期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
Designing Artemisinins with Antimalarial Potential, Combining Molecular Electrostatic Potential, Ligand-Heme Interaction and Multivariate Models
1
作者 Josué de Jesus Oliveira Araújo Ricardo Morais de Miranda +10 位作者 Jeferson Stiver Oliveira de Castro Antonio Florêncio de Figueiredo Ana Cecília Barbosa Pinheiro Sílvia Simone dos Santos Morais Marcos Antonio Barros dos Santos Andréia de Lourdes Ribeiro Pinheiro Andréia de Lourdes Ribeiro Pinheiro Fábio dos Santos Gil Heriberto Rodrigues Bitencourt Gustavo Nery Ramos Alves José Ciríaco Pinheiro 《Computational Chemistry》 CAS 2023年第1期1-23,共23页
Artemisinins tested against W-2 strains of malaria falciparum are investigated with molecular electrostatic potential (MEP), in an attempt to identify key features of the compounds that are necessary for their activit... Artemisinins tested against W-2 strains of malaria falciparum are investigated with molecular electrostatic potential (MEP), in an attempt to identify key features of the compounds that are necessary for their activities, as well as to investigate likely interactions with the receptor in a biological process and to use that information to propose new molecules. In order to discover the best geometry involving the ligand-receptor complexes (heme) studied and help in the proposition of the new derivatives, molecular simulations of interactions between the most negative charged region around the peroxide and heme locates (the ones around the Fe2+ ion) were carried out. In addition, PCA (principal components analysis), HCA (hierarchical cluster analysis), SDA (stepwise discriminant analysis), and KNN (K-nearest neighbor) multivariate models were employed to investigate which descriptors are responsible for the classification between the higher and lower antimalarial activity of the compounds, and also this information was used to propose new potentially active molecules. The information accumulated in studies of MEP, molecular docking, and multivariate analysis supported the proposal of new structures with potential antimalarial activities. The multivariate models constructed were applied to the new structures and indicated numbers 19 and 20 as the most prominent for syntheses and biological assays. 展开更多
关键词 ARTEMISININS Antimalarial Potential Molecular Electrostatic Potential Ligand-Heme Interaction multivariate models
在线阅读 下载PDF
Some Asymptotic Properties for Multivariate Partially Linear Models 被引量:2
2
作者 ZHOU Xing-cai HU Shu-he 《Chinese Quarterly Journal of Mathematics》 CSCD 2011年第2期270-274,共5页
The paper considers a multivariate partially linear model under independent errors,and investigates the asymptotic bias and variance-covariance for parametric component βand nonparametric component F(·)by the ... The paper considers a multivariate partially linear model under independent errors,and investigates the asymptotic bias and variance-covariance for parametric component βand nonparametric component F(·)by the GJS estimator and Kernel estimation. 展开更多
关键词 multivariate partially linear models GJS estimator asymptotic properties
在线阅读 下载PDF
Factors affecting farmers'choice to adopt risk management strategies:The application of multivariate and multinomial probit models
3
作者 Jamal Shah Majed Alharthi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第12期4250-4262,共13页
This study investigates the factors that impact farmers'adoption of risk management strategies(RMS)in Pakistan during times of uncertainty.The study examines farmers'adoption of RMS using both multinomial prob... This study investigates the factors that impact farmers'adoption of risk management strategies(RMS)in Pakistan during times of uncertainty.The study examines farmers'adoption of RMS using both multinomial probit(MNP)and multivariate probit(MVP).Data were collected from 382 farmers sampled from four districts in KhyberPakhtunkhwa(KP)province of Pakistan via a multistage sampling technique.This study utilizes the MNP model,considering the assumption of Independence of Irrelevant Alternatives(IIA)and incorporating correlated error terms.The objective is to understand farmers'behavior in risky situations and determine if there is heterogeneity.Results are compared with the MVP model to assess robustness and gain deeper understanding of farmers'decisionmaking processes.The research findings reveal that our results are robust,and farmers behave homogeneously in various RMS scenarios.Farmers adopt RMS individually or in combination to mitigate the adverse effects of natural calamities on their livelihood.The risk-averse farmers,who perceive weather-related risks as a threat,access credits and information,and have farms close to a river are more likely to adopt RMS,irrespective of the format of the strategies available.Moreover,the predicted probabilities and correlation of the RMS and RM categories have strengthened our model estimation.These findings provide insights into the behavior of farmers in adopting RMS which are helpful for policymakers and stakeholders in developing strategies to mitigate the impacts of natural calamities on farmers. 展开更多
