Metamaterials with multistability have attracted much attention due to their extraordinary physical properties. In this paper, we report a novel multistable strategy that is reversible under external forces, based on ...Metamaterials with multistability have attracted much attention due to their extraordinary physical properties. In this paper, we report a novel multistable strategy that is reversible under external forces, based on the fact that a variational reversible locally resonant elastic metamaterial(LREM) with four configurations is proposed. Through a combination of theoretical analysis and numerical simulations, this newly designed metamaterial is proven to exhibit different bandgap ranges and vibration attenuation properties in each configuration. Especially, there is tunable anisotropy shown in these configurations, which enables the bandgaps in two directions to be separated or overlapped. A model with a bandgap shifting ratio(BSR) of 100% and an overlap ratio of 25% is set to validate the multistable strategy feasibility. The proposed design strategy demonstrates significant potentials for applications in versatile scenarios.展开更多
In recent years,the phenomenon of multistability has attracted wide attention.In this paper,a memristive chaotic system with extreme multistability is constructed by using a memristor.The dynamic behavior of the syste...In recent years,the phenomenon of multistability has attracted wide attention.In this paper,a memristive chaotic system with extreme multistability is constructed by using a memristor.The dynamic behavior of the system is analyzed by Poincar´e mapping,a time series diagram,and a bifurcation diagram.The results show that the new system has several significant characteristics.First,the new system has a constant Lyapunov exponent,transient chaos and one complete Feigenbaum tree.Second,the system has the phenomenon of bifurcation map shifts that depend on the initial conditions.In addition,we find periodic bursting oscillations,chaotic bursting oscillations,and the transition of chaotic bursting oscillations to periodic bursting oscillations.In particular,when the system parameters take different discrete values,the system generates a bubble phenomenon that varies with the initial conditions,and this bubble can be shifted with the initial values,which has rarely been seen in the previous literature.The implementation by field-programmable gate array(FPGA)and analog circuit simulation show close alignment with the MATLAB numerical simulation results,validating the system’s realizability.Additionally,the image encryption algorithm integrating DNA-based encoding and chaotic systems further demonstrates its practical applicability.展开更多
Inflatable deployable structures inspired by origami have significant applications in space missions such as solar arrays and antennas.In this paper,a generalized Miura-ori tubular cell(GMTC)is presented as the basic ...Inflatable deployable structures inspired by origami have significant applications in space missions such as solar arrays and antennas.In this paper,a generalized Miura-ori tubular cell(GMTC)is presented as the basic cell to design a family of inflatable origami tubular structures with the targeted configuration.First,the classification of rigid foldable degree-4 vertices is studied thoroughly.Since the proposed GMTC is comprised of forming units(FU)and linking units(LU),types of FUs and LUs are investigated based on the classification of degree-4 vertices,respectively.The rigid foldability of the GMTC is presented by studying the kinematics of the FUs and LUs.Volume of the GMTC is analyzed to investigate multistable configurations of the basic cell.The variations in volume of the GMTC offer great potential for developing the inflatable tubular structure.Design method and parametric optimization of the tubular structure with targeted configuration are proposed.The feasibility of the approach is validated by the approximation of four different cases,namely parabolic,semicircular,trapezoidal,and straight-arc hybrid tubular structures.展开更多
Metamaterials have exotic physical properties that rely on the construction of their underlying architecture.However,the physical properties of conventional mechanical metamaterials are permanently programmed into the...Metamaterials have exotic physical properties that rely on the construction of their underlying architecture.However,the physical properties of conventional mechanical metamaterials are permanently programmed into their periodic interconnect configurations,resulting in their lack of modularity,scalable fabrication,and programmability.Mechanical metamaterials typically exhibit a single extraordinary mechanical property or multiple extraordinary properties coupled together,making it difficult to realize multiple independent extraordinary mechanical properties.Here,the pixel mechanics metamaterials(PMMs)with multifunctional and reprogrammable properties are developed by arraying uncoupled constrained individual modular mechanics pixels(MPs).The MPs enable controlled conversion between two extraordinary mechanical properties(multistability and compression-torsion coupling deformation).Each MP exhibits 32 independent and reversible room temperature programming configurations.In addition,the programmability of metamaterials is further enhanced by shape memory polymer(SMP)and 4D printing,greatly enriching the design freedom.For the PMM consisting of m×n MPs,it has 32(m×n)independent room temperature programming configurations.The application prospects of metamaterials in the vibration isolation device and energy absorption device with programmable performance have been demonstrated.The vibration isolation frequencies of the MP before and after programming were[0 Hz-5.86 Hz],[0 Hz-13.67 Hz and 306.64 Hz-365.23 Hz].The total energy absorption of the developed PMM can be adjusted controllably in the range of 1.01 J-3.91 J.Six standard digital logic gates that do not require sustained external force are designed by controlling the closure between the modules.This design paradigm will facilitate the further development of multifunctional and reprogrammable metamaterials.展开更多
The now and heat transfer characteristics in tenon joint gap between turbine blade and disk have been investigated experimentally with a scale up model. The characteristics of flow and heat transfer in this speCial ga...The now and heat transfer characteristics in tenon joint gap between turbine blade and disk have been investigated experimentally with a scale up model. The characteristics of flow and heat transfer in this speCial gap passage have been analyzed. The results are useful for beat transfer analysis in turbine design.展开更多
