A fast joint probabilistic data association (FJPDA) algorithm is proposed in tiffs paper. Cluster probability matrix is approximately calculated by a new method, whose elements βi^t(K) can be taken as evaluation ...A fast joint probabilistic data association (FJPDA) algorithm is proposed in tiffs paper. Cluster probability matrix is approximately calculated by a new method, whose elements βi^t(K) can be taken as evaluation functions. According to values of βi^t(K), N events with larger joint probabilities can be searched out as the events with guiding joint probabilities, tiros, the number of searching nodes will be greatly reduced. As a result, this method effectively reduces the calculation load and nnkes it possible to be realized on real-thne, Theoretical ,analysis and Monte Carlo simulation results show that this method is efficient.展开更多
For data association in multisensor and multitarget tracking, a novel parallel algorithm is developed to improve the efficiency and real-time performance of FGAs-based algorithm. One Cluster of Workstation (COW) wit...For data association in multisensor and multitarget tracking, a novel parallel algorithm is developed to improve the efficiency and real-time performance of FGAs-based algorithm. One Cluster of Workstation (COW) with Message Passing Interface (MPI) is built. The proposed Multi-Deme Parallel FGA (MDPFGA) is run on the platform. A serial of special MDPFGAs are used to determine the static and the dynamic solutions of generalized m-best S-D assignment problem respectively, as well as target states estimation in track management. Such an assignment-based parallel algorithm is demonstrated on simulated passive sensor track formation and maintenance problem. While illustrating the feasibility of the proposed algorithm in multisensor multitarget tracking, simulation results indicate that the MDPFGAs-based algorithm has greater efficiency and speed than the FGAs-based algorithm.展开更多
An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as dron...An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles.The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper,we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets’information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation.展开更多
Multi-range-false-target(MRFT) jamming is particularly challenging for tracking radar due to the dense clutter and the repeated multiple false targets. The conventional association-based multi-target tracking(MTT) met...Multi-range-false-target(MRFT) jamming is particularly challenging for tracking radar due to the dense clutter and the repeated multiple false targets. The conventional association-based multi-target tracking(MTT) methods suffer from high computational complexity and limited usage in the presence of MRFT jamming.In order to solve the above problems, an efficient and adaptable probability hypothesis density(PHD) filter is proposed. Based on the gating strategy, the obtained measurements are firstly classified into the generalized newborn target and the existing target measurements. The two categories of measurements are independently used in the decomposed form of the PHD filter. Meanwhile,an amplitude feature is used to suppress the dense clutter. In addition, an MRFT jamming suppression algorithm is introduced to the filter. Target amplitude information and phase quantization information are jointly used to deal with MRFT jamming and the clutter by modifying the particle weights of the generalized newborn targets. Simulations demonstrate the proposed algorithm can obtain superior correct discrimination rate of MRFT, and high-accuracy tracking performance with high computational efficiency in the presence of MRFT jamming in the dense clutter.展开更多
This paper presents augmented input estimation(AIE)for multiple maneuvering target tracking.Multi-target tracking(MTT)is based on two main parts,data association and estimation.In data association(DA),the best observa...This paper presents augmented input estimation(AIE)for multiple maneuvering target tracking.Multi-target tracking(MTT)is based on two main parts,data association and estimation.In data association(DA),the best observations are assigned to the considered tracks.In real conditions,the number of observations is more than targets and also locations of observations are often so scattered that the association between targets and observations cannot be done simply.In this case,for general MTT problems with unknown numbers of targets,we present a Markov chain Monte-Carlo DA(MCMCDA)algorithm that approximates the optimal Bayesian filter with low complexity in computations.After DA,estimation and tracking should be done.Since in general cases,many targets can have maneuvering motions,then AIE is proposed to cover both the non-maneuvering and maneuvering parts of motion and the maneuver detection procedure is eliminated.This model with an input estimation(IE)approach is a special augmentation in the state space model which considers both the state vector and the unknown input vector as a new augmented state vector.Some comparisons based on the Monte-Carlo simulations are also made to evaluate the performances of the proposed method and other older methods in MTT.展开更多
This paper proposed a robust method based on the definition of Mahalanobis distance to track ground moving target. The feature and the geometry of airborne ground moving target tracking systems are studied at first. B...This paper proposed a robust method based on the definition of Mahalanobis distance to track ground moving target. The feature and the geometry of airborne ground moving target tracking systems are studied at first. Based on this feature, the assignment relation of time-nearby target is calculated via Mahalanobis distance, and then the corresponding transformation formula is deduced. The simulation results show the correctness and effectiveness of the proposed method.展开更多
A novel disturbance decoupled filter (DDF) design scheme is presented. Firstly, the system with unknown input is translated into an equivalent system without unknown imputs by a simple algebraic transformation. Then, ...A novel disturbance decoupled filter (DDF) design scheme is presented. Firstly, the system with unknown input is translated into an equivalent system without unknown imputs by a simple algebraic transformation. Then, a new DDF design scheme, which is very simple, is proposed via innovations theorem. At last, the application of DDF to Maneuvering Targets Tracking is simulated and the simulation results show that DDF is suitable for high maneuvering cases.展开更多
文摘A fast joint probabilistic data association (FJPDA) algorithm is proposed in tiffs paper. Cluster probability matrix is approximately calculated by a new method, whose elements βi^t(K) can be taken as evaluation functions. According to values of βi^t(K), N events with larger joint probabilities can be searched out as the events with guiding joint probabilities, tiros, the number of searching nodes will be greatly reduced. As a result, this method effectively reduces the calculation load and nnkes it possible to be realized on real-thne, Theoretical ,analysis and Monte Carlo simulation results show that this method is efficient.
