Thin-film lithium niobate(TFLN)possesses great potential because it enables high-speed modulation by voltage,which allows higher resolution and lower power consumption for laser beam scanning than direct laser modulat...Thin-film lithium niobate(TFLN)possesses great potential because it enables high-speed modulation by voltage,which allows higher resolution and lower power consumption for laser beam scanning than direct laser modulation.To achieve these functions,a red,green,and blue(RGB)multiplexer using TFLN is required as an important building block for photonic integrated circuits.We fabricated an RGB multiplexer using TFLN and experimentally confirmed its operation.Three different laser lights of red(λ=638 nm),green(λ=520 nm),and blue(λ=473 nm)were successfully coupled as a single laser beam by an RGB multiplexer composed of multimode interferometers.Furthermore,the TFLN was fabricated by sputter deposition,whereas conventionally,it is fabricated via bulk-lithium niobate adhesion to the substrate.The sputterdeposited TFLN is advantageous for large-volume mass production.展开更多
We demonstrate a bipolar graphene/F_(16)CuPc synaptic transistor(GFST)with matched p-type and n-type bipolar properties,which emulates multiplexed neurotransmission of the release of two excitatory neurotransmitters i...We demonstrate a bipolar graphene/F_(16)CuPc synaptic transistor(GFST)with matched p-type and n-type bipolar properties,which emulates multiplexed neurotransmission of the release of two excitatory neurotransmitters in graphene and F_(16)CuPc channels,separately.This process facilitates fast-switching plasticity by altering charge carriers in the separated channels.The complementary neural network for image recognition of Fashion-MNIST dataset was constructed using the matched relative amplitude and plasticity properties of the GFST dominated by holes or electrons to improve the weight regulation and recognition accuracy,achieving a pattern recognition accuracy of 83.23%.These results provide new insights to the construction of future neuromorphic systems.展开更多
Lanthanide(Ln^(3+))-doped luminescent nanocrystals(NCs)with excitation and emission in the second near-infrared biological window(NIRII,1000-1700 nm)have attracted considerable attention in the fields of deep-tissue b...Lanthanide(Ln^(3+))-doped luminescent nanocrystals(NCs)with excitation and emission in the second near-infrared biological window(NIRII,1000-1700 nm)have attracted considerable attention in the fields of deep-tissue bioimaging and non-invasive biodetection,owing to their superior advantages including good photochemical stability,sharp emission peaks,large penetration depth,and high signal-to-noise ratio[1].Conventionally,Yb3t-and Nd3t-sensitized NCs have been utilized as NIR-II luminescent nanoprobes for in vivo bioimaging upon excitation with 980 and 808 nm diode laser,respectively[2].展开更多
A multiplexer with a low-distortion high-bandwidth analog switch is presented. The gate-to-source voltage of the switch is set by the combined on-voltage of a pMOS and an nMOS,and the difference between its gate-sourc...A multiplexer with a low-distortion high-bandwidth analog switch is presented. The gate-to-source voltage of the switch is set by the combined on-voltage of a pMOS and an nMOS,and the difference between its gate-source voltage and the threshold voltage (VGST) is guaranteed to be constant with input variation. Thus, the body effect is nearly canceled. Implemented in a TSMC 0.18μm CMOS process, results from HSPICE simulation show that the VGST is nearly constant with an input range from 0.3 to 1.7V,and the - 3dB bandwidth is larger than 10GHz;the SFDR (spurious free dynamic range) of the output is 67. lldB with 1GHz input frequency; the turn-on time is 2.98ns,and the turn-off time is 1.35ns, which indicates a break-before-make action of the multiplexer. The proposed structure can be applied to high speed signal transmission.展开更多
Recent advancements in artificial intelligence have transformed three-dimensional(3D)optical imaging and metrology,enabling high-resolution and high-precision 3D surface geometry measurements from one single fringe pa...Recent advancements in artificial intelligence have transformed three-dimensional(3D)optical imaging and metrology,enabling high-resolution and high-precision 3D surface geometry measurements from one single fringe pattern projection.However,the imaging speed of conventional fringe projection profilometry(FPP)remains limited by the native sensor refresh rates due to the inherent"one-to-one"synchronization mechanism between pattern projection and image acquisition in standard structured light techniques.Here,we present dual-frequency angular-multiplexed fringe projection profilometry(DFAMFPP),a deep learning-enabled 3D imaging technique that achieves high-speed,high-precision,and large-depth-range absolute 3D surface measurements at speeds 16 times faster than the sensor's native frame rate.By encoding multi-timeframe 3D information into a single multiplexed image using multiple pairs of dual-frequency fringes,high-accuracy absolute phase maps are reconstructed using specially trained two-stage number-theoretical-based deep neural networks.We validate the effectiveness of DFAMFPP through dynamic scene measurements,achieving 10,000 Hz 3D imaging of a running turbofan engine prototype with only a 625 Hz camera.By overcoming the sensor hardware bottleneck,DFAMFPP significantly advances high-speed and ultra-high-speed 3D imaging,opening new avenues for exploring dynamic processes across diverse scientific disciplines.展开更多