Liver cancer is the fifth most common tumor and the second highest death-related cancer in the world.Hepatocarcinoma(HCC)represents 90%of liver cancers.According to the Barcelona Clinic Liver Cancer group,different tr...Liver cancer is the fifth most common tumor and the second highest death-related cancer in the world.Hepatocarcinoma(HCC)represents 90%of liver cancers.According to the Barcelona Clinic Liver Cancer group,different treatment options could be offered to patients in consideration of tumor burden,liver function,pa-tient performance status and biochemical marker serum concentration such as alpha-fetoprotein.Trans-arterial chemoembolization(TACE)is the treatment of choice in patients with diagnosis of unresectable HCC not eligible for liver trans-plantation,and preserved arterial supply.TACE is known to be safe and its com-plications are generally mild such as post-TACE syndrome,a self-resolving adverse event that occurs in about 90%of patients after the procedure.However,albeit rarely,more severe adverse events such as biloma,sepsis,hepatic failure,chemoagents induced toxicities,and post-TACE liver necrosis can occur.A prompt diagnosis of these clinical conditions is fundamental to prevent further complications.As a result,biliary stenosis could be a rare post-TACE necrosis complication and can be difficult to manage.Complications from untreated biliary strictures include recurring infections,jaundice,chronic cholestasis,and secon-dary biliary cirrhosis.展开更多
Over the past decade,multistable mechanical metamaterials have been widely investigated because of their novel shape reconfigurability and programmable energy landscape.The ability to reversibly reshape among diverse ...Over the past decade,multistable mechanical metamaterials have been widely investigated because of their novel shape reconfigurability and programmable energy landscape.The ability to reversibly reshape among diverse stable states with different energy levels represents the most important feature of the multistable mechanical metamaterials.We summarize main design strategies of multistable mechanical metamaterials,including those based on self-assembly scheme,snap-through instability,structured mechanism and geometrical frustration,with a focus on the number and controllability of accessible stable states.Then we concentrate on unusual mechanical properties of these multistable mechanical metamaterials,and present their applications in a wide range of areas,including tunable electromagnetic devices,actuators,robotics,and mechanical logic gates.Finally,we discuss remaining challenges and open opportunities of designs and applications of multistable mechanical metamaterials.展开更多
Multistable mechanical metamaterials are a type of mechanical metamaterials with special features,such as reusability,energy storage and absorption capabilities,rapid deformation,and amplified output forces.These meta...Multistable mechanical metamaterials are a type of mechanical metamaterials with special features,such as reusability,energy storage and absorption capabilities,rapid deformation,and amplified output forces.These metamaterials are usually realized by series and/or parallel of bistable units.They can exhibit multiple stable configurations under external loads and can be switched reversely among each other,thereby realizing the reusability of mechanical metamaterials and offering broad engineering applications.This paper reviews the latest research progress in the design strategy,manufacture and application of multistable mechanical metamaterials.We divide bistable structures into three categories based on their basic element types and provide the criterion of their bistability.Various manufacturing techniques to fabricate these multistable mechanical metamaterials are introduced,including mold casting,cutting,folding and three-dimensional/4D printing.Furthermore,the prospects of multistable mechanical metamaterials for applications in soft driving,mechanical computing,energy absorption and wave controlling are discussed.Finally,this paper highlights possible challenges and opportunities for future investigations.The review aims to provide insights into the research and development of multistable mechanical metamaterials.展开更多
Under a nonresonant condition, we theoretically investigate hybrid absorptive-dispersive optical bistability and multistability behaviours in a three-level △-type system by using a microwave field to drive a hyperfin...Under a nonresonant condition, we theoretically investigate hybrid absorptive-dispersive optical bistability and multistability behaviours in a three-level △-type system by using a microwave field to drive a hyperfine transition between two upper excited states inside a unidirectional ring cavity. We find that the optical bistability and multistability behaviours can be controlled by adjusting the intensity of the microwave field or the intensity of the coherent coupling field. Furthermore, our studies show an interesting phenomenon of the transition from the optical bistability to the optical multistability only by changing the negative detuning of the coupling field into the positive detuning of the coupling field.展开更多
Optical bistability (0t3) and optical multi-stability (OM) of a four-level A-type atomic system with two fold lower levels inside a unidirectional ring cavity is investigated. The effect of quantum interference ar...Optical bistability (0t3) and optical multi-stability (OM) of a four-level A-type atomic system with two fold lower levels inside a unidirectional ring cavity is investigated. The effect of quantum interference arising from spontaneous emission and incoherent pumping on 013 and OM is discussed. It is found that the threshold of OB and OM can be controlled by quantum interference mechanisms. In addition intensity of coupling field and the rate of an incoherent pumping field on behavior of OB and OM are then discussed.展开更多