关键词 multinomial probit model multivariate probit model risk management strategies risk-attitude risk perception
在线阅读 下载PDF
Nonlinear multilevel seemingly unrelated height-diameter and crown length mixed-effects models for the southern Transylvanian forests,Romania
4
作者 Albert Ciceu Stefan Leca +1 位作者 Ovidiu Badea Lauri Mehtatalo 《Forest Ecosystems》 2025年第4期630-641,共12页
In this study,we used an extensive sampling network established in central Romania to develop tree height and crown length models.Our analysis included more than 18,000 tree measurements from five different species.In... In this study,we used an extensive sampling network established in central Romania to develop tree height and crown length models.Our analysis included more than 18,000 tree measurements from five different species.Instead of building univariate models for each response variable,we employed a multivariate approach using seemingly unrelated mixed-effects models.These models incorporated variables related to species mixture,tree and stand size,competition,and stand structure.With the inclusion of additional variables in the multivariate seemingly unrelated mixed-effects models,the accuracy of the height prediction models improved by over 10% for all species,whereas the improvement in the crown length models was considerably smaller.Our findings indicate that trees in mixed stands tend to have shorter heights but longer crowns than those in pure stands.We also observed that trees in homogeneous stand structures have shorter crown lengths than those in heterogeneous stands.By employing a multivariate mixed-effects modelling framework,we were able to perform cross-model random-effect predictions,leading to a significant increase in accuracy when both responses were used to calibrate the model.In contrast,the improvement in accuracy was marginal when only height was used for calibration.We demonstrate how multivariate mixed-effects models can be effectively used to develop multi-response allometric models that can be easily calibrated with a limited number of observations while simultaneously achieving better-aligned projections. 展开更多
关键词 multivariate model Cross-model calibration Crown allometry Multilevel model Mixed stands Heterogeneous stand structure
暂未订购
Multivariate predictive model for asymptomatic spontaneous bacterial peritonitis in patients with liver cirrhosis 被引量:10
5
作者 Bo Tu Yue-Ning Zhang +6 位作者 Jing-Feng Bi Zhe Xu Peng Zhao Lei Shi Xin Zhang Guang Yang En-Qiang Qin 《World Journal of Gastroenterology》 SCIE CAS 2020年第29期4316-4326,共11页
BACKGROUNDSpontaneous bacterial peritonitis (SBP) is a detrimental infection of the asciticfluid in liver cirrhosis patients, with high mortality and morbidity. Earlydiagnosis and timely antibiotic administration have... BACKGROUNDSpontaneous bacterial peritonitis (SBP) is a detrimental infection of the asciticfluid in liver cirrhosis patients, with high mortality and morbidity. Earlydiagnosis and timely antibiotic administration have successfully decreased themortality rate to 20%-25%. However, many patients cannot be diagnosed in theearly stages due to the absence of classical SBP symptoms. Early diagnosis ofasymptomatic SBP remains a great challenge in the clinic.AIMTo establish a multivariate predictive model for early diagnosis of asymptomaticSBP using positive microbial cultures from liver cirrhosis patients with ascites.METHODSA total of 98 asymptomatic SBP patients and 98 ascites liver cirrhosis patients withnegative microbial cultures were included in the case and control groups,respectively. Multiple linear stepwise regression analysis was performed toidentify potential indicators for asymptomatic SBP diagnosis. The diagnosticperformance of the model was estimated using the receiver operatingcharacteristic curve.RESULTSPatients in the case group were more likely to have advanced disease stages,cirrhosis related-complications, worsened hematology and ascites, and higher mortality. Based on multivariate analysis, the predictive model was as follows: y (P) = 0.018 + 0.312 × MELD (model of end-stage liver disease) + 0.263 × PMN(ascites polymorphonuclear) + 0.184 × N (blood neutrophil percentage) + 0.233 ×HCC (hepatocellular carcinoma) + 0.189 × renal dysfunction. The area under thecurve value of the established model was 0.872, revealing its high diagnosticpotential. The diagnostic sensitivity was 73.5% (72/98), the specificity was 86.7%(85/98), and the diagnostic efficacy was 80.1%.CONCLUSIONOur predictive model is based on the MELD score, polymorphonuclear cells,blood N, hepatocellular carcinoma, and renal dysfunction. This model mayimprove the early diagnosis of asymptomatic SBP. 展开更多