Fluorescently encoded microbeads are in demand for multiplexed applications in different fields.Compared to organic dye-based commercially available Luminex's x MAP technology, upconversion nanoparticles(UCNPs) ar...Fluorescently encoded microbeads are in demand for multiplexed applications in different fields.Compared to organic dye-based commercially available Luminex's x MAP technology, upconversion nanoparticles(UCNPs) are better alternatives due to their large antiStokes shift, photostability, nil background, and single wavelength excitation. Here, we developed a new multiplexed detection system using UCNPs for encoding poly(ethylene glycol) diacrylate(PEGDA) microbeads as well as for labeling reporter antibody. However, to prepare UCNPs-encoded microbeads, currently used swellingbased encapsulation leads to non-uniformity, which is undesirable for fluorescence-based multiplexing. Hence,we utilized droplet microfluidics to obtain encoded microbeads of uniform size, shape, and UCNPs distribution inside. Additionally, PEGDA microbeads lack functionality for probe antibodies conjugation on their surface.Methods to functionalize the surface of PEGDA microbeads(acrylic acid incorporation, polydopamine coating)reported thus far quench the fluorescence of UCNPs. Here,PEGDA microbeads surface was coated with silica followed by carboxyl modification without compromising the fluorescence intensity of UCNPs. In this study, droplet microfluidics-assisted UCNPs-encoded microbeads of uniform shape, size, and fluorescence were prepared.Multiple color codes were generated by mixing UCNPs emitting red and green colors at different ratios prior to encapsulation. UCNPs emitting blue color were used to label the reporter antibody. Probe antibodies were covalently immobilized on red UCNPs-encoded microbeads for specific capture of human serum albumin(HSA) as a model protein. The system was also demonstrated for multiplexed detection of both human C-reactive protein(hCRP) and HSA protein by immobilizing anti-h CRP antibodies on green UCNPs.展开更多
Tumor-derived exosomes are actively involved in cancer progression and metastasis and have emerged as a promising marker for cancer diagnosis in liquid biopsy.Because of their nanoscale size,complex biogenesis,and met...Tumor-derived exosomes are actively involved in cancer progression and metastasis and have emerged as a promising marker for cancer diagnosis in liquid biopsy.Because of their nanoscale size,complex biogenesis,and methodological limitations related to exosome isolation and detection,advancements in their analysis remain slow.Microfluidic technology offers a better analytic approach compared with conventional methods.Here,we developed a bead-based microarray for exosome isolation and multiplexed tumor marker detection.Using this method,exosomes are isolated by binding to antibodies on the bead surface,and tumor markers on the exosomes are detected through quantum dot(QD)probes.The beads are then uniformly trapped and queued among micropillars in the chip.This design benefits fluorescence observation by dispersing the signals into every single bead,thereby avoiding optical interference and enabling more accurate test results.We analyzed exosomes in the cell culture supernatant of lung cancer and endothelial cell lines,and different lung cancer markers labeled with three QD probes were used to conduct multiplexed detection of exosome surface protein markers.Lung cancer-derived samples showed much higher(~sixfold-tenfold)fluorescence intensity than endothelial cell samples,and different types of lung cancer samples showed distinctive marker expression levels.Additionally,using the chip to detect clinical plasma samples from cancer patients showed good diagnostic power and revealed a well consistency with conventional tests for serological markers.These results provide insight into a promising method for exosome tumor marker detection and early-stage cancer diagnosis.展开更多
Extracellular vesicles(EVs)are cell-derived membranous particles that play a crucial role in molecular trafficking,intercellular transport and the egress of unwanted proteins.They have been implicated in many diseases...Extracellular vesicles(EVs)are cell-derived membranous particles that play a crucial role in molecular trafficking,intercellular transport and the egress of unwanted proteins.They have been implicated in many diseases including cancer and neurodegeneration.EVs are detected in all bodily fluids,and their protein and nucleic acid content offers a means of assessing the status of the cells from which they originated.As such,they provide opportunities in biomarker discovery for diagnosis,prognosis or the stratification of diseases as well as an objective monitoring of therapies.The simultaneous assaying of multiple EV-derived markers will be required for an impactful practical application,and multiplexing platforms have evolved with the potential to achieve this.Herein,we provide a comprehensive overview of the currently available multiplexing platforms for EV analysis,with a primary focus on miniaturized and integrated devices that offer potential step changes in analytical power,throughput and consistency.展开更多
A 32-channel wavelength division multiplexer with 100 GHz spacing is designed and fabricated by interleaving two silicon arrayed waveguide gratings(AWGs).It has a parallel structure consisting of two silicon 16-channe...A 32-channel wavelength division multiplexer with 100 GHz spacing is designed and fabricated by interleaving two silicon arrayed waveguide gratings(AWGs).It has a parallel structure consisting of two silicon 16-channel AWGs with200 GHz spacing and a Mach-Zehnder interferometer(MZI)with 200 GHz free spectral range.The 16 channels of one silicon AWG are interleaved with those of the other AWG in spectrum,but with an identical spacing of 200 GHz.For the composed wavelength division multiplexer,the experiment results reveal 32 wavelength channels in C-band,a wavelength spacing of 100 GHz,and a channel crosstalk lower than-15 dB.展开更多
