The reliability evaluation of a multistate network is primarily based on d-minimal paths/cuts(d-MPs/d-MCs).However,being a nondeterminism polynomial hard(NP-hard)problem,searching for all d-MPs is a rather challenging...The reliability evaluation of a multistate network is primarily based on d-minimal paths/cuts(d-MPs/d-MCs).However,being a nondeterminism polynomial hard(NP-hard)problem,searching for all d-MPs is a rather challenging task.In existing implicit enumeration algorithms based on minimal paths(MPs),duplicate d-MP candidates may be generated.An extra step is needed to locate and remove these duplicate d-MP candidates,which costs significant computational effort.This paper proposes an efficient method to prevent the generation of duplicate d-MP candidates for implicit enumeration algorithms for d-MPs.First,the mechanism of generating duplicate d-MP candidates in the implicit enumeration algorithms is discussed.Second,a direct and efficient avoiding-duplicates method is proposed.Third,an improved algorithm is developed,followed by complexity analysis and illustrative examples.Based on the computational experiments comparing with two existing algorithms,it is found that the proposed method can significantly improve the efficiency of generating d-MPs for a particular demand level d.展开更多
The recognition,repetition and prediction of the post-failure motion process of long-runout landslides are key scientific problems in the prevention and mitigation of geological disasters.In this study,a new numerical...The recognition,repetition and prediction of the post-failure motion process of long-runout landslides are key scientific problems in the prevention and mitigation of geological disasters.In this study,a new numerical method involving LPF3D based on a multialgorithm and multiconstitutive model was proposed to simulate long-runout landslides with high precision and efficiency.The following results were obtained:(a)The motion process of landslides showed a steric effect with mobility,including gradual disintegration and spreading.The sliding mass can be divided into three states(dense,dilute and ultradilute)in the motion process,which can be solved by three dynamic regimes(friction,collision,and inertial);(b)Coupling simulation between the solid grain and liquid phases was achieved,focusing on drag force influences;(c)Different algorithms and constitutive models were employed in phase-state simulations.The volume fraction is an important indicator to distinguish different state types and solid‒liquid ratios.The flume experimental results were favorably validated against long-runout landslide case data;and(d)In this method,matched dynamic numerical modeling was developed to better capture the realistic motion process of long-runout landslides,and the advantages of continuum media and discrete media were combined to improve the computational accuracy and efficiency.This new method can reflect the realistic physical and mechanical processes in long-runout landslide motion and provide a suitable method for risk assessment and pre-failure prediction.展开更多
In order to find an appropriate model suitable for a multistate survival experiment, 634 patients with chronic myeloid leukaemia (CML) were selected to illustrate the method of analysis. After transplantation, there w...In order to find an appropriate model suitable for a multistate survival experiment, 634 patients with chronic myeloid leukaemia (CML) were selected to illustrate the method of analysis. After transplantation, there were 4 possible situations for a patient: disease free, relapse but still alive, death before relapse, and death after relapse. The last 3 events were considered as treatment failure. The results showed that the risk of death before relapse was higher than that of the relapse, especially in the first year after transplantation with competing-risk method. The result of patients with relapse time less than 12 months was much poor by the Kaplan-Meier method. And the multistate survival models were developed, which were detailed and informative based on the analysis of competing risks and Kaplan-Meier analysis. With the multistate survival models, a further analysis on conditional probability was made for patients who were disease free and still alive at month 12 after transplantation. It was concluded that it was possible for an individual patient to predict the 4 possible probabilities at any time. Also the prognoses for relapse either death or not and death either before or after relapse may be given. Furthermore, the conditional probabilities for patients who were disease free and still alive in a given time after transplantation can be predicted.展开更多
To address the low accuracy and stability when applying classical control theory in distribution networks with distributed generation,a control method involving flexible multistate switches(FMSs)is proposed in this st...To address the low accuracy and stability when applying classical control theory in distribution networks with distributed generation,a control method involving flexible multistate switches(FMSs)is proposed in this study.This approach is based on an improved double-loop recursive fuzzy neural network(DRFNN)sliding mode,which is intended to stably achieve multiterminal power interaction and adaptive arc suppression for single-phase ground faults.First,an improved DRFNN sliding mode control(SMC)method is proposed to overcome the chattering and transient overshoot inherent in the classical SMC and reduce the reliance on a precise mathematical model of the control system.To improve the robustness of the system,an adaptive parameter-adjustment strategy for the DRFNN is designed,where its dynamic mapping capabilities are leveraged to improve the transient compensation control.Additionally,a quasi-continuous second-order sliding mode controller with a calculus-driven sliding mode surface is developed to improve the current monitoring accuracy and enhance the system stability.The stability of the proposed method and the convergence of the network parameters are verified using the Lyapunov theorem.A simulation model of the three-port FMS with its control system is constructed in MATLAB/Simulink.The simulation result confirms the feasibility and effectiveness of the proposed control strategy based on a comparative analysis.展开更多
In order to provide the guideline for bus drivers to adjust speed to minimize scheduled deviation,the method for setting bus scheduled travel time is proposed. Firstly,multistate model is introduced to fit historical ...In order to provide the guideline for bus drivers to adjust speed to minimize scheduled deviation,the method for setting bus scheduled travel time is proposed. Firstly,multistate model is introduced to fit historical travel time data and identify different service states. Based on the calibrated travel time distribution parameters,an optimization model is proposed,followed by a Monte Carlo( MC) simulation based genetic algorithm( GA)procedure to obtain the optimal scheduled time. A case study from a fixed bus route from Shenzhen is used to demonstrate the model applicability. The sensitivity analysis is conducted to study the effects of parameters setting on optimal slack time for each segment. The results show that multistate model fits travel time under peak hours better than Lognormal distribution,and the length of scheduled travel time basically reflects travel time reliability.展开更多