基金Supported by National Defence Scientific Research Foundation
文摘For data association in multisensor and multitarget tracking, a novel parallel algorithm is developed to improve the efficiency and real-time performance of FGAs-based algorithm. One Cluster of Workstation (COW) with Message Passing Interface (MPI) is built. The proposed Multi-Deme Parallel FGA (MDPFGA) is run on the platform. A serial of special MDPFGAs are used to determine the static and the dynamic solutions of generalized m-best S-D assignment problem respectively, as well as target states estimation in track management. Such an assignment-based parallel algorithm is demonstrated on simulated passive sensor track formation and maintenance problem. While illustrating the feasibility of the proposed algorithm in multisensor multitarget tracking, simulation results indicate that the MDPFGAs-based algorithm has greater efficiency and speed than the FGAs-based algorithm.
基金supported by the National Natural Science Foundation of China (61773142)。
文摘An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles.The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper,we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets’information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation.
基金supported by the National Natural Science Foundation of China (11472214)。
文摘Multi-range-false-target(MRFT) jamming is particularly challenging for tracking radar due to the dense clutter and the repeated multiple false targets. The conventional association-based multi-target tracking(MTT) methods suffer from high computational complexity and limited usage in the presence of MRFT jamming.In order to solve the above problems, an efficient and adaptable probability hypothesis density(PHD) filter is proposed. Based on the gating strategy, the obtained measurements are firstly classified into the generalized newborn target and the existing target measurements. The two categories of measurements are independently used in the decomposed form of the PHD filter. Meanwhile,an amplitude feature is used to suppress the dense clutter. In addition, an MRFT jamming suppression algorithm is introduced to the filter. Target amplitude information and phase quantization information are jointly used to deal with MRFT jamming and the clutter by modifying the particle weights of the generalized newborn targets. Simulations demonstrate the proposed algorithm can obtain superior correct discrimination rate of MRFT, and high-accuracy tracking performance with high computational efficiency in the presence of MRFT jamming in the dense clutter.
文摘This paper presents augmented input estimation(AIE)for multiple maneuvering target tracking.Multi-target tracking(MTT)is based on two main parts,data association and estimation.In data association(DA),the best observations are assigned to the considered tracks.In real conditions,the number of observations is more than targets and also locations of observations are often so scattered that the association between targets and observations cannot be done simply.In this case,for general MTT problems with unknown numbers of targets,we present a Markov chain Monte-Carlo DA(MCMCDA)algorithm that approximates the optimal Bayesian filter with low complexity in computations.After DA,estimation and tracking should be done.Since in general cases,many targets can have maneuvering motions,then AIE is proposed to cover both the non-maneuvering and maneuvering parts of motion and the maneuver detection procedure is eliminated.This model with an input estimation(IE)approach is a special augmentation in the state space model which considers both the state vector and the unknown input vector as a new augmented state vector.Some comparisons based on the Monte-Carlo simulations are also made to evaluate the performances of the proposed method and other older methods in MTT.
基金Supported by the National Natural Science Foundation of China Youth Science Fund Project(Nos.62101405,61372185)
文摘This paper proposed a robust method based on the definition of Mahalanobis distance to track ground moving target. The feature and the geometry of airborne ground moving target tracking systems are studied at first. Based on this feature, the assignment relation of time-nearby target is calculated via Mahalanobis distance, and then the corresponding transformation formula is deduced. The simulation results show the correctness and effectiveness of the proposed method.
文摘A novel disturbance decoupled filter (DDF) design scheme is presented. Firstly, the system with unknown input is translated into an equivalent system without unknown imputs by a simple algebraic transformation. Then, a new DDF design scheme, which is very simple, is proposed via innovations theorem. At last, the application of DDF to Maneuvering Targets Tracking is simulated and the simulation results show that DDF is suitable for high maneuvering cases.