷积网络进行变量交互,有效提取序列间的隐藏特征和模式;在时间维度上,将时间序列下采样为子时间序列,并利用时间混合多层感知机进行多尺度交互,有效捕获序列内的复杂交互关系。在6个公开数据集上进行了实验,结果显示,与现有基准模型相比,AGCN-Mixing的均方误差(Mean squared error,MSE)比多变量时间序列图神经网络(Multivariate time series graph neural network,MTGNN)、频率增强分解Transformer(Frequency enhanced decomposed transformer,FEDformer)、分解线性层网络(Decomposition linear layer network,DLinear)和基于时间二维变化网络(Time-based two dimensional variation network,TimesNet)模型分别平均减少了20.50%、15.64%、15.44%和7.50%,表明AGCN-Mixing有效提升了预测精度。 展开更多
关键词 多变量时间序列预测 图卷积网络 时间混合多层感知机 下采样
在线阅读 下载PDF
基于加权Euclid范数的MTS异常检测 被引量:3
18
作者 郭小芳 李锋 +1 位作者 宋晓宁 刘庆华 《计算机科学》 CSCD 北大核心 2014年第5期263-265,295,共4页
为了提高时间序列的异常检测算法的精度,根据主成分的累积贡献率选择序列及其主成分,在k_近邻局部离群点检测算法中采用加权Euclid范数距离作为k_近邻距离,从而实现对多变量时间序列的异常检测。为了验证算法的有效性,对测试数据进行了... 为了提高时间序列的异常检测算法的精度,根据主成分的累积贡献率选择序列及其主成分,在k_近邻局部离群点检测算法中采用加权Euclid范数距离作为k_近邻距离,从而实现对多变量时间序列的异常检测。为了验证算法的有效性,对测试数据进行了异常检测。实验结果表明,算法的精度和查全率比传统方法具有更大的优越性。 展开更多
关键词 多变量时间序列 扩展Frobenius范数 k_近邻 异常检测
在线阅读 下载PDF
基于Time-Causality模型的供热用气量预测分析 被引量:1
19
作者 孙志伟 贾洪川 马永军 《计算机应用与软件》 北大核心 2020年第7期313-319,共7页
目前关于时间序列预测的特征选择一直是研究的热点,但很少有学者分析多时间尺度下不同特征对预测的差异。提出基于Granger关系的Time-Causality预测模型,利用Granger关系进行特征选择,引入时间维度作为输入维度,并利用LSTM模型进行实验... 目前关于时间序列预测的特征选择一直是研究的热点,但很少有学者分析多时间尺度下不同特征对预测的差异。提出基于Granger关系的Time-Causality预测模型,利用Granger关系进行特征选择,引入时间维度作为输入维度,并利用LSTM模型进行实验,在多时间尺度下分析预测供热用气量的特征。实验结果表明:Time-Causality模型能筛选到更有助于用气量预测的特征;从不同的时间尺度预测,所选取的特征不同;每个特征的预测作用也可能会随时间尺度的变化而变化。这为长期和短期预测提供理论和实践支持。 展开更多
关键词 多变量时间序列数据 多时间尺度分析 特征选择 Granger关系
在线阅读 下载PDF
MULTIVARIATE ABSOLUTE DEGREE OF GREY INCIDENCE BASED ON DISTRIBUTION CHARACTERISTICS OF POINTS
20
作者 张可 王岩 +1 位作者 辛江慧 许叶军 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第2期145-151,共7页
The analysis result of absolute degree of grey incidence for multivariate time series is often inconsistent with the qualitative analysis. To overcome this shortage, a multivariate absolute degree of grey incidence ba... The analysis result of absolute degree of grey incidence for multivariate time series is often inconsistent with the qualitative analysis. To overcome this shortage, a multivariate absolute degree of grey incidence based on distribution characteristics of points is proposed. Based on the geometric description of multivariate time se- ries, the neighborhood extrema are extracted in the different regions, and a characteristic point set is constructed. Then according to the distribution of the characteristic point set, a characteristic point sequence reflecting the ge- ometric features of multivariate time series is obtained. The incidence analysis between multivariate time series is transformed into the relational analysis between characteristic point sequences, and a grey incidence model is established. The model possesses the properties of translational invariance, transpose and rank transform invari- ance, and satisfies the grey incidence analysis axioms. Finally, two cases are studied and the results prove the ef- fectiveness of the model. 展开更多
关键词 grey system absolute degree of grey incidences multivariate time series similarity measure
在线阅读 下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部