Based on the two-dimensional(2D)discrete Rulkov model that is used to describe neuron dynamics,this paper presents a continuous non-autonomous memristive Rulkov model.The effects of electromagnetic induction and exter...Based on the two-dimensional(2D)discrete Rulkov model that is used to describe neuron dynamics,this paper presents a continuous non-autonomous memristive Rulkov model.The effects of electromagnetic induction and external stimulus are simultaneously considered herein.The electromagnetic induction flow is imitated by the generated current from a flux-controlled memristor and the external stimulus is injected using a sinusoidal current.Thus,the presented model possesses a line equilibrium set evolving over the time.The equilibrium set and their stability distributions are numerically simulated and qualitatively analyzed.Afterwards,numerical simulations are executed to explore the dynamical behaviors associated to the electromagnetic induction,external stimulus,and initial conditions.Interestingly,the initial conditions dependent extreme multistability is elaborately disclosed in the continuous non-autonomous memristive Rulkov model.Furthermore,an analog circuit of the proposed model is implemented,upon which the hardware experiment is executed to verify the numerically simulated extreme multistability.The extreme multistability is numerically revealed and experimentally confirmed in this paper,which can widen the future engineering employment of the Rulkov model.展开更多
The self-excited attractors and hidden attractors in a memcapacitive system which has three elements are studied in this paper.The critical parameter of stable and unstable states is calculated by identifying the eige...The self-excited attractors and hidden attractors in a memcapacitive system which has three elements are studied in this paper.The critical parameter of stable and unstable states is calculated by identifying the eigenvalues of Jacobian matrix.Besides,complex dynamical behaviors are investigated in the system,such as coexisting attractors,hidden attractors,coexisting bifurcation modes,intermittent chaos,and multistability.From the theoretical analyses and numerical simulations,it is found that there are four different kinds of transient transition behaviors in the memcapacitive system.Finally,field programmable gate array(FPGA)is used to implement the proposed chaotic system.展开更多
Multistation machining process is widely applied in contemporary manufacturing environment. Modeling of variation propagation in multistation machining process is one of the most important research scenarios. Due to t...Multistation machining process is widely applied in contemporary manufacturing environment. Modeling of variation propagation in multistation machining process is one of the most important research scenarios. Due to the existence of multiple variation streams, it is challenging to model and analyze variation propagation in a multi-station system. Current approaches to error modeling for multistation machining process are not explicit enough for error control and ensuring final product quality. In this paper, a mathematic model to depict the part dimensional variation of the complex multistation manufacturing process is formulated. A linear state space dimensional error propagation equation is established through kinematics analysis of the influence of locating parameter variations and locating datum variations on dimensional errors, so the dimensional error accumulation and transformation within the multistation process are quantitatively described. A systematic procedure to build the model is presented, which enhances the way to determine the variation sources in complex machining systems. A simple two-dimensional example is used to illustrate the proposed procedures. Finally, an industrial case of multistation machining part in a manufacturing shop is given to testify the validation and practicability of the method. The proposed analytical model is essential to quality control and improvement for multistation systems in machining quality forecasting and design optimization.展开更多
In this paper,we introduce a new two-dimensional nonlinear oscillator with an infinite number of coexisting limit cycles.These limit cycles form a layer-by-layer structure which is very unusual.Forty percent of these ...In this paper,we introduce a new two-dimensional nonlinear oscillator with an infinite number of coexisting limit cycles.These limit cycles form a layer-by-layer structure which is very unusual.Forty percent of these limit cycles are self-excited attractors while sixty percent of them are hidden attractors.Changing this new system to its forced version,we introduce a new chaotic system with an infinite number of coexisting strange attractors.We implement this system through field programmable gate arrays.展开更多
An improved heterogeneous dual memristive circuit(DMC)is proposed based on Chua's circuit,which shows good symmetry and multistablility.For the difficulty in controlling the initial conditions,which restricts the ...An improved heterogeneous dual memristive circuit(DMC)is proposed based on Chua's circuit,which shows good symmetry and multistablility.For the difficulty in controlling the initial conditions,which restricts the engineering applications,the 3 rd-order model(3 OM)in flux-charge domain is derived from the 5 th-order model(5 OM)in volt-ampere domain by using the flux-charge analysis method(FCAM).The consistence of symmetry and multistability before and after dimensionality decreasing is meticulously investigated via bifurcation diagram,Lyapunov exponents,and especially attraction basins.The comparative analysis validates the effectiveness of reduction model and improves the controllability of the circuit.To avoid the noise in the analog circuit,a field-programmable gate array(FPGA)is utilized to realize the reduction model,which is rarely reported and valuable for relevant research and application.展开更多
A five-value memristor model is proposed,it is proved that the model has a typical hysteresis loop by analyzing the relationship between voltage and current.Then,based on the classical Liu-Chen system,a new memristor-...A five-value memristor model is proposed,it is proved that the model has a typical hysteresis loop by analyzing the relationship between voltage and current.Then,based on the classical Liu-Chen system,a new memristor-based fourdimensional(4D)chaotic system is designed by using the five-value memristor.The trajectory phase diagram,Poincare mapping,bifurcation diagram,and Lyapunov exponent spectrum are drawn by numerical simulation.It is found that,in addition to the general chaos characteristics,the system has some special phenomena,such as hidden homogenous multistabilities,hidden heterogeneous multistabilities,and hidden super-multistabilities.Finally,according to the dimensionless equation of the system,the circuit model of the system is built and simulated.The results are consistent with the numerical simulation results,which proves the physical realizability of the five-value memristor-based chaotic system proposed in this paper.展开更多