Multiplexed immunohistochemistry/fluorescence(mIHC/IF)in combination with multispectral unmixing is a novel multitarget histopathological staining and imaging technique.By simultaneously revealing expression level and...Multiplexed immunohistochemistry/fluorescence(mIHC/IF)in combination with multispectral unmixing is a novel multitarget histopathological staining and imaging technique.By simultaneously revealing expression level and spatial information for up to eight biomarkers in situ,in addition to a nuclear stain within a single formalin-fixed paraffin-embedded(FFPE)tissue section,this technology can analyze the phenotype,abundance,morphology and intercellular relationship of cells while providing statistically significant results.In recent years,technical improvements have brought new insight into mIHC/IF and multispectral imaging approaches,which have been successfully applied in the field of cancer immunotherapy,specifically in regard to tumor microenvironment research,immunotherapy drug discovery,and prognostic and metastatic risk evaluation.This review highlights the principle,workflow,advantages and disadvantages of the technology,and discusses the latest applications of mIHC/IF-based imaging technology in the field of TME-related research and immunotherapy drug discovery.展开更多
To study the selective erasure and rewriting of the multiplexed holographic storage inphotorefractive crystals.According to the mechanism on forming of phase hologram in photore-fractive crystal,by incoherently additi...To study the selective erasure and rewriting of the multiplexed holographic storage inphotorefractive crystals.According to the mechanism on forming of phase hologram in photore-fractive crystal,by incoherently addition of the complementary hologram and the original holo-gram,the selective erasure and rewriting were accomplished.The complementary holography isan effective and convenient technique for selective erasure and rewriting of multiplexed holo-graphic storage in photorefractive crystals.展开更多
The structures of the space switching and the wavelength switching optical cross connect (OXC) nodes which are based on the arrayed waveguide grating (AWG) multiplexer are analyzed.By the matrix transformation relatio...The structures of the space switching and the wavelength switching optical cross connect (OXC) nodes which are based on the arrayed waveguide grating (AWG) multiplexer are analyzed.By the matrix transformation relation between the input and output wavelengths of the AWG multiplexer, the wavelength transmission routings of the space switching and wavelength switching OXC nodes are determined.展开更多
Weakly-coupled mode division multiplexing(MDM)technique is considered a promising candidate to enhance the capacity of an optical transmission system,in which mode multiplexers/demultiplexers(MMUX/MDEMUX)with low inse...Weakly-coupled mode division multiplexing(MDM)technique is considered a promising candidate to enhance the capacity of an optical transmission system,in which mode multiplexers/demultiplexers(MMUX/MDEMUX)with low insertion loss and modal crosstalk are the key components.In this paper,a low-modal-crosstalk 4-mode MMUX/MDEMUX for the weakly-coupled triple-ring-core few-mode fiber(TRC-FMF)is designed and fabricated with side-polishing processing.The measurement results show that a pair of MMUX/MDEMUX and 25 km weakly-coupled TRC-FMF MDM link achieve low modal crosstalk of lower than−17.5 dB and insertion loss of lower than 11.56 dB for all the four modes.Based on the TRC-FMF and all-fiber MMUX/MDEMUX,an experiment for 25 km real-time 4-mode 3-λwavelength division multiplexing(WDM)-MDM transmission is conducted using commercial 400G optical transport network(OTN)transceivers.The experimental results prove weakly-coupled MDM techniques facilitate a smooth upgrade of the optical transmission system.展开更多
Optical orbital angular momentum(OAM)multiplexed holography has been implemented as an effective method for information encryption and storage.Multiramp helicoconical-OAM multiplexed holography is proposed and experim...Optical orbital angular momentum(OAM)multiplexed holography has been implemented as an effective method for information encryption and storage.Multiramp helicoconical-OAM multiplexed holography is proposed and experimentally implemented.The mode selectivity of the multiramp mixed screw-edge dislocations,constant parameter K,and normalized factor are investigated,respectively,which demonstrates that those parameters can be used as additional coding degrees of freedom for holographic multiplexing.The combination of the topological charge and the other three parameters can provide a four-dimensional multiplexed holography and can enhance information capacity.展开更多
We propose a novel and efficient multi-functional optical fiber sensor system based on a dense wavelength division multiplexer(DWDM).This system consists of an optical fiber temperature sensor, an optical fiber strain...We propose a novel and efficient multi-functional optical fiber sensor system based on a dense wavelength division multiplexer(DWDM).This system consists of an optical fiber temperature sensor, an optical fiber strain sensor, and a 48-channel DWDM.This system can monitor temperature and strain changes at the same time.The ranges of these two sensors are from-20℃ to 100℃ and from-1000 με to 2000 με, respectively.The sensitivities of the temperature sensor and strain sensor are 0.03572 nm/℃ and 0.03808 nm/N, respectively.With the aid of a broadband source and spectrometer,different kinds and ranges of parameters in the environment can be monitored by using suitable sensors.展开更多