关键词 Spontaneous bacterial peritonitis ASYMPTOMATIC ASCITES multivariate predictive model Liver cirrhosis
暂未订购
Artificial neural network models predicting the leaf area index:a case study in pure even-aged Crimean pine forests from Turkey 被引量:4
6
作者 ilker Ercanli Alkan Gunlu +1 位作者 Muammer Senyurt Sedat Keles 《Forest Ecosystems》 SCIE CSCD 2018年第4期400-411,共12页
Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predic... Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predict the LAI by comparing the regression analysis models as the classical method in these pure and even-aged Crimean pine forest stands.Methods: One hundred eight temporary sample plots were collected from Crimean pine forest stands to estimate stand parameters. Each sample plot was imaged with hemispherical photographs to detect the LAI. The partial correlation analysis was used to assess the relationships between the stand LAI values and stand parameters, and the multivariate linear regression analysis was used to predict the LAI from stand parameters. Different artificial neural network models comprising different number of neuron and transfer functions were trained and used to predict the LAI of forest stands.Results: The correlation coefficients between LAI and stand parameters(stand number of trees, basal area, the quadratic mean diameter, stand density and stand age) were significant at the level of 0.01. The stand age, number of trees, site index, and basal area were independent parameters in the most successful regression model predicted LAI values using stand parameters(R_(adj)~2=0.5431). As corresponding method to predict the interactions between the stand LAI values and stand parameters, the neural network architecture based on the RBF 4-19-1 with Gaussian activation function in hidden layer and the identity activation function in output layer performed better in predicting LAI(SSE(12.1040), MSE(0.1223), RMSE(0.3497), AIC(0.1040), BIC(-77.7310) and R^2(0.6392)) compared to the other studied techniques.Conclusion: The ANN outperformed the multivariate regression techniques in predicting LAI from stand parameters. The ANN models, developed in this study, may aid in making forest management planning in study forest stands. 展开更多
关键词 Leaf area index multivariate linear regression model Artificial neural network modeling Crimean pine Stand parameters
在线阅读 下载PDF
Improving reservoir volumetric estimations in petroleum resource assessment using discovery process models 被引量:2
7
作者 Osadetz Kirk G. 《Petroleum Science》 SCIE CAS CSCD 2009年第2期105-118,共14页
The reservoir volumetric approach represents a widely accepted, but flawed method of petroleum play resource calculation. In this paper, we propose a combination of techniques that can improve the applicability and qu... The reservoir volumetric approach represents a widely accepted, but flawed method of petroleum play resource calculation. In this paper, we propose a combination of techniques that can improve the applicability and quality of the resource estimation. These techniques include: 1) the use of the Multivariate Discovery Process model (MDP) to derive unbiased distribution parameters of reservoir volumetric variables and to reveal correlations among the variables; 2) the use of the Geo-anchored method to estimate simultaneously the number of oil and gas pools in the same play; and 3) the crossvalidation of assessment results from different methods. These techniques are illustrated by using an example of crude oil and natural gas resource assessment of the Sverdrup Basin, Canadian Archipelago. The example shows that when direct volumetric measurements of the untested prospects are not available, the MDP model can help derive unbiased estimates of the distribution parameters by using information from the discovered oil and gas accumulations. It also shows that an estimation of the number of oil and gas accumulations and associated size ranges from a discovery process model can provide an alternative and efficient approach when inadequate geological data hinder the estimation. Cross-examination of assessment results derived using different methods allows one to focus on and analyze the causes for the major differences, thus providing a more reliable assessment outcome. 展开更多