Memristor chaotic systems have aroused great attention in recent years with their potentials expected in engineering applications.In this paper,a five-dimension(5D)double-memristor hyperchaotic system(DMHS)is modeled ...Memristor chaotic systems have aroused great attention in recent years with their potentials expected in engineering applications.In this paper,a five-dimension(5D)double-memristor hyperchaotic system(DMHS)is modeled by introducing two active magnetron memristor models into the Kolmogorov-type formula.The boundness condition of the proposed hyperchaotic system is proved.Coexisting bifurcation diagram and numerical verification explain the bistability.The rich dynamics of the system are demonstrated by the dynamic evolution map and the basin.The simulation results reveal the existence of transient hyperchaos and hidden extreme multistability in the presented DMHS.The NIST tests show that the generated signal sequence is highly random,which is feasible for encryption purposes.Furthermore,the system is implemented based on a FPGA experimental platform,which benefits the further applications of the proposed hyperchaos.展开更多
The weak signal detection method based on stochastic resonance is usually used to extract and identify the weak characteristic signal submerged in strong noise by using the noise energy transfer mechanism.We propose a...The weak signal detection method based on stochastic resonance is usually used to extract and identify the weak characteristic signal submerged in strong noise by using the noise energy transfer mechanism.We propose a novel composite multistable stochastic-resonance(NCMSR)model combining the Gaussian potential model and an improved bistable model.Compared with the traditional multistable stochastic resonance method,all the parameters in the novel model have no symmetry,the output signal-to-noise ratio can be optimized and the output amplitude can be improved by adjusting the system parameters.The model retains the advantages of continuity and constraint of the Gaussian potential model and the advantages of the improved bistable model without output saturation,the NCMSR model has a higher utilization of noise.Taking the output signal-to-noise ratio as the index,weak periodic signal is detected based on the NCMSR model in Gaussian noise andαnoise environment respectively,and the detection effect is good.The application of NCMSR to the actual detection of bearing fault signals can realize the fault detection of bearing inner race and outer race.The outstanding advantages of this method in weak signal detection are verified,which provides a theoretical basis for industrial practical applications.展开更多
The recognition,repetition and prediction of the post-failure motion process of long-runout landslides are key scientific problems in the prevention and mitigation of geological disasters.In this study,a new numerical...The recognition,repetition and prediction of the post-failure motion process of long-runout landslides are key scientific problems in the prevention and mitigation of geological disasters.In this study,a new numerical method involving LPF3D based on a multialgorithm and multiconstitutive model was proposed to simulate long-runout landslides with high precision and efficiency.The following results were obtained:(a)The motion process of landslides showed a steric effect with mobility,including gradual disintegration and spreading.The sliding mass can be divided into three states(dense,dilute and ultradilute)in the motion process,which can be solved by three dynamic regimes(friction,collision,and inertial);(b)Coupling simulation between the solid grain and liquid phases was achieved,focusing on drag force influences;(c)Different algorithms and constitutive models were employed in phase-state simulations.The volume fraction is an important indicator to distinguish different state types and solid‒liquid ratios.The flume experimental results were favorably validated against long-runout landslide case data;and(d)In this method,matched dynamic numerical modeling was developed to better capture the realistic motion process of long-runout landslides,and the advantages of continuum media and discrete media were combined to improve the computational accuracy and efficiency.This new method can reflect the realistic physical and mechanical processes in long-runout landslide motion and provide a suitable method for risk assessment and pre-failure prediction.展开更多
As an important application research topic of the intelligent aviation multi-station, collaborative detecting must overcome the problem of scouting measurement with status of 'fragmentation', and the NP-hardne...As an important application research topic of the intelligent aviation multi-station, collaborative detecting must overcome the problem of scouting measurement with status of 'fragmentation', and the NP-hardness problem of matching association between target and measurement in the process of scouting to data-link, which has complicated technical architecture of network construction. In this paper, taking advantage of cooperation mechanism on signal level in the aviation multi-station sympathetic network, a method of obtaining target time difference of arrival (TDOA) measurement using multi-station collaborative detecting based on time-frequency association is proposed. The method can not only achieve matching between target and its measurement, but also obtain TDOA measurement by further evolutionary transaction through refreshing sequential pulse time of arrival (TOA) measurement matrix for matching and correlating. Simulation results show that the accuracy of TDOA measurement has significant superiority over TOA, and detection probability of false TDOA measurement introduced by noise and fake measurement can be reduced effectively.展开更多
基金supported by the National Natural Science Foundation of China(No.52192633)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2025JC-YBMS-050)。
文摘Metamaterials with multistability have attracted much attention due to their extraordinary physical properties. In this paper, we report a novel multistable strategy that is reversible under external forces, based on the fact that a variational reversible locally resonant elastic metamaterial(LREM) with four configurations is proposed. Through a combination of theoretical analysis and numerical simulations, this newly designed metamaterial is proven to exhibit different bandgap ranges and vibration attenuation properties in each configuration. Especially, there is tunable anisotropy shown in these configurations, which enables the bandgaps in two directions to be separated or overlapped. A model with a bandgap shifting ratio(BSR) of 100% and an overlap ratio of 25% is set to validate the multistable strategy feasibility. The proposed design strategy demonstrates significant potentials for applications in versatile scenarios.