CRISPR homing gene drives have considerable potential for managing populations of medically and agriculturally significant insects.They operate by Cas9 cleavage followed by homology-directed repair,copying the drive a...CRISPR homing gene drives have considerable potential for managing populations of medically and agriculturally significant insects.They operate by Cas9 cleavage followed by homology-directed repair,copying the drive allele to the wild-type chromosome and thus increasing in frequency and spreading throughout a population.However,resistance alleles formed by end-joining repair pose a significant obstacle.To address this,we create a homing drive targeting the essential hairy gene in Drosophila melanogaster.Nonfunctional resistance alleles are recessive lethal,while drive carriers have a recoded“rescue”version of hairy.The drive inheritance rate is moderate,and multigenerational cage studies show drive spread to 96%–97%of the population.However,the drive does not reach 100%due to the formation of functional resistance alleles despite using four gRNAs.These alleles have a large deletion but likely utilize an alternate start codon.Thus,revised designs targeting more essential regions of a gene may be necessary to avoid such functional resistance.Replacement of the rescue element’s native 3'UTR with a homolog from another species increases drive inheritance by 13%–24%.This was possibly because of reduced homology between the rescue element and surrounding genomic DNA,which could also be an important design consideration for rescue gene drives.展开更多
We have successfully demonstrated a 1 Kb spin-orbit torque(SOT)magnetic random-access memory(MRAM)multiplexer(MUX)array with remarkable performance.The 1 Kb MUX array exhibits an in-die function yield of over 99.6%.Ad...We have successfully demonstrated a 1 Kb spin-orbit torque(SOT)magnetic random-access memory(MRAM)multiplexer(MUX)array with remarkable performance.The 1 Kb MUX array exhibits an in-die function yield of over 99.6%.Additionally,it provides a sufficient readout window,with a TMR/RP_sigma%value of 21.4.Moreover,the SOT magnetic tunnel junctions(MTJs)in the array show write error rates as low as 10^(-6)without any ballooning effects or back-hopping behaviors,ensuring the write stability and reliability.This array achieves write operations in 20 ns and 1.2 V for an industrial-level temperature range from-40 to 125℃.Overall,the demonstrated array shows competitive specifications compared to the state-of-the-art works.Our work paves the way for the industrial-scale production of SOT-MRAM,moving this technology beyond R&D and towards widespread adoption.展开更多
The periodic cell stream is a very important member among the input traffic sources in ATM networks. In this paper, a finite-buffered ATM multiplexer with traffic sources composed of a periodic cell stream, multiple i...The periodic cell stream is a very important member among the input traffic sources in ATM networks. In this paper, a finite-buffered ATM multiplexer with traffic sources composed of a periodic cell stream, multiple i.i.d Bernoulli cell streams and bursty two-state Markov Modulated Bernoulli Process (MMBP) cell streams is exactly analyzed. The probability mass function of queuing delay, the autocorrelation and power spectrum of delay jitter for this periodic cell stream are derived. The analysis is used to expose the behavior of delay jitter for a periodic cell stream through an ATM multiplexer in a bursty traffic environment. The simulation results indicate that the analytical results are accurate.展开更多
Recent empirical studies of the real traffic measurement show that the traditional traffic models cannot capture the character of long-range dependence of the traffic. And many computer simulations said that this char...Recent empirical studies of the real traffic measurement show that the traditional traffic models cannot capture the character of long-range dependence of the traffic. And many computer simulations said that this character has large influences on the network performance. So fractal or self-similar models are more suitable to describe the modern traffic. But there is still little known about the performance of the multiplexer under self-similar traffic. In this paper, a quasi-self-similar traffic model (QSSP) is proposed. Using this model, the upper bond of the cell loss rate and multiplexing gain of the multiplexer are gotten when there are N i.i.d. QSSP inputs. If the sources have different parameters, an efficient numerical algorithm to get, this bond is proposed. Simulations indicate that our analysis is correct and accurate.展开更多
Efforts have been made to establish various human pluripotent stem cell lines.However,such methods have not yet been duplicated in non-human primate cells.Here,we introduce a multiplexed single-cell sequencing techniq...Efforts have been made to establish various human pluripotent stem cell lines.However,such methods have not yet been duplicated in non-human primate cells.Here,we introduce a multiplexed single-cell sequencing technique to profile the molecular features of monkey pluripotent stem cells in published culture conditions.The results demonstrate suboptimized maintenance of pluripotency and show that the selected signaling pathways for resetting human stem cells can also be interpreted for establishing monkey cell lines.Overall,this work legitimates the translation of novel human cell line culture conditions to monkey cells and provides guidance for exploring chemical cocktails for monkey stem cell line derivation.展开更多
文摘Thin-film lithium niobate(TFLN)possesses great potential because it enables high-speed modulation by voltage,which allows higher resolution and lower power consumption for laser beam scanning than direct laser modulation.To achieve these functions,a red,green,and blue(RGB)multiplexer using TFLN is required as an important building block for photonic integrated circuits.We fabricated an RGB multiplexer using TFLN and experimentally confirmed its operation.Three different laser lights of red(λ=638 nm),green(λ=520 nm),and blue(λ=473 nm)were successfully coupled as a single laser beam by an RGB multiplexer composed of multimode interferometers.Furthermore,the TFLN was fabricated by sputter deposition,whereas conventionally,it is fabricated via bulk-lithium niobate adhesion to the substrate.The sputterdeposited TFLN is advantageous for large-volume mass production.