关键词 multivariate Discovery Process model sampling bias correction cross-validation Geoanchored method
原文传递
All Admissible Linear Estimators under Quadratic Loss in Multivariate Model 被引量:1
8
作者 邓起荣 陈建宝 《Northeastern Mathematical Journal》 CSCD 2000年第1期1-9,共9页
For multivariate linear model Y=XΘ+ε, ~N(0, σ 2ΣV), this paper is concerned with the admissibility of linear estimators of estimable function SXΘ in the class of all estimators. All admissible linear estimators ... For multivariate linear model Y=XΘ+ε, ~N(0, σ 2ΣV), this paper is concerned with the admissibility of linear estimators of estimable function SXΘ in the class of all estimators. All admissible linear estimators of SXΘ are given under each of four definitions of admissibility. 展开更多
关键词 multivariate linear model quadratic loss admissible estimator
在线阅读 下载PDF
Prediction of wetting pattern dimensions under moistube irrigation with a multivariate nonlinear model 被引量:1
9
作者 Yan-wei Fan Chong Ren +2 位作者 Zhi-wei Yang Chang-yan Zhang Wei-fan Yin 《Water Science and Engineering》 CSCD 2024年第3期217-225,共9页
Moistube irrigation is a new micro-irrigation technology.Accurately estimating its wetting pattern dimensions presents a challenge.Therefore,it is necessary to develop models for efficient assessment of the wetting tr... Moistube irrigation is a new micro-irrigation technology.Accurately estimating its wetting pattern dimensions presents a challenge.Therefore,it is necessary to develop models for efficient assessment of the wetting transport pattern in order to design a cost-effective moistube irrigation system.To achieve this goal,this study developed a multivariate nonlinear regression model and compared it with a dimensional model.HYDRUS-2D was used to perform numerical simulations of 56 irrigation scenarios with different factors.The experiments showed that the shape of the wetting soil body approximated a cylinder and was mainly affected by soil texture,pressure head,and matric potential.A multivariate nonlinear model using a power function relationship between wetting size and irrigation time was developed,with a determination coefficient greater than 0.99.The model was validated for cases with six soil texture types,with mean average absolute errors of 0.43-0.90 cm,root mean square errors of 0.51-0.95 cm,and mean deviation percentage values of 3.23%-6.27%.The multivariate nonlinear regression model outperformed the dimensional model.It can therefore provide a scientific foundation for the development of moistube irrigation systems. 展开更多
关键词 Moistube irrigation Wetting pattern dimensions multivariate nonlinear regression model Dimensional model HYDRUS-2D
在线阅读 下载PDF
Machining Error Control by Integrating Multivariate Statistical Process Control and Stream of Variations Methodology 被引量:4
10
作者 WANG Pei ZHANG Dinghua LI Shan CHEN Bing 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2012年第6期937-947,共11页
For aircraft manufacturing industries, the analyses and prediction of part machining error during machining process are very important to control and improve part machining quality. In order to effectively control mac... For aircraft manufacturing industries, the analyses and prediction of part machining error during machining process are very important to control and improve part machining quality. In order to effectively control machining error, the method of integrating multivariate statistical process control (MSPC) and stream of variations (SoV) is proposed. Firstly, machining error is modeled by multi-operation approaches for part machining process. SoV is adopted to establish the mathematic model of the relationship between the error of upstream operations and the error of downstream operations. Here error sources not only include the influence of upstream operations but also include many of other error sources. The standard model and the predicted model about SoV are built respectively by whether the operation is done or not to satisfy different requests during part machining process. Secondly, the method of one-step ahead forecast error (OSFE) is used to eliminate autocorrelativity of the sample data from the SoV model, and the T2 control chart in MSPC is built to realize machining error detection according to the data characteristics of the above error model, which can judge whether the operation is out of control or not. If it is, then feedback is sent to the operations. The error model is modified by adjusting the operation out of control, and continually it is used to monitor operations. Finally, a machining instance containing two operations demonstrates the effectiveness of the machining error control method presented in this paper. 展开更多