Signal transduction is an important and basic mechanism to cell life activities.The stochastic state transition of receptor induces the release of signaling molecular,which triggers the state transition of other recep...Signal transduction is an important and basic mechanism to cell life activities.The stochastic state transition of receptor induces the release of signaling molecular,which triggers the state transition of other receptors.It constructs a nonlinear sigaling network,and leads to robust switchlike properties which are critical to biological function.Network architectures and state transitions of receptor affect the performance of this biological network.In this work,we perform a study of nonlinear signaling on biological polymorphic network by analyzing network dynamics of the Ca^(2+)-induced Ca^(2+)release(CICR)mechanism,where fast and slow processes are involved and the receptor has four conformational states.Three types of networks,Erdos–R´enyi(ER)network,Watts–Strogatz(WS)network,and BaraB´asi–Albert(BA)network,are considered with different parameters.The dynamics of the biological networks exhibit different patterns at different time scales.At short time scale,the second open state is essential to reproduce the quasi-bistable regime,which emerges at a critical strength of connection for all three states involved in the fast processes and disappears at another critical point.The pattern at short time scale is not sensitive to the network architecture.At long time scale,only monostable regime is observed,and difference of network architectures affects the results more seriously.Our finding identifies features of nonlinear signaling networks with multistate that may underlie their biological function.展开更多
In the present paper, a three-component, stationary, multistate flow network system is studied. Detailed costs and incomes are specified. The aim is to minimize the expected total net loss with respect to the expected...In the present paper, a three-component, stationary, multistate flow network system is studied. Detailed costs and incomes are specified. The aim is to minimize the expected total net loss with respect to the expected times the components spend in each state. This represents a novelty in that we connect the expected component times spent in each state to the minimal total net loss of the system, without first finding the component importance. This is of interest in the design phase where one may tune the components to minimize the expected total net loss. Due to the complex nature of the problem, we first study a simplified version. There the expected times spent in each state are assumed equal for each component. Then a modified version of the full model is presented. The optimization in this model is completed in two steps. First the optimization is carried out for a set of pre-chosen fixed expected life cycle lengths. Then the overall minimum is identified by varying these expectations. Both the simplified and the modified optimization problems are nonlinear. The setup used in this article is such that it can easily be modified to represent other flow network systems and cost functions. The challenge lies in the optimization of real life systems.展开更多
Critical systems are typically complex systems that are required to perform reliably over a wide range of scenarios, or multistate world. Seldom does a single system exist that performs best for all plausible scenario...Critical systems are typically complex systems that are required to perform reliably over a wide range of scenarios, or multistate world. Seldom does a single system exist that performs best for all plausible scenarios. A robust solution, one that performs relatively well over a wide range of scenarios, is often the preferred choice for reduced risk at an acceptable cost. The alternative with the maximum expected utility may possess vulnerabilities that could be exploited. The best strategy is likely to be a hybrid solution. The von Neumann-Morgenstern Expected Utility Theory (EUT) would never select such a solution because, given its linear functional form, the expected utility of a hybrid solution cannot be greater than that of every constituent alternative. The continuity axiom and the independence axiom are assessed to be unrealistic for the problem of interest. Several well-known decision models are analyzed and demonstrated to be potentially misleading. The linear disappointment model modifies EUT by adding a term proportional to downside risk;however, it does not provide a mathematical basis for determining preferred hybrid solutions. The paper proposes a portfolio allocation model with stochastic optimization as a flexible and transparent method for defining choice problems and determining hybrid solutions for critical systems with desirable properties such as diversification and robustness.展开更多
The simultaneous modulation of electric and optical properties in graphene is essential for advancing high-performance applications in optoelectronics.However,achieving in-situ control of multiple electric and optical...The simultaneous modulation of electric and optical properties in graphene is essential for advancing high-performance applications in optoelectronics.However,achieving in-situ control of multiple electric and optical states in graphene devices remains a challenge.Here we demonstrate a versatile and reversible electric-field control of organic-ion intercalation from bilayer to pentalayer graphene.Through simultaneous optical imaging and electric measurements,we reveal multiple physical states controlled by the layer-by-layer intercalation processes,resulting in both high transparency and high electric conductance with an increase in the number of intercalated layers.Raman spectroscopy demonstrates that the intercalated graphene maintains a high carrier concentration without lattice degradation.Moreover,Hall effect measurements reveal that the carrier density can reach approximately 1.5×10^(14)cm^(-2)per layer.The ability to synchronously control the transparency and conductance states by adjusting the number of ion-intercalated layers highlights the potential of multistate modulation for the development of advanced optoelectronic devices in two-dimensional materials.展开更多
Multiferroic van der Waals (vdW) heterostructureshold great potential for next-generation spin-basedmemory and logic devices, offering versatile control overelectron spins and electric polarization in atomically thinp...Multiferroic van der Waals (vdW) heterostructureshold great potential for next-generation spin-basedmemory and logic devices, offering versatile control overelectron spins and electric polarization in atomically thinplatforms. However, achieving exceptionally large tunnelmagnetoresistance (TMR), stable multi-resistance states, andlow resistance-area (RA) products remains a challenge. Here,using first-principles calculations, we address these issues bydesigning a Fe_(3)GaTe_(2)/α-In_(2)Se_(3)/Fe_(3)GaTe_(2) multiferroic tunneljunction (MFTJ). We demonstrate large TMR values exceeding105%, nonvolatile multistate and RA product below 1 Ω μm^(2),which matched the requirements for high-density memorycells. The remarkably low RA products from the ultrathinferroelectric barrier’s narrow bandgap, while the exceptionallyhigh TMR and nearly perfect spin polarization originate fromenhanced momentum-selective tunneling at the Fe_(3)GaTe_(2)/α-In_(2)Se_(3) interface. Moreover, the low energy barrier for ferroelectricswitching enables efficient voltage-driven polarizationcontrol. These findings establish a clear pathway for integratinglow-RA, high-TMR, and multistate MFTJs intospintronic architectures, accelerating the development ofhigh-density, energy-efficient data storage and processingtechnologies.展开更多