基金supported by the Shenzhen Science and Technology Program(No.JCYJ20210324121002008)the National Science Fund for Distinguished Young Scholars of China(No.T2125005)+5 种基金the National Key R&D Program of China(Nos.2022YFE0198200,2022YFA1204500,and 2022YFA1204504)the Natural Science Foundation of Tianjin(Nos.22JCYBJC01290 and 23JCQNJC01440)the Key Project of Natural Science Foundation of Tianjin(No.22JCZDJC00120)the Fundamental Research Funds for the Central Universities,Nankai University(Nos.BEG124901 and BEG124401)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515110319)the Key Science and Technology Program of Henan Province(No.242102210171).
文摘We demonstrate a bipolar graphene/F_(16)CuPc synaptic transistor(GFST)with matched p-type and n-type bipolar properties,which emulates multiplexed neurotransmission of the release of two excitatory neurotransmitters in graphene and F_(16)CuPc channels,separately.This process facilitates fast-switching plasticity by altering charge carriers in the separated channels.The complementary neural network for image recognition of Fashion-MNIST dataset was constructed using the matched relative amplitude and plasticity properties of the GFST dominated by holes or electrons to improve the weight regulation and recognition accuracy,achieving a pattern recognition accuracy of 83.23%.These results provide new insights to the construction of future neuromorphic systems.
基金supported by the National Natural Science Foundation of China(Nos.12474418,U22A20398,and 22135008).
文摘Lanthanide(Ln^(3+))-doped luminescent nanocrystals(NCs)with excitation and emission in the second near-infrared biological window(NIRII,1000-1700 nm)have attracted considerable attention in the fields of deep-tissue bioimaging and non-invasive biodetection,owing to their superior advantages including good photochemical stability,sharp emission peaks,large penetration depth,and high signal-to-noise ratio[1].Conventionally,Yb3t-and Nd3t-sensitized NCs have been utilized as NIR-II luminescent nanoprobes for in vivo bioimaging upon excitation with 980 and 808 nm diode laser,respectively[2].
文摘A multiplexer with a low-distortion high-bandwidth analog switch is presented. The gate-to-source voltage of the switch is set by the combined on-voltage of a pMOS and an nMOS,and the difference between its gate-source voltage and the threshold voltage (VGST) is guaranteed to be constant with input variation. Thus, the body effect is nearly canceled. Implemented in a TSMC 0.18μm CMOS process, results from HSPICE simulation show that the VGST is nearly constant with an input range from 0.3 to 1.7V,and the - 3dB bandwidth is larger than 10GHz;the SFDR (spurious free dynamic range) of the output is 67. lldB with 1GHz input frequency; the turn-on time is 2.98ns,and the turn-off time is 1.35ns, which indicates a break-before-make action of the multiplexer. The proposed structure can be applied to high speed signal transmission.
基金supported by National Key Research and Development Program of China(2022YFB2804603,2022YFB2804605)National Natural Science Foundation of China(U21B2033)+4 种基金Fundamental Research Funds forthe Central Universities(2023102001,2024202002)National Key Laborato-ry of Shock Wave and Detonation Physics(JCKYS2024212111)China Post-doctoral Science Fund(2023T160318)Open Research Fund of JiangsuKey Laboratory of Spectral Imaging&Intelligent Sense(JSGP202105,JSGP202201)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX25_0695,SJCX25_0188)。
文摘Recent advancements in artificial intelligence have transformed three-dimensional(3D)optical imaging and metrology,enabling high-resolution and high-precision 3D surface geometry measurements from one single fringe pattern projection.However,the imaging speed of conventional fringe projection profilometry(FPP)remains limited by the native sensor refresh rates due to the inherent"one-to-one"synchronization mechanism between pattern projection and image acquisition in standard structured light techniques.Here,we present dual-frequency angular-multiplexed fringe projection profilometry(DFAMFPP),a deep learning-enabled 3D imaging technique that achieves high-speed,high-precision,and large-depth-range absolute 3D surface measurements at speeds 16 times faster than the sensor's native frame rate.By encoding multi-timeframe 3D information into a single multiplexed image using multiple pairs of dual-frequency fringes,high-accuracy absolute phase maps are reconstructed using specially trained two-stage number-theoretical-based deep neural networks.We validate the effectiveness of DFAMFPP through dynamic scene measurements,achieving 10,000 Hz 3D imaging of a running turbofan engine prototype with only a 625 Hz camera.By overcoming the sensor hardware bottleneck,DFAMFPP significantly advances high-speed and ultra-high-speed 3D imaging,opening new avenues for exploring dynamic processes across diverse scientific disciplines.