关键词 machining error multivariate statistical process control stream of variations error modeling one-step ahead forecast error error detection
原文传递
Joint multivariate statistical model and its applications to the synthetic earthquake prediction
11
作者 HAN Tian-xi(韩天锡) +7 位作者 JIANG Chun(蒋淳) WEI Xue-li(魏雪丽) HAN Me(韩梅) FENG De-yi(冯德益) 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第5期578-584,共8页
Considering the problems that should be solved in the synthetic earthquake prediction at present, a new model is proposed in the paper. It is called joint multivariate statistical model combined by principal component... Considering the problems that should be solved in the synthetic earthquake prediction at present, a new model is proposed in the paper. It is called joint multivariate statistical model combined by principal component analysis with discriminatory analysis. Principal component analysis and discriminatory analysis are very important theories in multivariate statistical analysis that has developed quickly in the late thirty years. By means of maximization information method, we choose several earthquake prediction factors whose cumulative proportions of total sam-ple variances are beyond 90% from numerous earthquake prediction factors. The paper applies regression analysis and Mahalanobis discrimination to extrapolating synthetic prediction. Furthermore, we use this model to charac-terize and predict earthquakes in North China (30~42N, 108~125E) and better prediction results are obtained. 展开更多
关键词 joint multivariate statistical model principal component analysis discriminatory analysis syn-thetic earthquake predication
在线阅读 下载PDF
THE COMPRESSION LS ESTIMATE OF REGRESSION COEFFICIENT IN MULTIVARIATE LINEAR MODEL
12
作者 陈世基 曾志斌 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1994年第4期379-388,共10页
In this paper, compression LS estimate (k) of the regression coefficient B isconsidered when the design matrix present ill-condition in multivariate linear model.The MSE (mean square error)of the estimate(k)=Ve... In this paper, compression LS estimate (k) of the regression coefficient B isconsidered when the design matrix present ill-condition in multivariate linear model.The MSE (mean square error)of the estimate(k)=Vec( (k))is less than theMSE of LS estimate β ̄* of the regression coefficient β= Vec(B) by choosing the pa-rameter k. Admissibility , numerical stability and relative efficiency of (k)are proved. The method of determining k value for practical use is also suggested 展开更多
关键词 multivariate linear model. least square estimate compression LSestimate mean square error
在线阅读 下载PDF
Admissibilty for Nonhomogeneous Linear Estimates on Multivariate Random Regression Coefficients and Parameters
13
作者 艾明要 刘敬敏 《Chinese Quarterly Journal of Mathematics》 CSCD 1997年第3期63-70, ,共8页
In this paper,we consider the admissibility for nonhomogeneous linear estimates on regression coefficients and parameters in multivariate random effect linear model and give eight definitions of different forms for ad... In this paper,we consider the admissibility for nonhomogeneous linear estimates on regression coefficients and parameters in multivariate random effect linear model and give eight definitions of different forms for admissibility. We not only prove that they can be divided into three identical subclasses,but also gain three kinds of necessary and sufficient conditions. 展开更多
关键词 multivariate linear model random effect ADMISSIBILITY
在线阅读 下载PDF
Predictability of well construction time with multivariate probabilistic approach
14
作者 LUU Quang-Hung LAU Man Fai +3 位作者 NG Sebastian P.H. TING Clement P.W. WEE Reuben THEN Patrick H.H. 《Petroleum Exploration and Development》 CSCD 2021年第4期987-998,共12页
Current univariate approach to predict the probability of well construction time has limited accuracy due to the fact that it ignores key factors affecting the time.In this study,we propose a multivariate probabilisti... Current univariate approach to predict the probability of well construction time has limited accuracy due to the fact that it ignores key factors affecting the time.In this study,we propose a multivariate probabilistic approach to predict the risks of well construction time.It takes advantage of an extended multi-dimensional Bernacchia–Pigolotti kernel density estimation technique and combines probability distributions by means of Monte-Carlo simulations to establish a depth-dependent probabilistic model.This method is applied to predict the durations of drilling phases of 192 wells,most of which are located in the AustraliaAsia region.Despite the challenge of gappy records,our model shows an excellent statistical agreement with the observed data.Our results suggested that the total time is longer than the trouble-free time by at least 4 days,and at most 12 days within the 10%–90% confidence interval.This model allows us to derive the likelihoods of duration for each phase at a certain depth and to generate inputs for training data-driven models,facilitating evaluation and prediction of the risks of an entire drilling operation. 展开更多