基金Project supported by the Natural Science Foundation of Hubei Province(Grant No.2024AFD068).
文摘In recent years,the phenomenon of multistability has attracted wide attention.In this paper,a memristive chaotic system with extreme multistability is constructed by using a memristor.The dynamic behavior of the system is analyzed by Poincar´e mapping,a time series diagram,and a bifurcation diagram.The results show that the new system has several significant characteristics.First,the new system has a constant Lyapunov exponent,transient chaos and one complete Feigenbaum tree.Second,the system has the phenomenon of bifurcation map shifts that depend on the initial conditions.In addition,we find periodic bursting oscillations,chaotic bursting oscillations,and the transition of chaotic bursting oscillations to periodic bursting oscillations.In particular,when the system parameters take different discrete values,the system generates a bubble phenomenon that varies with the initial conditions,and this bubble can be shifted with the initial values,which has rarely been seen in the previous literature.The implementation by field-programmable gate array(FPGA)and analog circuit simulation show close alignment with the MATLAB numerical simulation results,validating the system’s realizability.Additionally,the image encryption algorithm integrating DNA-based encoding and chaotic systems further demonstrates its practical applicability.
基金supported by the National Natural Science Foundation of China(No.52222501,52075016,52192632)the Fundamental Research Funds for the Central Universities(Grant No.YWF-23-L-904).
文摘Inflatable deployable structures inspired by origami have significant applications in space missions such as solar arrays and antennas.In this paper,a generalized Miura-ori tubular cell(GMTC)is presented as the basic cell to design a family of inflatable origami tubular structures with the targeted configuration.First,the classification of rigid foldable degree-4 vertices is studied thoroughly.Since the proposed GMTC is comprised of forming units(FU)and linking units(LU),types of FUs and LUs are investigated based on the classification of degree-4 vertices,respectively.The rigid foldability of the GMTC is presented by studying the kinematics of the FUs and LUs.Volume of the GMTC is analyzed to investigate multistable configurations of the basic cell.The variations in volume of the GMTC offer great potential for developing the inflatable tubular structure.Design method and parametric optimization of the tubular structure with targeted configuration are proposed.The feasibility of the approach is validated by the approximation of four different cases,namely parabolic,semicircular,trapezoidal,and straight-arc hybrid tubular structures.
基金the financial support provided by the National Key R&D Program of China(2022YFB3805700)the National Natural Science Foundation of China(Grant Nos.12072094 and 12172106)+2 种基金the China Postdoctoral Science Foundation(Grant No.2023M730869)the Heilongjiang Natural Science Foundation Joint Guidance Project(Grant No.LH2023A004)the Postdoctoral Fellowship Program of CPSF(Grant No.GZB20230959)。
文摘Metamaterials have exotic physical properties that rely on the construction of their underlying architecture.However,the physical properties of conventional mechanical metamaterials are permanently programmed into their periodic interconnect configurations,resulting in their lack of modularity,scalable fabrication,and programmability.Mechanical metamaterials typically exhibit a single extraordinary mechanical property or multiple extraordinary properties coupled together,making it difficult to realize multiple independent extraordinary mechanical properties.Here,the pixel mechanics metamaterials(PMMs)with multifunctional and reprogrammable properties are developed by arraying uncoupled constrained individual modular mechanics pixels(MPs).The MPs enable controlled conversion between two extraordinary mechanical properties(multistability and compression-torsion coupling deformation).Each MP exhibits 32 independent and reversible room temperature programming configurations.In addition,the programmability of metamaterials is further enhanced by shape memory polymer(SMP)and 4D printing,greatly enriching the design freedom.For the PMM consisting of m×n MPs,it has 32(m×n)independent room temperature programming configurations.The application prospects of metamaterials in the vibration isolation device and energy absorption device with programmable performance have been demonstrated.The vibration isolation frequencies of the MP before and after programming were[0 Hz-5.86 Hz],[0 Hz-13.67 Hz and 306.64 Hz-365.23 Hz].The total energy absorption of the developed PMM can be adjusted controllably in the range of 1.01 J-3.91 J.Six standard digital logic gates that do not require sustained external force are designed by controlling the closure between the modules.This design paradigm will facilitate the further development of multifunctional and reprogrammable metamaterials.