基金the funding support from the Singapore Ministry of Education Academic Research Fund (AcRF Tier 3 Grant MOE2016-T3-1-004, R-397-000274-112 AcRF Tier 1 Grant R-397-000-270-114)
文摘Fluorescently encoded microbeads are in demand for multiplexed applications in different fields.Compared to organic dye-based commercially available Luminex's x MAP technology, upconversion nanoparticles(UCNPs) are better alternatives due to their large antiStokes shift, photostability, nil background, and single wavelength excitation. Here, we developed a new multiplexed detection system using UCNPs for encoding poly(ethylene glycol) diacrylate(PEGDA) microbeads as well as for labeling reporter antibody. However, to prepare UCNPs-encoded microbeads, currently used swellingbased encapsulation leads to non-uniformity, which is undesirable for fluorescence-based multiplexing. Hence,we utilized droplet microfluidics to obtain encoded microbeads of uniform size, shape, and UCNPs distribution inside. Additionally, PEGDA microbeads lack functionality for probe antibodies conjugation on their surface.Methods to functionalize the surface of PEGDA microbeads(acrylic acid incorporation, polydopamine coating)reported thus far quench the fluorescence of UCNPs. Here,PEGDA microbeads surface was coated with silica followed by carboxyl modification without compromising the fluorescence intensity of UCNPs. In this study, droplet microfluidics-assisted UCNPs-encoded microbeads of uniform shape, size, and fluorescence were prepared.Multiple color codes were generated by mixing UCNPs emitting red and green colors at different ratios prior to encapsulation. UCNPs emitting blue color were used to label the reporter antibody. Probe antibodies were covalently immobilized on red UCNPs-encoded microbeads for specific capture of human serum albumin(HSA) as a model protein. The system was also demonstrated for multiplexed detection of both human C-reactive protein(hCRP) and HSA protein by immobilizing anti-h CRP antibodies on green UCNPs.
基金supported by Grants from National Key Research and Development Program of China(Nos.2018YFA0108202 and 2017YFA0205300)National Science Foundation of China(Nos.61571429,61571077,61801464,and 61801465)+1 种基金the STS Project of the Chinese Academy of Sciences(No.KFJ-STS-SCYD-120)the Science and Technology Commission of Shanghai Municipality(Nos.16410711800 and 4391901900).
文摘Tumor-derived exosomes are actively involved in cancer progression and metastasis and have emerged as a promising marker for cancer diagnosis in liquid biopsy.Because of their nanoscale size,complex biogenesis,and methodological limitations related to exosome isolation and detection,advancements in their analysis remain slow.Microfluidic technology offers a better analytic approach compared with conventional methods.Here,we developed a bead-based microarray for exosome isolation and multiplexed tumor marker detection.Using this method,exosomes are isolated by binding to antibodies on the bead surface,and tumor markers on the exosomes are detected through quantum dot(QD)probes.The beads are then uniformly trapped and queued among micropillars in the chip.This design benefits fluorescence observation by dispersing the signals into every single bead,thereby avoiding optical interference and enabling more accurate test results.We analyzed exosomes in the cell culture supernatant of lung cancer and endothelial cell lines,and different lung cancer markers labeled with three QD probes were used to conduct multiplexed detection of exosome surface protein markers.Lung cancer-derived samples showed much higher(~sixfold-tenfold)fluorescence intensity than endothelial cell samples,and different types of lung cancer samples showed distinctive marker expression levels.Additionally,using the chip to detect clinical plasma samples from cancer patients showed good diagnostic power and revealed a well consistency with conventional tests for serological markers.These results provide insight into a promising method for exosome tumor marker detection and early-stage cancer diagnosis.
基金funded by grants from the EPSRC(EP/M006204/1)the Michael J Fox Foundation+2 种基金the Selfridges Group Foundationthe NIHR Oxford Biomedical Research Centre to G.K.T and J.J.Dsupport from the John Fell Fund(HMD00470).
文摘Extracellular vesicles(EVs)are cell-derived membranous particles that play a crucial role in molecular trafficking,intercellular transport and the egress of unwanted proteins.They have been implicated in many diseases including cancer and neurodegeneration.EVs are detected in all bodily fluids,and their protein and nucleic acid content offers a means of assessing the status of the cells from which they originated.As such,they provide opportunities in biomarker discovery for diagnosis,prognosis or the stratification of diseases as well as an objective monitoring of therapies.The simultaneous assaying of multiple EV-derived markers will be required for an impactful practical application,and multiplexing platforms have evolved with the potential to achieve this.Herein,we provide a comprehensive overview of the currently available multiplexing platforms for EV analysis,with a primary focus on miniaturized and integrated devices that offer potential step changes in analytical power,throughput and consistency.