关键词 well construction time multivariate probabilistic modelling probabilistic approach Markov Chain Monte-Carlo
在线阅读 下载PDF
Maximum Likelihood Estimation for Multivariate EIV Model
15
作者 HU Yan LIU Bin 《外文科技期刊数据库(文摘版)自然科学》 2020年第2期034-042,共9页
In this paper, a new method for solving the parameters of multivariate EIV model is proposed. The likelihood function of multivariate EIV model is constructed based on the principle of maximum likelihood estimation. T... In this paper, a new method for solving the parameters of multivariate EIV model is proposed. The likelihood function of multivariate EIV model is constructed based on the principle of maximum likelihood estimation. The formula for solving the parameters is deduced, and two algorithms for solving the parameters were given. Finally, a real calculation example and a simulation example are used to verify the results, and the results of the proposed method are compared with those of the existing methods. The results show that the proposed method can achieve the same results as the existing methods, which verifies the feasibility of the proposed method. 展开更多
关键词 weighted total least squares multivariate EIV model parameter estimation iterative algorithm
原文传递
Quantifying and categorizing development paths of poverty-elimination counties in China:Based on the perspective of population-land-industry
16
作者 Qianxi Zhang Zhi Cao +1 位作者 Sixin Su Xuanchang Zhang 《Geography and Sustainability》 2025年第2期44-56,共13页
China has achieved the poverty reduction goal of the United Nations 2030 Agenda for Sustainable Development 10 years ahead of schedule,contributing significantly to global poverty reduction.Despite extended efforts in... China has achieved the poverty reduction goal of the United Nations 2030 Agenda for Sustainable Development 10 years ahead of schedule,contributing significantly to global poverty reduction.Despite extended efforts in poverty elimination,there is a lack of quantitative studies categorizing and comparing poverty-elimination counties(PECs)based on their processes.This study proposes an innovative framework for analyzing PECs’development paths from the perspective of population-land-industry(PLI).We quantify the PLI matching degree of PECs in China during the critical phase of the battle against poverty through a multivariate matching model,classify PECs via K-means clustering according to the consistency in PLI matching degree evolution,and summarize the typical development patterns of PECs.Results indicate that the PLI matching degree of PECs in China increased substantially from 2015 to 2020,particularly in eastern areas,while the western region,including the Qinghai-Xizang Plateau and southwestern Xinjiang,shows untapped potential for improvement.Five types of PECs are identified,with the majority(30.1%)showing sustained moderate PLI matching and a minority(9.6%)experiencing long-term PLI mismatch.Industry is the shortfall of various PECs,and effective strategies to facilitate all types of PECs include the development of emerging businesses and the expansion of secondary and tertiary industries.Additionally,enriching rural labor force and increasing farmland use efficiency are essential for optimal PLI matching and positive interaction,ultimately ensuring poverty elimination and sustainable development. 展开更多
关键词 Poverty elimination multivariate matching model Spatial pattern Sustainable development patterns Sustainable Development Goals
在线阅读 下载PDF
Tumor Displacement Prediction and Augmented Reality Visualization in Brain Tumor Resection Surgery
17
作者 WANG Jiayu WANG Shuyi +4 位作者 WEI Yongxu LIAO Chencong SHANG Hanbing WANG Xue KANG Ning 《Journal of Shanghai Jiaotong university(Science)》 2025年第4期733-743,共11页
