期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Multistep-ahead River Flow Prediction using LS-SVR at Daily Scale 被引量:1
1
作者 Parag P. Bhagwat Rajib Maity 《Journal of Water Resource and Protection》 2012年第7期528-539,共12页
In this study, potential of Least Square-Support Vector Regression (LS-SVR) approach is utilized to model the daily variation of river flow. Inherent complexity, unavailability of reasonably long data set and heteroge... In this study, potential of Least Square-Support Vector Regression (LS-SVR) approach is utilized to model the daily variation of river flow. Inherent complexity, unavailability of reasonably long data set and heterogeneous catchment response are the couple of issues that hinder the generalization of relationship between previous and forthcoming river flow magnitudes. The problem complexity may get enhanced with the influence of upstream dam releases. These issues are investigated by exploiting the capability of LS-SVR–an approach that considers Structural Risk Minimization (SRM) against the Empirical Risk Minimization (ERM)–used by other learning approaches, such as, Artificial Neural Network (ANN). This study is conducted in upper Narmada river basin in India having Bargi dam in its catchment, constructed in 1989. The river gauging station–Sandia is located few hundred kilometer downstream of Bargi dam. The model development is carried out with pre-construction flow regime and its performance is checked for both pre- and post-construction of the dam for any perceivable difference. It is found that the performances are similar for both the flow regimes, which indicates that the releases from the dam at daily scale for this gauging site may be ignored. In order to investigate the temporal horizon over which the prediction performance may be relied upon, a multistep-ahead prediction is carried out and the model performance is found to be reasonably good up to 5-day-ahead predictions though the performance is decreasing with the increase in lead-time. Skills of both LS-SVR and ANN are reported and it is found that the former performs better than the latter for all the lead-times in general, and shorter lead times in particular. 展开更多
关键词 multistep-ahead PREDICTION Kernel-based Learning Least Square-Support Vector Regression (LS-SVR) DAILY RIVER Flow Narmada RIVER
暂未订购
基于独立模型的非线性时间序列多步超前预测 被引量:4
2
作者 杨臻明 岳继光 +1 位作者 王晓保 萧蕴诗 《上海交通大学学报》 EI CAS CSCD 北大核心 2013年第10期1626-1631,共6页
提出一种非线性时间序列的多步超前独立预测方法.对比逐步递归方法和独立预测方法,分析了积累误差对多步超前预测性能的影响.采用递归神经网络(RNN)实现了独立预测方法,建立了城市轨道交通能耗预测模型.通过MATLAB训练和测试该模型,比... 提出一种非线性时间序列的多步超前独立预测方法.对比逐步递归方法和独立预测方法,分析了积累误差对多步超前预测性能的影响.采用递归神经网络(RNN)实现了独立预测方法,建立了城市轨道交通能耗预测模型.通过MATLAB训练和测试该模型,比较了两种方法下的多步超前预测输出.结果表明,独立预测方法的误差优于逐步递归方法.最后指出了独立预测方法的优缺点及适用范围. 展开更多
关键词 非线性时间序列 多步超前独立预测 积累误差 递归神经网络
在线阅读 下载PDF
ARMAX模型两种自适应k步超前预报形式的比较
3
作者 姜启源 孙义军 《自动化学报》 EI CSCD 北大核心 1993年第5期544-551,共8页
ARMAX模型的自适应k步超前预报通常有单步预报和多步预报两种形式,前者依籁于若干个过去时刻固定步数(k步)的预报,后者则用到一系列固定时刻不同步数(k—1,k—2,…)的预报,本文证明二者是完全等价的,并且从应用的角度和模拟试验的结果... ARMAX模型的自适应k步超前预报通常有单步预报和多步预报两种形式,前者依籁于若干个过去时刻固定步数(k步)的预报,后者则用到一系列固定时刻不同步数(k—1,k—2,…)的预报,本文证明二者是完全等价的,并且从应用的角度和模拟试验的结果对它们进行了比较。 展开更多
关键词 ARMAX模型 单步预报 多步预报
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部