文摘The now and heat transfer characteristics in tenon joint gap between turbine blade and disk have been investigated experimentally with a scale up model. The characteristics of flow and heat transfer in this speCial gap passage have been analyzed. The results are useful for beat transfer analysis in turbine design.
文摘Liver cancer is the fifth most common tumor and the second highest death-related cancer in the world.Hepatocarcinoma(HCC)represents 90%of liver cancers.According to the Barcelona Clinic Liver Cancer group,different treatment options could be offered to patients in consideration of tumor burden,liver function,pa-tient performance status and biochemical marker serum concentration such as alpha-fetoprotein.Trans-arterial chemoembolization(TACE)is the treatment of choice in patients with diagnosis of unresectable HCC not eligible for liver trans-plantation,and preserved arterial supply.TACE is known to be safe and its com-plications are generally mild such as post-TACE syndrome,a self-resolving adverse event that occurs in about 90%of patients after the procedure.However,albeit rarely,more severe adverse events such as biloma,sepsis,hepatic failure,chemoagents induced toxicities,and post-TACE liver necrosis can occur.A prompt diagnosis of these clinical conditions is fundamental to prevent further complications.As a result,biliary stenosis could be a rare post-TACE necrosis complication and can be difficult to manage.Complications from untreated biliary strictures include recurring infections,jaundice,chronic cholestasis,and secon-dary biliary cirrhosis.
基金supported by the National Natural Science Foundation of China(No.11722217)the Tsinghua University,China Initiative Scientific Research Program(No.2019Z08QCX10)the Institute for Guo Qiang,Tsinghua University,China(No.2019GQG1012)。
文摘Over the past decade,multistable mechanical metamaterials have been widely investigated because of their novel shape reconfigurability and programmable energy landscape.The ability to reversibly reshape among diverse stable states with different energy levels represents the most important feature of the multistable mechanical metamaterials.We summarize main design strategies of multistable mechanical metamaterials,including those based on self-assembly scheme,snap-through instability,structured mechanism and geometrical frustration,with a focus on the number and controllability of accessible stable states.Then we concentrate on unusual mechanical properties of these multistable mechanical metamaterials,and present their applications in a wide range of areas,including tunable electromagnetic devices,actuators,robotics,and mechanical logic gates.Finally,we discuss remaining challenges and open opportunities of designs and applications of multistable mechanical metamaterials.
基金supported by the National Natural Science Foundation of China(Grant Nos.12172164,52250363)the National Key R&D Program of China(Grant Nos.2021YFB3801800,2018YFA0306200)。
文摘Multistable mechanical metamaterials are a type of mechanical metamaterials with special features,such as reusability,energy storage and absorption capabilities,rapid deformation,and amplified output forces.These metamaterials are usually realized by series and/or parallel of bistable units.They can exhibit multiple stable configurations under external loads and can be switched reversely among each other,thereby realizing the reusability of mechanical metamaterials and offering broad engineering applications.This paper reviews the latest research progress in the design strategy,manufacture and application of multistable mechanical metamaterials.We divide bistable structures into three categories based on their basic element types and provide the criterion of their bistability.Various manufacturing techniques to fabricate these multistable mechanical metamaterials are introduced,including mold casting,cutting,folding and three-dimensional/4D printing.Furthermore,the prospects of multistable mechanical metamaterials for applications in soft driving,mechanical computing,energy absorption and wave controlling are discussed.Finally,this paper highlights possible challenges and opportunities for future investigations.The review aims to provide insights into the research and development of multistable mechanical metamaterials.
基金supported by Natural Science Foundation of Jiangxi,China (Grant Nos 2007GZW0819 and 2008GQW0017)the Scientific Research Foundation of Jiangxi Provincial Department of Education,China (Grant Nos [2007]191 and GJJ09504)+1 种基金the Science Foundation of East China Jiaotong University of China (Grant No 06ZKJC01)the Foundation of Talent of Jinggang of Jiangxi Province of China
文摘Under a nonresonant condition, we theoretically investigate hybrid absorptive-dispersive optical bistability and multistability behaviours in a three-level △-type system by using a microwave field to drive a hyperfine transition between two upper excited states inside a unidirectional ring cavity. We find that the optical bistability and multistability behaviours can be controlled by adjusting the intensity of the microwave field or the intensity of the coherent coupling field. Furthermore, our studies show an interesting phenomenon of the transition from the optical bistability to the optical multistability only by changing the negative detuning of the coupling field into the positive detuning of the coupling field.