基金Project supported by the National Key Research and Development Program of China(Grant No.2019YFB2203600)。
文摘A 32-channel wavelength division multiplexer with 100 GHz spacing is designed and fabricated by interleaving two silicon arrayed waveguide gratings(AWGs).It has a parallel structure consisting of two silicon 16-channel AWGs with200 GHz spacing and a Mach-Zehnder interferometer(MZI)with 200 GHz free spectral range.The 16 channels of one silicon AWG are interleaved with those of the other AWG in spectrum,but with an identical spacing of 200 GHz.For the composed wavelength division multiplexer,the experiment results reveal 32 wavelength channels in C-band,a wavelength spacing of 100 GHz,and a channel crosstalk lower than-15 dB.
基金supported by State Key Laboratory of Natural and Biomimetic Drugs,Peking University。
文摘Multiplexed immunohistochemistry/fluorescence(mIHC/IF)in combination with multispectral unmixing is a novel multitarget histopathological staining and imaging technique.By simultaneously revealing expression level and spatial information for up to eight biomarkers in situ,in addition to a nuclear stain within a single formalin-fixed paraffin-embedded(FFPE)tissue section,this technology can analyze the phenotype,abundance,morphology and intercellular relationship of cells while providing statistically significant results.In recent years,technical improvements have brought new insight into mIHC/IF and multispectral imaging approaches,which have been successfully applied in the field of cancer immunotherapy,specifically in regard to tumor microenvironment research,immunotherapy drug discovery,and prognostic and metastatic risk evaluation.This review highlights the principle,workflow,advantages and disadvantages of the technology,and discusses the latest applications of mIHC/IF-based imaging technology in the field of TME-related research and immunotherapy drug discovery.
文摘To study the selective erasure and rewriting of the multiplexed holographic storage inphotorefractive crystals.According to the mechanism on forming of phase hologram in photore-fractive crystal,by incoherently addition of the complementary hologram and the original holo-gram,the selective erasure and rewriting were accomplished.The complementary holography isan effective and convenient technique for selective erasure and rewriting of multiplexed holo-graphic storage in photorefractive crystals.
基金NationalKeyLabofBroadBandFiberTransmissionandCommunicatonSystemTechnology ElectronicUniversityofScienceandTechnology China
文摘The structures of the space switching and the wavelength switching optical cross connect (OXC) nodes which are based on the arrayed waveguide grating (AWG) multiplexer are analyzed.By the matrix transformation relation between the input and output wavelengths of the AWG multiplexer, the wavelength transmission routings of the space switching and wavelength switching OXC nodes are determined.
基金supported in part by the ZTE Industry-University-Institute Cooperation Funds.
文摘Weakly-coupled mode division multiplexing(MDM)technique is considered a promising candidate to enhance the capacity of an optical transmission system,in which mode multiplexers/demultiplexers(MMUX/MDEMUX)with low insertion loss and modal crosstalk are the key components.In this paper,a low-modal-crosstalk 4-mode MMUX/MDEMUX for the weakly-coupled triple-ring-core few-mode fiber(TRC-FMF)is designed and fabricated with side-polishing processing.The measurement results show that a pair of MMUX/MDEMUX and 25 km weakly-coupled TRC-FMF MDM link achieve low modal crosstalk of lower than−17.5 dB and insertion loss of lower than 11.56 dB for all the four modes.Based on the TRC-FMF and all-fiber MMUX/MDEMUX,an experiment for 25 km real-time 4-mode 3-λwavelength division multiplexing(WDM)-MDM transmission is conducted using commercial 400G optical transport network(OTN)transceivers.The experimental results prove weakly-coupled MDM techniques facilitate a smooth upgrade of the optical transmission system.
基金supported by the National Natural Science Foundation of China(Grant No.61775153)the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Optical orbital angular momentum(OAM)multiplexed holography has been implemented as an effective method for information encryption and storage.Multiramp helicoconical-OAM multiplexed holography is proposed and experimentally implemented.The mode selectivity of the multiramp mixed screw-edge dislocations,constant parameter K,and normalized factor are investigated,respectively,which demonstrates that those parameters can be used as additional coding degrees of freedom for holographic multiplexing.The combination of the topological charge and the other three parameters can provide a four-dimensional multiplexed holography and can enhance information capacity.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0402504)the National Natural Science Foundation of China(Grant Nos.61875069 and 61575076)+1 种基金Hong Kong Scholars Program,China(Grant No.XJ2016026)the Science and Technology Development Plan of Jilin Province,China(Grant Nos.20190302010GX and 20160520091JH)
文摘We propose a novel and efficient multi-functional optical fiber sensor system based on a dense wavelength division multiplexer(DWDM).This system consists of an optical fiber temperature sensor, an optical fiber strain sensor, and a 48-channel DWDM.This system can monitor temperature and strain changes at the same time.The ranges of these two sensors are from-20℃ to 100℃ and from-1000 με to 2000 με, respectively.The sensitivities of the temperature sensor and strain sensor are 0.03572 nm/℃ and 0.03808 nm/N, respectively.With the aid of a broadband source and spectrometer,different kinds and ranges of parameters in the environment can be monitored by using suitable sensors.