Bio-memristor can address the inherent limitations of conventional memory components in artificial perceptual systems due to their biocompatibility with biological tissue.The actual deployment of bio-memristor is rest...Bio-memristor can address the inherent limitations of conventional memory components in artificial perceptual systems due to their biocompatibility with biological tissue.The actual deployment of bio-memristor is restricted by the lack of reproducibility,high power consumption,and insufficient storage capacity.Here,a reproducible and low-power multistate biomemristor is developed by designing the chitosan(CS)-reduced graphene oxide(rGO)interpenetrating network electrolyte.The interpenetrating network structure of the CS-rGO electrolyte reinforces structural stability and improves ionic conductivity.The bio-memristor equipped with CS-rGO active layer shows stable bipolar resistive switching up to 100 consecutive cycles,reproducible multistate storage with six different memory states,and low programming power of 9.4μW.The fabricated biocompatible CS-rGO device also exhibits deformation stability of memory operation over 103 bending cycles,high biocompatibility with HEK293 cells,and skin adhesion.This work provides an enlightening design strategy to develop highperformance bio-memristors for applications in artificial perceptual systems.展开更多
The Covid-19 pandemic has severely affected enterprises worldwide.It is thus of practical significance to study the process of enterprise recovery from Covid-19.However,the research on the effects of relevant determin...The Covid-19 pandemic has severely affected enterprises worldwide.It is thus of practical significance to study the process of enterprise recovery from Covid-19.However,the research on the effects of relevant determinants of business recovery is limited.This article presents a multistate modeling framework that considers the determinants,recovery time,and transition likelihood of Chinese enterprises by the state of those enterprises as a result of the pandemic(recovery state),with the help of an accelerated failure time model.Empirical data from 750 enterprises were used to evaluate the recovery process.The results indicate that the main problems facing non-manufacturing industries are supply shortages and order cancellations.With the increase of supplies and orders,the probability of transition between different recovery states gradually increases,and the recovery time of enterprises becomes shorter.For manufacturing industries,the factors that hinder recovery are more complex.The main problems are employee panic and order cancellations in the initial stage,employee shortages in the middle stage,and raw material shortages in the full recovery stage.This study can provide a reference for enterprise recovery in the current pandemic context and help policymakers and business managers take necessary measures to accelerate recovery.展开更多
The now and heat transfer characteristics in tenon joint gap between turbine blade and disk have been investigated experimentally with a scale up model. The characteristics of flow and heat transfer in this speCial ga...The now and heat transfer characteristics in tenon joint gap between turbine blade and disk have been investigated experimentally with a scale up model. The characteristics of flow and heat transfer in this speCial gap passage have been analyzed. The results are useful for beat transfer analysis in turbine design.展开更多
Metamaterials with multistability have attracted much attention due to their extraordinary physical properties. In this paper, we report a novel multistable strategy that is reversible under external forces, based on ...Metamaterials with multistability have attracted much attention due to their extraordinary physical properties. In this paper, we report a novel multistable strategy that is reversible under external forces, based on the fact that a variational reversible locally resonant elastic metamaterial(LREM) with four configurations is proposed. Through a combination of theoretical analysis and numerical simulations, this newly designed metamaterial is proven to exhibit different bandgap ranges and vibration attenuation properties in each configuration. Especially, there is tunable anisotropy shown in these configurations, which enables the bandgaps in two directions to be separated or overlapped. A model with a bandgap shifting ratio(BSR) of 100% and an overlap ratio of 25% is set to validate the multistable strategy feasibility. The proposed design strategy demonstrates significant potentials for applications in versatile scenarios.展开更多
In recent years,the phenomenon of multistability has attracted wide attention.In this paper,a memristive chaotic system with extreme multistability is constructed by using a memristor.The dynamic behavior of the syste...In recent years,the phenomenon of multistability has attracted wide attention.In this paper,a memristive chaotic system with extreme multistability is constructed by using a memristor.The dynamic behavior of the system is analyzed by Poincar´e mapping,a time series diagram,and a bifurcation diagram.The results show that the new system has several significant characteristics.First,the new system has a constant Lyapunov exponent,transient chaos and one complete Feigenbaum tree.Second,the system has the phenomenon of bifurcation map shifts that depend on the initial conditions.In addition,we find periodic bursting oscillations,chaotic bursting oscillations,and the transition of chaotic bursting oscillations to periodic bursting oscillations.In particular,when the system parameters take different discrete values,the system generates a bubble phenomenon that varies with the initial conditions,and this bubble can be shifted with the initial values,which has rarely been seen in the previous literature.The implementation by field-programmable gate array(FPGA)and analog circuit simulation show close alignment with the MATLAB numerical simulation results,validating the system’s realizability.Additionally,the image encryption algorithm integrating DNA-based encoding and chaotic systems further demonstrates its practical applicability.展开更多
Inflatable deployable structures inspired by origami have significant applications in space missions such as solar arrays and antennas.In this paper,a generalized Miura-ori tubular cell(GMTC)is presented as the basic ...Inflatable deployable structures inspired by origami have significant applications in space missions such as solar arrays and antennas.In this paper,a generalized Miura-ori tubular cell(GMTC)is presented as the basic cell to design a family of inflatable origami tubular structures with the targeted configuration.First,the classification of rigid foldable degree-4 vertices is studied thoroughly.Since the proposed GMTC is comprised of forming units(FU)and linking units(LU),types of FUs and LUs are investigated based on the classification of degree-4 vertices,respectively.The rigid foldability of the GMTC is presented by studying the kinematics of the FUs and LUs.Volume of the GMTC is analyzed to investigate multistable configurations of the basic cell.The variations in volume of the GMTC offer great potential for developing the inflatable tubular structure.Design method and parametric optimization of the tubular structure with targeted configuration are proposed.The feasibility of the approach is validated by the approximation of four different cases,namely parabolic,semicircular,trapezoidal,and straight-arc hybrid tubular structures.展开更多