The purpose of this study is to establish a multivariate nonlinear regression mathematical model to predict the displacement of tumor during brain tumor resection surgery.And the study will be integrated with augmente... The purpose of this study is to establish a multivariate nonlinear regression mathematical model to predict the displacement of tumor during brain tumor resection surgery.And the study will be integrated with augmented reality technology to achieve three-dimensional visualization,thereby enhancing the complete resection rate of tumor and the success rate of surgery.Based on the preoperative MRI data of the patients,a 3D virtual model is reconstructed and 3D printed.A brain biomimetic model is created using gel injection molding.By considering cerebrospinal fluid loss and tumor cyst fluid loss as independent variables,the highest point displacement in the vertical bone window direction is determined as the dependent variable after positioning the patient for surgery.An orthogonal experiment is conducted on the biomimetic model to establish a predictive model,and this model is incorporated into the augmented reality navigation system.To validate the predictive model,five participants wore HoloLens2 devices,overlaying the patient’s 3D virtual model onto the physical head model.Subsequently,the spatial coordinates of the tumor’s highest point after displacement were measured on both the physical and virtual models(actual coordinates and predicted coordinates,respectively).The difference between these coordinates represents the model’s prediction error.The results indicate that the measured and predicted errors for the displacement of the tumor’s highest point on the X and Y axes range from−0.6787 mm to 0.2957 mm and−0.4314 mm to 0.2253 mm,respectively.The relative errors for each experimental group are within 10%,demonstrating a good fit of the model.This method of establishing a regression model represents a preliminary attempt to predict brain tumor displacement in specific situations.It also provides a new approach for surgeons.By combining augmented reality visualization,it addresses the need for predicting tumor displacement and precisely locating brain anatomical structures in a simple and cost-effective manner. 展开更多
关键词 brain tumor intraoperative displacement biomimetic model multivariate nonlinear regression model augmented reality prediction error
原文传递
Homogeneity Estimation in Multivariate Generalized Linear Models
18
作者 Hao Ding Zhanfeng Wang +1 位作者 Yaohua Wu Yuehua Wu 《Communications in Mathematics and Statistics》 2025年第5期1143-1175,共33页
Multivariate regression models have been extensively studied in the literature and applied in practice.It is not unusual that some predictors may make the same nonnull contributions to all the elements of the response... Multivariate regression models have been extensively studied in the literature and applied in practice.It is not unusual that some predictors may make the same nonnull contributions to all the elements of the response vector,especially when the number of predictors is very large.For convenience,we call the set of such predictors as the homogeneity set.In this paper,we consider a sparse high-dimensional multivariate generalized linear models with coexisting homogeneity and heterogeneity sets of predictors,which is very important to facilitate the understanding of the effects of different types of predictors as well as improvement on the estimation efficiency.We propose a novel adaptive regularized method by which we can easily identify the homogeneity set of predictors and investigate the asymptotic properties of the parameter estimation.More importantly,the proposed method yields a smaller variance for parameter estimation compared to the ones that do not consider the existence of a homogeneity set of predictors.We also provide a computational algorithm and present its theoretical justification.In addition,we perform extensive simulation studies and present real data examples to demonstrate the proposed method. 展开更多
关键词 Asymptotic variance Detection consistency Homogeneity and heterogeneity multivariate generalized linear model
原文传递
Preventive of deep vein thrombosis in cancer patients after peripherally inserted central catheter catheterization using a diversified comprehensive teaching model
19
作者 Xiao-Ying Zhao Yan-Yu Lu +2 位作者 Xian Hong Xiao-Yan Wu Mei-Fang Ruan 《World Journal of Gastrointestinal Surgery》 2025年第11期308-315,共8页
BACKGROUND Peripherally inserted central catheter(PICC)is the preferred intravenous route for chemotherapy in patients with cancer,but its complications,especially deep vein thrombosis(DVT),are becoming increasingly p... BACKGROUND Peripherally inserted central catheter(PICC)is the preferred intravenous route for chemotherapy in patients with cancer,but its complications,especially deep vein thrombosis(DVT),are becoming increasingly prevalent.Medical staff proficient in intubation and maintenance techniques can reduce complications.The multivariate integration teaching model applies the integration of“teaching learning application”to medical training,which helps shift the prevention of complications from“passive management of complications”to“active construction of risk immunity”,thereby