文摘Optical bistability (0t3) and optical multi-stability (OM) of a four-level A-type atomic system with two fold lower levels inside a unidirectional ring cavity is investigated. The effect of quantum interference arising from spontaneous emission and incoherent pumping on 013 and OM is discussed. It is found that the threshold of OB and OM can be controlled by quantum interference mechanisms. In addition intensity of coupling field and the rate of an incoherent pumping field on behavior of OB and OM are then discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12172066,61801054,and 51777016)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20160282)the Postgraduate Research and Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX212823)。
文摘Based on the two-dimensional(2D)discrete Rulkov model that is used to describe neuron dynamics,this paper presents a continuous non-autonomous memristive Rulkov model.The effects of electromagnetic induction and external stimulus are simultaneously considered herein.The electromagnetic induction flow is imitated by the generated current from a flux-controlled memristor and the external stimulus is injected using a sinusoidal current.Thus,the presented model possesses a line equilibrium set evolving over the time.The equilibrium set and their stability distributions are numerically simulated and qualitatively analyzed.Afterwards,numerical simulations are executed to explore the dynamical behaviors associated to the electromagnetic induction,external stimulus,and initial conditions.Interestingly,the initial conditions dependent extreme multistability is elaborately disclosed in the continuous non-autonomous memristive Rulkov model.Furthermore,an analog circuit of the proposed model is implemented,upon which the hardware experiment is executed to verify the numerically simulated extreme multistability.The extreme multistability is numerically revealed and experimentally confirmed in this paper,which can widen the future engineering employment of the Rulkov model.
基金Project supported by the National Natural Science Foundation of China(Grant No.51377124)the Science Fund for New Star of Youth Science and Technology of Shaanxi Province,China(Grant No.2016KJXX-40).
文摘The self-excited attractors and hidden attractors in a memcapacitive system which has three elements are studied in this paper.The critical parameter of stable and unstable states is calculated by identifying the eigenvalues of Jacobian matrix.Besides,complex dynamical behaviors are investigated in the system,such as coexisting attractors,hidden attractors,coexisting bifurcation modes,intermittent chaos,and multistability.From the theoretical analyses and numerical simulations,it is found that there are four different kinds of transient transition behaviors in the memcapacitive system.Finally,field programmable gate array(FPGA)is used to implement the proposed chaotic system.
基金supported by National Department Fundamental Research Foundation of China (Grant No. B222090014)National Department Technology Fundatmental Foundaiton of China (Grant No. C172009C001)
文摘Multistation machining process is widely applied in contemporary manufacturing environment. Modeling of variation propagation in multistation machining process is one of the most important research scenarios. Due to the existence of multiple variation streams, it is challenging to model and analyze variation propagation in a multi-station system. Current approaches to error modeling for multistation machining process are not explicit enough for error control and ensuring final product quality. In this paper, a mathematic model to depict the part dimensional variation of the complex multistation manufacturing process is formulated. A linear state space dimensional error propagation equation is established through kinematics analysis of the influence of locating parameter variations and locating datum variations on dimensional errors, so the dimensional error accumulation and transformation within the multistation process are quantitatively described. A systematic procedure to build the model is presented, which enhances the way to determine the variation sources in complex machining systems. A simple two-dimensional example is used to illustrate the proposed procedures. Finally, an industrial case of multistation machining part in a manufacturing shop is given to testify the validation and practicability of the method. The proposed analytical model is essential to quality control and improvement for multistation systems in machining quality forecasting and design optimization.
文摘In this paper,we introduce a new two-dimensional nonlinear oscillator with an infinite number of coexisting limit cycles.These limit cycles form a layer-by-layer structure which is very unusual.Forty percent of these limit cycles are self-excited attractors while sixty percent of them are hidden attractors.Changing this new system to its forced version,we introduce a new chaotic system with an infinite number of coexisting strange attractors.We implement this system through field programmable gate arrays.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61971228 and 61871230)the Natural Science Foundations of Jiangsu Higher Education Institutions,China(Grant No.19KJB520042)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.SJCX210564)。
文摘An improved heterogeneous dual memristive circuit(DMC)is proposed based on Chua's circuit,which shows good symmetry and multistablility.For the difficulty in controlling the initial conditions,which restricts the engineering applications,the 3 rd-order model(3 OM)in flux-charge domain is derived from the 5 th-order model(5 OM)in volt-ampere domain by using the flux-charge analysis method(FCAM).The consistence of symmetry and multistability before and after dimensionality decreasing is meticulously investigated via bifurcation diagram,Lyapunov exponents,and especially attraction basins.The comparative analysis validates the effectiveness of reduction model and improves the controllability of the circuit.To avoid the noise in the analog circuit,a field-programmable gate array(FPGA)is utilized to realize the reduction model,which is rarely reported and valuable for relevant research and application.
基金supported by the National Natural Science Foundation of China(Grant No.61203004)the Natural Science Foundation of Heilongjiang Province,China(Grant No.F201220)the Heilongjiang Provincial Natural Science Foundation of Joint Guidance Project(Grant No.LH2020F022).