Metamaterials have exotic physical properties that rely on the construction of their underlying architecture.However,the physical properties of conventional mechanical metamaterials are permanently programmed into the...Metamaterials have exotic physical properties that rely on the construction of their underlying architecture.However,the physical properties of conventional mechanical metamaterials are permanently programmed into their periodic interconnect configurations,resulting in their lack of modularity,scalable fabrication,and programmability.Mechanical metamaterials typically exhibit a single extraordinary mechanical property or multiple extraordinary properties coupled together,making it difficult to realize multiple independent extraordinary mechanical properties.Here,the pixel mechanics metamaterials(PMMs)with multifunctional and reprogrammable properties are developed by arraying uncoupled constrained individual modular mechanics pixels(MPs).The MPs enable controlled conversion between two extraordinary mechanical properties(multistability and compression-torsion coupling deformation).Each MP exhibits 32 independent and reversible room temperature programming configurations.In addition,the programmability of metamaterials is further enhanced by shape memory polymer(SMP)and 4D printing,greatly enriching the design freedom.For the PMM consisting of m×n MPs,it has 32(m×n)independent room temperature programming configurations.The application prospects of metamaterials in the vibration isolation device and energy absorption device with programmable performance have been demonstrated.The vibration isolation frequencies of the MP before and after programming were[0 Hz-5.86 Hz],[0 Hz-13.67 Hz and 306.64 Hz-365.23 Hz].The total energy absorption of the developed PMM can be adjusted controllably in the range of 1.01 J-3.91 J.Six standard digital logic gates that do not require sustained external force are designed by controlling the closure between the modules.This design paradigm will facilitate the further development of multifunctional and reprogrammable metamaterials.展开更多
Accurate classification and prediction of future traffic conditions are essential for developing effective strategies for congestion mitigation on the highway systems. Speed distribution is one of the traffic stream p...Accurate classification and prediction of future traffic conditions are essential for developing effective strategies for congestion mitigation on the highway systems. Speed distribution is one of the traffic stream parameters, which has been used to quantify the traffic conditions. Previous studies have shown that multi-modal probability distribution of speeds gives excellent results when simultaneously evaluating congested and free-flow traffic conditions. However, most of these previous analytical studies do not incorporate the influencing factors in characterizing these conditions. This study evaluates the impact of traffic occupancy on the multi-state speed distribution using the Bayesian Dirichlet Process Mixtures of Generalized Linear Models (DPM-GLM). Further, the study estimates the speed cut-point values of traffic states, which separate them into homogeneous groups using Bayesian change-point detection (BCD) technique. The study used 2015 archived one-year traffic data collected on Florida’s Interstate 295 freeway corridor. Information criteria results revealed three traffic states, which were identified as free-flow, transitional flow condition (congestion onset/offset), and the congested condition. The findings of the DPM-GLM indicated that in all estimated states, the traffic speed decreases when traffic occupancy increases. Comparison of the influence of traffic occupancy between traffic states showed that traffic occupancy has more impact on the free-flow and the congested state than on the transitional flow condition. With respect to estimating the threshold speed value, the results of the BCD model revealed promising findings in characterizing levels of traffic congestion.展开更多
Life expectancy of the elderly is a significant problem in China, and it changes not only the health care, but also the pension. This study used tracking data from the Chinese Urban and Rural Elderly Population Survey...Life expectancy of the elderly is a significant problem in China, and it changes not only the health care, but also the pension. This study used tracking data from the Chinese Urban and Rural Elderly Population Survey to calculate the age-specific Active Life Expectancy (ALE) of the Chinese elderly population aged 60 years and over. For analysis, this population was divided into different sub-populations according to gender, census register and region. The main conclusions of our study are as follows: 1) The quality of life for elderly males may be greater than that for elderly females;2) There were significant differences in Active Life Expectancy (ALE) and Inactive Life Expectancy (ILE) between urban and rural elderly;3) The differences in ALE between the eastern, central and western regions of China were not significant;and 4) The increased remaining life expectancy of the elderly was mainly attributed to the extended ALE in the lower age group and the expanded ILE in the higher age group. This study expands the knowledge of Chinese elderly’s life expectancy in different health status.展开更多
Individuals may reduce competition by temporally partitioning their use of a shared resource. Behavioral differences between sexes in ungulates may encourage segregation as individuals attempt to avoid antagonistic in...Individuals may reduce competition by temporally partitioning their use of a shared resource. Behavioral differences between sexes in ungulates may encourage segregation as individuals attempt to avoid antagonistic interactions. However, dominant sex and age groups may reduce subordinates' access to food resources, regardless of the subordinate's sex. We hypothesized that white-tailed deer Odocoileus Virginian us temporally segregated at supplemental feedi ng sites based on social rank (subordinate: yearling males and adult females;dominant: adult males) and that segregation was affected by phase of the breeding season and diel cycle. If deer temporally segregate according to social rank, we predicted that the resulting activity patterns would manifest in one social class being relatively more susceptible to hunter-induced mortality. We used a multistate modeling approach to quantify temporal segregation and calculated the probability that a feeding site was in a particular state during diurnal and nocturnal hours for each of the 3 phases of the breeding season. We determined that transition probabilities differed by season and diel cycle and dominant and subordinate social classes clearly avoided each other, with <1% co-occurrenee at feedi ng sites. During the pre-breedi ng seas on, the probability of a subordi nate being present during diurnal hours was 3.Ox more likely than a dominant being present, but did not differ during nocturnal hours. There was no difference for dominants and subordinates during diurnal or no cturnal hours during the breedi ng season .In the post-breedi ng season, subordi nates were 1.7x more likely to occur at the feeding site than a dominant during diurnal hours but they did not differ during nocturnal hours. Our results indicate that dominance status influences temporal segregation at feeding sites and is affected by the phase of the breeding season. Therefore, the resulti ng activity patterns may in crease subordi nates' risk to human predation during the prebreedi ng and post-breeding seasons.展开更多
基金supported by the National Natural Science Foundation of China(71701207)the Science and Technology on Reliability&Environmental Engineering Laboratory(6142004004-2)the Science and Technology Commission of the CMC(2019-JCJQ-JJ-180)。
文摘The reliability evaluation of a multistate network is primarily based on d-minimal paths/cuts(d-MPs/d-MCs).However,being a nondeterminism polynomial hard(NP-hard)problem,searching for all d-MPs is a rather challenging task.In existing implicit enumeration algorithms based on minimal paths(MPs),duplicate d-MP candidates may be generated.An extra step is needed to locate and remove these duplicate d-MP candidates,which costs significant computational effort.This paper proposes an efficient method to prevent the generation of duplicate d-MP candidates for implicit enumeration algorithms for d-MPs.First,the mechanism of generating duplicate d-MP candidates in the implicit enumeration algorithms is discussed.Second,a direct and efficient avoiding-duplicates method is proposed.Third,an improved algorithm is developed,followed by complexity analysis and illustrative examples.Based on the computational experiments comparing with two existing algorithms,it is found that the proposed method can significantly improve the efficiency of generating d-MPs for a particular demand level d.