ensuring foundational competency for PICC in patients with cancer.AIM To investigate the efficacy of the multivariate integration teaching model in patients with gastric cancer and concurrent DVT after PICC intubation and analyze its effect on patients’quality of life index(QLI)and satisfaction.METHODS A retrospective analysis of medical records of 100 patients with gastric cancer and PICC treated at Zhejiang Provincial People’s Hospital from May 2019 to November 2020 was conducted.According to the different treatment methods and teaching modes received by medical staff,they were divided into a control group and an experimental group,with 50 cases in each group.The routine clinical teaching model and the multivariate integration teaching model were administered to the medical staff for the control group and the experimental group,respectively,to compare the incidence rates of DVT and other adverse reactions,QLI scores,Karnofsky Performance Scale scores,Mental Status Scale in Non-Psychiatric Settings scores,patient satisfaction,medical staff’s test marks,and satisfaction evaluation of the teaching model.RESULTS Compared with the control group,the experimental group exhibited significantly lower incidence rates of DVT and other adverse reactions and MSSNS scores but significantly higher QLI scores,KPS scores,patient satisfaction,medical staff’s test marks,and their satisfaction evaluations of the teaching model(P<0.05).CONCLUSION In a single-center practice,performing the multivariate integration teaching model for medical staff may effectively improve the patients’QLI and satisfaction and may have certain application value in preventing DVT in patients with gastric cancer and PICC. 展开更多
关键词 multivariate integration teaching model Gastric cancer peripherally inserted central catheter intubation Deep vein thrombosis Quality of life SATISFACTION
暂未订购
Multivariate natural gas price forecasting model with feature selection,machine learning and chernobyl disaster optimizer
20
作者 Pei Du Xuan-Kai Zhang +1 位作者 Jun-Tao Du Jian-Zhou Wang 《Petroleum Science》 2025年第11期4823-4837,共15页
The significance of accurately forecasting natural gas prices is far-reaching and significant,not only for the stable operation of the energy market,but also as a key element in promoting sustainable development and a... The significance of accurately forecasting natural gas prices is far-reaching and significant,not only for the stable operation of the energy market,but also as a key element in promoting sustainable development and addressing environmental challenges.However,natural gas prices are affected by multiple source factors,presenting complex,unstable nonlinear characteristics hindering the improvement of the prediction accuracy of existing models.To address this issue,this study proposes an innovative multivariate combined forecasting model for natural gas prices.Initially,the study meticulously identifies and introduces 16 variables impacting natural gas prices across five crucial dimensions:the production,marketing,commodities,political and economic indicators of the United States and temperature.Subsequently,this study employs the least absolute shrinkage and selection operator,grey relation analysis,and random forest for dimensionality reduction,effectively screening out the most influential key variables to serve as input features for the subsequent learning model.Building upon this foundation,a suite of machine learning models is constructed to ensure precise natural gas price prediction.To further elevate the predictive performance,an intelligent algorithm for parameter optimization is incorporated,addressing potential limitations of individual models.To thoroughly assess the prediction accuracy of the proposed model,this study conducts three experiments using monthly natural gas trading prices.These experiments incorporate 19 benchmark models for comparative analysis,utilizing five evaluation metrics to quantify forecasting effectiveness.Furthermore,this study conducts in-depth validation of the proposed model's effectiveness through hypothesis testing,discussions on the improvement ratio of forecasting performance,and case studies on other energy prices.The empirical results demonstrate that the multivariate combined forecasting method developed in this study surpasses other comparative models in forecasting accuracy.It offers new perspectives and methodologies for natural gas price forecasting while also providing valuable insights for other energy price forecasting studies. 展开更多
关键词 Natural gas price forecasting multivariate forecasting model Machine learning Chernobyl disaster optimizer
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部