文摘A five-value memristor model is proposed,it is proved that the model has a typical hysteresis loop by analyzing the relationship between voltage and current.Then,based on the classical Liu-Chen system,a new memristor-based fourdimensional(4D)chaotic system is designed by using the five-value memristor.The trajectory phase diagram,Poincare mapping,bifurcation diagram,and Lyapunov exponent spectrum are drawn by numerical simulation.It is found that,in addition to the general chaos characteristics,the system has some special phenomena,such as hidden homogenous multistabilities,hidden heterogeneous multistabilities,and hidden super-multistabilities.Finally,according to the dimensionless equation of the system,the circuit model of the system is built and simulated.The results are consistent with the numerical simulation results,which proves the physical realizability of the five-value memristor-based chaotic system proposed in this paper.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62003177,61973172,61973175,and 62073177)the key Technologies Research and Tianjin Natural Science Foundation (Grant No.19JCZDJC32800)+1 种基金China Postdoctoral Science Foundation (Grant Nos.2020M670633 and 2020M670045)Academy of Finland (Grant No.315660)。
文摘Memristor chaotic systems have aroused great attention in recent years with their potentials expected in engineering applications.In this paper,a five-dimension(5D)double-memristor hyperchaotic system(DMHS)is modeled by introducing two active magnetron memristor models into the Kolmogorov-type formula.The boundness condition of the proposed hyperchaotic system is proved.Coexisting bifurcation diagram and numerical verification explain the bistability.The rich dynamics of the system are demonstrated by the dynamic evolution map and the basin.The simulation results reveal the existence of transient hyperchaos and hidden extreme multistability in the presented DMHS.The NIST tests show that the generated signal sequence is highly random,which is feasible for encryption purposes.Furthermore,the system is implemented based on a FPGA experimental platform,which benefits the further applications of the proposed hyperchaos.
基金the National Natural Science Foundation of China(Grant No.61871318)the Key Research and Development Projects in Shaanxi Province(Grant No.2023YBGY-044)the Key Laboratory System Control and Intelligent Information Processing(Grant No.2020CP10)。
文摘The weak signal detection method based on stochastic resonance is usually used to extract and identify the weak characteristic signal submerged in strong noise by using the noise energy transfer mechanism.We propose a novel composite multistable stochastic-resonance(NCMSR)model combining the Gaussian potential model and an improved bistable model.Compared with the traditional multistable stochastic resonance method,all the parameters in the novel model have no symmetry,the output signal-to-noise ratio can be optimized and the output amplitude can be improved by adjusting the system parameters.The model retains the advantages of continuity and constraint of the Gaussian potential model and the advantages of the improved bistable model without output saturation,the NCMSR model has a higher utilization of noise.Taking the output signal-to-noise ratio as the index,weak periodic signal is detected based on the NCMSR model in Gaussian noise andαnoise environment respectively,and the detection effect is good.The application of NCMSR to the actual detection of bearing fault signals can realize the fault detection of bearing inner race and outer race.The outstanding advantages of this method in weak signal detection are verified,which provides a theoretical basis for industrial practical applications.
基金supported by the National Science Foundation of China(Grant No.42177172)China Geological Survey Project(Grant No.DD20230538).
文摘The recognition,repetition and prediction of the post-failure motion process of long-runout landslides are key scientific problems in the prevention and mitigation of geological disasters.In this study,a new numerical method involving LPF3D based on a multialgorithm and multiconstitutive model was proposed to simulate long-runout landslides with high precision and efficiency.The following results were obtained:(a)The motion process of landslides showed a steric effect with mobility,including gradual disintegration and spreading.The sliding mass can be divided into three states(dense,dilute and ultradilute)in the motion process,which can be solved by three dynamic regimes(friction,collision,and inertial);(b)Coupling simulation between the solid grain and liquid phases was achieved,focusing on drag force influences;(c)Different algorithms and constitutive models were employed in phase-state simulations.The volume fraction is an important indicator to distinguish different state types and solid‒liquid ratios.The flume experimental results were favorably validated against long-runout landslide case data;and(d)In this method,matched dynamic numerical modeling was developed to better capture the realistic motion process of long-runout landslides,and the advantages of continuum media and discrete media were combined to improve the computational accuracy and efficiency.This new method can reflect the realistic physical and mechanical processes in long-runout landslide motion and provide a suitable method for risk assessment and pre-failure prediction.
基金supported by the National Natural Science Foundation of China(61472443)the Basic Research Priorities Program of Shaanxi Province Natural Science Foundation of China(2013JQ8042)
文摘As an important application research topic of the intelligent aviation multi-station, collaborative detecting must overcome the problem of scouting measurement with status of 'fragmentation', and the NP-hardness problem of matching association between target and measurement in the process of scouting to data-link, which has complicated technical architecture of network construction. In this paper, taking advantage of cooperation mechanism on signal level in the aviation multi-station sympathetic network, a method of obtaining target time difference of arrival (TDOA) measurement using multi-station collaborative detecting based on time-frequency association is proposed. The method can not only achieve matching between target and its measurement, but also obtain TDOA measurement by further evolutionary transaction through refreshing sequential pulse time of arrival (TOA) measurement matrix for matching and correlating. Simulation results show that the accuracy of TDOA measurement has significant superiority over TOA, and detection probability of false TDOA measurement introduced by noise and fake measurement can be reduced effectively.