基金supported by the National Science Foundation of China(Grant No.42177172)China Geological Survey Project(Grant No.DD20230538).
文摘The recognition,repetition and prediction of the post-failure motion process of long-runout landslides are key scientific problems in the prevention and mitigation of geological disasters.In this study,a new numerical method involving LPF3D based on a multialgorithm and multiconstitutive model was proposed to simulate long-runout landslides with high precision and efficiency.The following results were obtained:(a)The motion process of landslides showed a steric effect with mobility,including gradual disintegration and spreading.The sliding mass can be divided into three states(dense,dilute and ultradilute)in the motion process,which can be solved by three dynamic regimes(friction,collision,and inertial);(b)Coupling simulation between the solid grain and liquid phases was achieved,focusing on drag force influences;(c)Different algorithms and constitutive models were employed in phase-state simulations.The volume fraction is an important indicator to distinguish different state types and solid‒liquid ratios.The flume experimental results were favorably validated against long-runout landslide case data;and(d)In this method,matched dynamic numerical modeling was developed to better capture the realistic motion process of long-runout landslides,and the advantages of continuum media and discrete media were combined to improve the computational accuracy and efficiency.This new method can reflect the realistic physical and mechanical processes in long-runout landslide motion and provide a suitable method for risk assessment and pre-failure prediction.
文摘In order to find an appropriate model suitable for a multistate survival experiment, 634 patients with chronic myeloid leukaemia (CML) were selected to illustrate the method of analysis. After transplantation, there were 4 possible situations for a patient: disease free, relapse but still alive, death before relapse, and death after relapse. The last 3 events were considered as treatment failure. The results showed that the risk of death before relapse was higher than that of the relapse, especially in the first year after transplantation with competing-risk method. The result of patients with relapse time less than 12 months was much poor by the Kaplan-Meier method. And the multistate survival models were developed, which were detailed and informative based on the analysis of competing risks and Kaplan-Meier analysis. With the multistate survival models, a further analysis on conditional probability was made for patients who were disease free and still alive at month 12 after transplantation. It was concluded that it was possible for an individual patient to predict the 4 possible probabilities at any time. Also the prognoses for relapse either death or not and death either before or after relapse may be given. Furthermore, the conditional probabilities for patients who were disease free and still alive in a given time after transplantation can be predicted.
基金the Natural Science Foundation of Fujian,China(No.2021J01633).
文摘To address the low accuracy and stability when applying classical control theory in distribution networks with distributed generation,a control method involving flexible multistate switches(FMSs)is proposed in this study.This approach is based on an improved double-loop recursive fuzzy neural network(DRFNN)sliding mode,which is intended to stably achieve multiterminal power interaction and adaptive arc suppression for single-phase ground faults.First,an improved DRFNN sliding mode control(SMC)method is proposed to overcome the chattering and transient overshoot inherent in the classical SMC and reduce the reliance on a precise mathematical model of the control system.To improve the robustness of the system,an adaptive parameter-adjustment strategy for the DRFNN is designed,where its dynamic mapping capabilities are leveraged to improve the transient compensation control.Additionally,a quasi-continuous second-order sliding mode controller with a calculus-driven sliding mode surface is developed to improve the current monitoring accuracy and enhance the system stability.The stability of the proposed method and the convergence of the network parameters are verified using the Lyapunov theorem.A simulation model of the three-port FMS with its control system is constructed in MATLAB/Simulink.The simulation result confirms the feasibility and effectiveness of the proposed control strategy based on a comparative analysis.
基金Sponsored by the National Natural Science Foundation of China(Grant No.71101109)Key Project of Shanghai Soft Science Research Program(Grant No.15692105400)Humanities and Social Sciences Program of the Ministry of Education,China(Grant No.15YJCZH148)
文摘In order to provide the guideline for bus drivers to adjust speed to minimize scheduled deviation,the method for setting bus scheduled travel time is proposed. Firstly,multistate model is introduced to fit historical travel time data and identify different service states. Based on the calibrated travel time distribution parameters,an optimization model is proposed,followed by a Monte Carlo( MC) simulation based genetic algorithm( GA)procedure to obtain the optimal scheduled time. A case study from a fixed bus route from Shenzhen is used to demonstrate the model applicability. The sensitivity analysis is conducted to study the effects of parameters setting on optimal slack time for each segment. The results show that multistate model fits travel time under peak hours better than Lognormal distribution,and the length of scheduled travel time basically reflects travel time reliability.