基金supported by laboratory startup funds from Peking University and the Center for Life Sciences,as well as the grants from the National Science Foundation of China(32302455 and 32270672)。
文摘CRISPR homing gene drives have considerable potential for managing populations of medically and agriculturally significant insects.They operate by Cas9 cleavage followed by homology-directed repair,copying the drive allele to the wild-type chromosome and thus increasing in frequency and spreading throughout a population.However,resistance alleles formed by end-joining repair pose a significant obstacle.To address this,we create a homing drive targeting the essential hairy gene in Drosophila melanogaster.Nonfunctional resistance alleles are recessive lethal,while drive carriers have a recoded“rescue”version of hairy.The drive inheritance rate is moderate,and multigenerational cage studies show drive spread to 96%–97%of the population.However,the drive does not reach 100%due to the formation of functional resistance alleles despite using four gRNAs.These alleles have a large deletion but likely utilize an alternate start codon.Thus,revised designs targeting more essential regions of a gene may be necessary to avoid such functional resistance.Replacement of the rescue element’s native 3'UTR with a homolog from another species increases drive inheritance by 13%–24%.This was possibly because of reduced homology between the rescue element and surrounding genomic DNA,which could also be an important design consideration for rescue gene drives.
基金supported by the National Key Research and Development Program of China (Nos.2021YFB3601303,2021YFB3601304,2021YFB3601300,2022YFB4400200,2022YFB4400201,2022YFB4400203)the National Natural Science Foundation of China (Grant No.62171013)。
文摘We have successfully demonstrated a 1 Kb spin-orbit torque(SOT)magnetic random-access memory(MRAM)multiplexer(MUX)array with remarkable performance.The 1 Kb MUX array exhibits an in-die function yield of over 99.6%.Additionally,it provides a sufficient readout window,with a TMR/RP_sigma%value of 21.4.Moreover,the SOT magnetic tunnel junctions(MTJs)in the array show write error rates as low as 10^(-6)without any ballooning effects or back-hopping behaviors,ensuring the write stability and reliability.This array achieves write operations in 20 ns and 1.2 V for an industrial-level temperature range from-40 to 125℃.Overall,the demonstrated array shows competitive specifications compared to the state-of-the-art works.Our work paves the way for the industrial-scale production of SOT-MRAM,moving this technology beyond R&D and towards widespread adoption.
文摘The periodic cell stream is a very important member among the input traffic sources in ATM networks. In this paper, a finite-buffered ATM multiplexer with traffic sources composed of a periodic cell stream, multiple i.i.d Bernoulli cell streams and bursty two-state Markov Modulated Bernoulli Process (MMBP) cell streams is exactly analyzed. The probability mass function of queuing delay, the autocorrelation and power spectrum of delay jitter for this periodic cell stream are derived. The analysis is used to expose the behavior of delay jitter for a periodic cell stream through an ATM multiplexer in a bursty traffic environment. The simulation results indicate that the analytical results are accurate.
文摘Recent empirical studies of the real traffic measurement show that the traditional traffic models cannot capture the character of long-range dependence of the traffic. And many computer simulations said that this character has large influences on the network performance. So fractal or self-similar models are more suitable to describe the modern traffic. But there is still little known about the performance of the multiplexer under self-similar traffic. In this paper, a quasi-self-similar traffic model (QSSP) is proposed. Using this model, the upper bond of the cell loss rate and multiplexing gain of the multiplexer are gotten when there are N i.i.d. QSSP inputs. If the sources have different parameters, an efficient numerical algorithm to get, this bond is proposed. Simulations indicate that our analysis is correct and accurate.
基金supported by the National Key R&D Program of China(Nos.2021YFA0805700 and 2021YFA1102000)the National Natural Science Foundation of China(No.U2102204)the Natural Science Foundation of Yunnan Province,China(Nos.202001BC070001 and 202102AA100053)。
文摘Efforts have been made to establish various human pluripotent stem cell lines.However,such methods have not yet been duplicated in non-human primate cells.Here,we introduce a multiplexed single-cell sequencing technique to profile the molecular features of monkey pluripotent stem cells in published culture conditions.The results demonstrate suboptimized maintenance of pluripotency and show that the selected signaling pathways for resetting human stem cells can also be interpreted for establishing monkey cell lines.Overall,this work legitimates the translation of novel human cell line culture conditions to monkey cells and provides guidance for exploring chemical cocktails for monkey stem cell line derivation.