Crack problems are often reduced to dual integral equations,which can be solved by expanding the displacement integral equation as a series in the form of Chebyshev-like or Jacobi polynomials.Schmidt’s multiplying-fa...Crack problems are often reduced to dual integral equations,which can be solved by expanding the displacement integral equation as a series in the form of Chebyshev-like or Jacobi polynomials.Schmidt’s multiplying-factor integration method has been one of the most favorable techniques for determining the expansion coefficients by constructing a well-posed system of linear algebraic equations.However,Schmidt’s method is less efficient for numerical computation because the matrix elements of the linear equations are evaluated from dual integrals.In this study,we propose a modified method to construct linear equations to efficiently determine the expansion coefficients.The modified technique is developed upon the application of certain multiplying factors to the traction integral equation and then integrating the resulting equation over“source”regions.Such manipulations simplify the matrix elements as single integrals.By carrying out numerical examples,we demonstrate that the technique is not only accurate but also very efficient.In particular,the method only needs approximately 1/5 of the computation time of Schmidt’s method.Therefore,this method can be used to replace Schmidt’s method and is expected to be very useful in solving crack problems.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11802074,42074057,11972132,and 11734017)China National Postdoctoral Program for Innovative Talents(Grant No.BX201700066)+1 种基金China Postdoctoral Science Foundation(Grant No.2018M630345)the Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.2020016)。
文摘Crack problems are often reduced to dual integral equations,which can be solved by expanding the displacement integral equation as a series in the form of Chebyshev-like or Jacobi polynomials.Schmidt’s multiplying-factor integration method has been one of the most favorable techniques for determining the expansion coefficients by constructing a well-posed system of linear algebraic equations.However,Schmidt’s method is less efficient for numerical computation because the matrix elements of the linear equations are evaluated from dual integrals.In this study,we propose a modified method to construct linear equations to efficiently determine the expansion coefficients.The modified technique is developed upon the application of certain multiplying factors to the traction integral equation and then integrating the resulting equation over“source”regions.Such manipulations simplify the matrix elements as single integrals.By carrying out numerical examples,we demonstrate that the technique is not only accurate but also very efficient.In particular,the method only needs approximately 1/5 of the computation time of Schmidt’s method.Therefore,this method can be used to replace Schmidt’s method and is expected to be very useful in solving crack problems.