基金Project supported by the National Natural Science Foundation of China(Grant No.11675228)China Postdoctoral Science Foundation(Grant No.2015M572662XB).
文摘Signal transduction is an important and basic mechanism to cell life activities.The stochastic state transition of receptor induces the release of signaling molecular,which triggers the state transition of other receptors.It constructs a nonlinear sigaling network,and leads to robust switchlike properties which are critical to biological function.Network architectures and state transitions of receptor affect the performance of this biological network.In this work,we perform a study of nonlinear signaling on biological polymorphic network by analyzing network dynamics of the Ca^(2+)-induced Ca^(2+)release(CICR)mechanism,where fast and slow processes are involved and the receptor has four conformational states.Three types of networks,Erdos–R´enyi(ER)network,Watts–Strogatz(WS)network,and BaraB´asi–Albert(BA)network,are considered with different parameters.The dynamics of the biological networks exhibit different patterns at different time scales.At short time scale,the second open state is essential to reproduce the quasi-bistable regime,which emerges at a critical strength of connection for all three states involved in the fast processes and disappears at another critical point.The pattern at short time scale is not sensitive to the network architecture.At long time scale,only monostable regime is observed,and difference of network architectures affects the results more seriously.Our finding identifies features of nonlinear signaling networks with multistate that may underlie their biological function.
文摘In the present paper, a three-component, stationary, multistate flow network system is studied. Detailed costs and incomes are specified. The aim is to minimize the expected total net loss with respect to the expected times the components spend in each state. This represents a novelty in that we connect the expected component times spent in each state to the minimal total net loss of the system, without first finding the component importance. This is of interest in the design phase where one may tune the components to minimize the expected total net loss. Due to the complex nature of the problem, we first study a simplified version. There the expected times spent in each state are assumed equal for each component. Then a modified version of the full model is presented. The optimization in this model is completed in two steps. First the optimization is carried out for a set of pre-chosen fixed expected life cycle lengths. Then the overall minimum is identified by varying these expectations. Both the simplified and the modified optimization problems are nonlinear. The setup used in this article is such that it can easily be modified to represent other flow network systems and cost functions. The challenge lies in the optimization of real life systems.
文摘Critical systems are typically complex systems that are required to perform reliably over a wide range of scenarios, or multistate world. Seldom does a single system exist that performs best for all plausible scenarios. A robust solution, one that performs relatively well over a wide range of scenarios, is often the preferred choice for reduced risk at an acceptable cost. The alternative with the maximum expected utility may possess vulnerabilities that could be exploited. The best strategy is likely to be a hybrid solution. The von Neumann-Morgenstern Expected Utility Theory (EUT) would never select such a solution because, given its linear functional form, the expected utility of a hybrid solution cannot be greater than that of every constituent alternative. The continuity axiom and the independence axiom are assessed to be unrealistic for the problem of interest. Several well-known decision models are analyzed and demonstrated to be potentially misleading. The linear disappointment model modifies EUT by adding a term proportional to downside risk;however, it does not provide a mathematical basis for determining preferred hybrid solutions. The paper proposes a portfolio allocation model with stochastic optimization as a flexible and transparent method for defining choice problems and determining hybrid solutions for critical systems with desirable properties such as diversification and robustness.
基金supported by the National Natural Science Foundation of China(Grant Nos.12274252,and 12350404)the Basic Science Center Project of NSFC(Grant No.52388201)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302502)。
文摘The simultaneous modulation of electric and optical properties in graphene is essential for advancing high-performance applications in optoelectronics.However,achieving in-situ control of multiple electric and optical states in graphene devices remains a challenge.Here we demonstrate a versatile and reversible electric-field control of organic-ion intercalation from bilayer to pentalayer graphene.Through simultaneous optical imaging and electric measurements,we reveal multiple physical states controlled by the layer-by-layer intercalation processes,resulting in both high transparency and high electric conductance with an increase in the number of intercalated layers.Raman spectroscopy demonstrates that the intercalated graphene maintains a high carrier concentration without lattice degradation.Moreover,Hall effect measurements reveal that the carrier density can reach approximately 1.5×10^(14)cm^(-2)per layer.The ability to synchronously control the transparency and conductance states by adjusting the number of ion-intercalated layers highlights the potential of multistate modulation for the development of advanced optoelectronic devices in two-dimensional materials.
基金supported by the Beijing Natural Science Foundation (4232070)the National Natural Science Foundation of China (T2394475, 62371019, 92164206, and 52261145694)+1 种基金the Research Start-up Funds of Hangzhou International Innovation Institute of Beihang University (2024KQ052)the International Mobility Project (B16001)。
文摘Multiferroic van der Waals (vdW) heterostructureshold great potential for next-generation spin-basedmemory and logic devices, offering versatile control overelectron spins and electric polarization in atomically thinplatforms. However, achieving exceptionally large tunnelmagnetoresistance (TMR), stable multi-resistance states, andlow resistance-area (RA) products remains a challenge. Here,using first-principles calculations, we address these issues bydesigning a Fe_(3)GaTe_(2)/α-In_(2)Se_(3)/Fe_(3)GaTe_(2) multiferroic tunneljunction (MFTJ). We demonstrate large TMR values exceeding105%, nonvolatile multistate and RA product below 1 Ω μm^(2),which matched the requirements for high-density memorycells. The remarkably low RA products from the ultrathinferroelectric barrier’s narrow bandgap, while the exceptionallyhigh TMR and nearly perfect spin polarization originate fromenhanced momentum-selective tunneling at the Fe_(3)GaTe_(2)/α-In_(2)Se_(3) interface. Moreover, the low energy barrier for ferroelectricswitching enables efficient voltage-driven polarizationcontrol. These findings establish a clear pathway for integratinglow-RA, high-TMR, and multistate MFTJs intospintronic architectures, accelerating the development ofhigh-density, energy-efficient data storage and processingtechnologies.
基金the National Key Research and Development Program of China,Grant/Award Number:2018YFA0703500National Natural Science Foundation of China,Grant/Award Numbers:51991340,51991342,52072029,52102153,52188101+2 种基金the Overseas Expertise Introduction Projects for Discipline Innovation,Grant/Award Number:B14003the China Postdoctoral Science Foundation,Grant/Award Number:2021M700379the Fundamental Research Funds for Central Universities,Grant/Award Number:FRFTP-18-001C1。
文摘Bio-memristor can address the inherent limitations of conventional memory components in artificial perceptual systems due to their biocompatibility with biological tissue.The actual deployment of bio-memristor is restricted by the lack of reproducibility,high power consumption,and insufficient storage capacity.Here,a reproducible and low-power multistate biomemristor is developed by designing the chitosan(CS)-reduced graphene oxide(rGO)interpenetrating network electrolyte.The interpenetrating network structure of the CS-rGO electrolyte reinforces structural stability and improves ionic conductivity.The bio-memristor equipped with CS-rGO active layer shows stable bipolar resistive switching up to 100 consecutive cycles,reproducible multistate storage with six different memory states,and low programming power of 9.4μW.The fabricated biocompatible CS-rGO device also exhibits deformation stability of memory operation over 103 bending cycles,high biocompatibility with HEK293 cells,and skin adhesion.This work provides an enlightening design strategy to develop highperformance bio-memristors for applications in artificial perceptual systems.
基金supported by the National Natural Science Foundation of China(Grant Numbers 41907393,42177448,and 41807504),China。
文摘The Covid-19 pandemic has severely affected enterprises worldwide.It is thus of practical significance to study the process of enterprise recovery from Covid-19.However,the research on the effects of relevant determinants of business recovery is limited.This article presents a multistate modeling framework that considers the determinants,recovery time,and transition likelihood of Chinese enterprises by the state of those enterprises as a result of the pandemic(recovery state),with the help of an accelerated failure time model.Empirical data from 750 enterprises were used to evaluate the recovery process.The results indicate that the main problems facing non-manufacturing industries are supply shortages and order cancellations.With the increase of supplies and orders,the probability of transition between different recovery states gradually increases,and the recovery time of enterprises becomes shorter.For manufacturing industries,the factors that hinder recovery are more complex.The main problems are employee panic and order cancellations in the initial stage,employee shortages in the middle stage,and raw material shortages in the full recovery stage.This study can provide a reference for enterprise recovery in the current pandemic context and help policymakers and business managers take necessary measures to accelerate recovery.
文摘The now and heat transfer characteristics in tenon joint gap between turbine blade and disk have been investigated experimentally with a scale up model. The characteristics of flow and heat transfer in this speCial gap passage have been analyzed. The results are useful for beat transfer analysis in turbine design.
基金supported by the National Natural Science Foundation of China(No.52192633)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2025JC-YBMS-050)。
文摘Metamaterials with multistability have attracted much attention due to their extraordinary physical properties. In this paper, we report a novel multistable strategy that is reversible under external forces, based on the fact that a variational reversible locally resonant elastic metamaterial(LREM) with four configurations is proposed. Through a combination of theoretical analysis and numerical simulations, this newly designed metamaterial is proven to exhibit different bandgap ranges and vibration attenuation properties in each configuration. Especially, there is tunable anisotropy shown in these configurations, which enables the bandgaps in two directions to be separated or overlapped. A model with a bandgap shifting ratio(BSR) of 100% and an overlap ratio of 25% is set to validate the multistable strategy feasibility. The proposed design strategy demonstrates significant potentials for applications in versatile scenarios.
基金Project supported by the Natural Science Foundation of Hubei Province(Grant No.2024AFD068).
文摘In recent years,the phenomenon of multistability has attracted wide attention.In this paper,a memristive chaotic system with extreme multistability is constructed by using a memristor.The dynamic behavior of the system is analyzed by Poincar´e mapping,a time series diagram,and a bifurcation diagram.The results show that the new system has several significant characteristics.First,the new system has a constant Lyapunov exponent,transient chaos and one complete Feigenbaum tree.Second,the system has the phenomenon of bifurcation map shifts that depend on the initial conditions.In addition,we find periodic bursting oscillations,chaotic bursting oscillations,and the transition of chaotic bursting oscillations to periodic bursting oscillations.In particular,when the system parameters take different discrete values,the system generates a bubble phenomenon that varies with the initial conditions,and this bubble can be shifted with the initial values,which has rarely been seen in the previous literature.The implementation by field-programmable gate array(FPGA)and analog circuit simulation show close alignment with the MATLAB numerical simulation results,validating the system’s realizability.Additionally,the image encryption algorithm integrating DNA-based encoding and chaotic systems further demonstrates its practical applicability.
基金supported by the National Natural Science Foundation of China(No.52222501,52075016,52192632)the Fundamental Research Funds for the Central Universities(Grant No.YWF-23-L-904).
文摘Inflatable deployable structures inspired by origami have significant applications in space missions such as solar arrays and antennas.In this paper,a generalized Miura-ori tubular cell(GMTC)is presented as the basic cell to design a family of inflatable origami tubular structures with the targeted configuration.First,the classification of rigid foldable degree-4 vertices is studied thoroughly.Since the proposed GMTC is comprised of forming units(FU)and linking units(LU),types of FUs and LUs are investigated based on the classification of degree-4 vertices,respectively.The rigid foldability of the GMTC is presented by studying the kinematics of the FUs and LUs.Volume of the GMTC is analyzed to investigate multistable configurations of the basic cell.The variations in volume of the GMTC offer great potential for developing the inflatable tubular structure.Design method and parametric optimization of the tubular structure with targeted configuration are proposed.The feasibility of the approach is validated by the approximation of four different cases,namely parabolic,semicircular,trapezoidal,and straight-arc hybrid tubular structures.
基金the financial support provided by the National Key R&D Program of China(2022YFB3805700)the National Natural Science Foundation of China(Grant Nos.12072094 and 12172106)+2 种基金the China Postdoctoral Science Foundation(Grant No.2023M730869)the Heilongjiang Natural Science Foundation Joint Guidance Project(Grant No.LH2023A004)the Postdoctoral Fellowship Program of CPSF(Grant No.GZB20230959)。
文摘Metamaterials have exotic physical properties that rely on the construction of their underlying architecture.However,the physical properties of conventional mechanical metamaterials are permanently programmed into their periodic interconnect configurations,resulting in their lack of modularity,scalable fabrication,and programmability.Mechanical metamaterials typically exhibit a single extraordinary mechanical property or multiple extraordinary properties coupled together,making it difficult to realize multiple independent extraordinary mechanical properties.Here,the pixel mechanics metamaterials(PMMs)with multifunctional and reprogrammable properties are developed by arraying uncoupled constrained individual modular mechanics pixels(MPs).The MPs enable controlled conversion between two extraordinary mechanical properties(multistability and compression-torsion coupling deformation).Each MP exhibits 32 independent and reversible room temperature programming configurations.In addition,the programmability of metamaterials is further enhanced by shape memory polymer(SMP)and 4D printing,greatly enriching the design freedom.For the PMM consisting of m×n MPs,it has 32(m×n)independent room temperature programming configurations.The application prospects of metamaterials in the vibration isolation device and energy absorption device with programmable performance have been demonstrated.The vibration isolation frequencies of the MP before and after programming were[0 Hz-5.86 Hz],[0 Hz-13.67 Hz and 306.64 Hz-365.23 Hz].The total energy absorption of the developed PMM can be adjusted controllably in the range of 1.01 J-3.91 J.Six standard digital logic gates that do not require sustained external force are designed by controlling the closure between the modules.This design paradigm will facilitate the further development of multifunctional and reprogrammable metamaterials.
文摘Accurate classification and prediction of future traffic conditions are essential for developing effective strategies for congestion mitigation on the highway systems. Speed distribution is one of the traffic stream parameters, which has been used to quantify the traffic conditions. Previous studies have shown that multi-modal probability distribution of speeds gives excellent results when simultaneously evaluating congested and free-flow traffic conditions. However, most of these previous analytical studies do not incorporate the influencing factors in characterizing these conditions. This study evaluates the impact of traffic occupancy on the multi-state speed distribution using the Bayesian Dirichlet Process Mixtures of Generalized Linear Models (DPM-GLM). Further, the study estimates the speed cut-point values of traffic states, which separate them into homogeneous groups using Bayesian change-point detection (BCD) technique. The study used 2015 archived one-year traffic data collected on Florida’s Interstate 295 freeway corridor. Information criteria results revealed three traffic states, which were identified as free-flow, transitional flow condition (congestion onset/offset), and the congested condition. The findings of the DPM-GLM indicated that in all estimated states, the traffic speed decreases when traffic occupancy increases. Comparison of the influence of traffic occupancy between traffic states showed that traffic occupancy has more impact on the free-flow and the congested state than on the transitional flow condition. With respect to estimating the threshold speed value, the results of the BCD model revealed promising findings in characterizing levels of traffic congestion.
文摘Life expectancy of the elderly is a significant problem in China, and it changes not only the health care, but also the pension. This study used tracking data from the Chinese Urban and Rural Elderly Population Survey to calculate the age-specific Active Life Expectancy (ALE) of the Chinese elderly population aged 60 years and over. For analysis, this population was divided into different sub-populations according to gender, census register and region. The main conclusions of our study are as follows: 1) The quality of life for elderly males may be greater than that for elderly females;2) There were significant differences in Active Life Expectancy (ALE) and Inactive Life Expectancy (ILE) between urban and rural elderly;3) The differences in ALE between the eastern, central and western regions of China were not significant;and 4) The increased remaining life expectancy of the elderly was mainly attributed to the extended ALE in the lower age group and the expanded ILE in the higher age group. This study expands the knowledge of Chinese elderly’s life expectancy in different health status.
文摘Individuals may reduce competition by temporally partitioning their use of a shared resource. Behavioral differences between sexes in ungulates may encourage segregation as individuals attempt to avoid antagonistic interactions. However, dominant sex and age groups may reduce subordinates' access to food resources, regardless of the subordinate's sex. We hypothesized that white-tailed deer Odocoileus Virginian us temporally segregated at supplemental feedi ng sites based on social rank (subordinate: yearling males and adult females;dominant: adult males) and that segregation was affected by phase of the breeding season and diel cycle. If deer temporally segregate according to social rank, we predicted that the resulting activity patterns would manifest in one social class being relatively more susceptible to hunter-induced mortality. We used a multistate modeling approach to quantify temporal segregation and calculated the probability that a feeding site was in a particular state during diurnal and nocturnal hours for each of the 3 phases of the breeding season. We determined that transition probabilities differed by season and diel cycle and dominant and subordinate social classes clearly avoided each other, with <1% co-occurrenee at feedi ng sites. During the pre-breedi ng seas on, the probability of a subordi nate being present during diurnal hours was 3.Ox more likely than a dominant being present, but did not differ during nocturnal hours. There was no difference for dominants and subordinates during diurnal or no cturnal hours during the breedi ng season .In the post-breedi ng season, subordi nates were 1.7x more likely to occur at the feeding site than a dominant during diurnal hours but they did not differ during nocturnal hours. Our results indicate that dominance status influences temporal segregation at feeding sites and is affected by the phase of the breeding season. Therefore, the resulti ng activity patterns may in crease subordi nates' risk to human predation during the prebreedi ng and post-breeding seasons.