Based on rain gauge data during 2008-2021 from national meteorological observation stations,this study investigated the performance of the precipitation field from the 1-km-resolution version of the China Atmospheric ...Based on rain gauge data during 2008-2021 from national meteorological observation stations,this study investigated the performance of the precipitation field from the 1-km-resolution version of the China Atmospheric Realtime Analysis(CARAS)over Hubei from the perspective of climatology,multiple-time scale variations,as well as fusion accuracy and detection capability at multiple temporal scales.The results show that CARAS precipitation can reproduce the spatial distribution patterns of climatological seasonal precipitation and rainy days well over the whole of Hubei compared with observational(OBS)precipitation,albeit deviations exist between CARAS and OBS in terms of magnitude.Moreover,high correlation and consistency between CARAS and OBS can be found in multiple-time scale variations over Hubei,with correlation coefficients of interannual,seasonal,and diurnal variation generally exceeding 0.85,0.98,and 0.95,respectively.Furthermore,CARAS has a relatively higher fusion accuracy in summer and winter,and stronger/weaker detection capability in spring/winter at a daily scale.However,the detection capability of CARAS at an hourly scale is weaker than that at a daily scale.With different precipitation intensity levels considered,CARAS daily precipitation shows relatively higher fusion accuracy in estimating moderate and heavy rain,and better detection capability in capturing no rain events.The variations of accuracy metrics and detection metrics under different precipitation intensities at an hourly scale generally resemble those at a daily scale.However,CARAS precipitation at an hourly scale shows a relatively lower fusion accuracy and weaker detection capability compared with that at a daily scale.This paper provides an insight into the characteristics of systematic deviations in CARAS precipitation over Hubei,which will benefit relevant applications of CARAS in meteorological operations over Hubei and the improvement of CARAS in the future.展开更多
[Objective] The aim was to study the characteristics of the spatial structural patterns and temporal variability of annual precipitation in Ningxia.[Method] Using rotated empirical orthogonal function,the precipitatio...[Objective] The aim was to study the characteristics of the spatial structural patterns and temporal variability of annual precipitation in Ningxia.[Method] Using rotated empirical orthogonal function,the precipitation concentration index,wavelet analysis and Mann-Kendall rank statistic method,the characteristics of precipitation on the spatial-temporal variability and trend were analyzed by the monthly precipitation series in Ningxia during 1951-2008.[Result] In Ningxia,the spatial structural patterns of annual precipitation appeared 'North-south type' and 'North-center-south type'.It increased from north to south,the changes of interannual precipitation decreased from north to south.Precipitation changed significantly in month and distributed differently in the Yellow River irrigation area.But it was conversely steady in central arid zone and mountainous area of southern Ningxia.The probability of single abundant precipitation year was higher than single short precipitation year and the continuous short precipitation year was higher than continuous abundant precipitation year.The main cycles were 3a,6a and 10a approximately.In the mid arid zone and the mountainous area of southern Ningxia,the probability of precipitation reduction was about 75% and the Yellow river irrigation area,71.4%,respectively.The reduction in the entire area was about 73.3%.The annual precipitation in the middle arid area and irrigation area was increasing.The variability would change slowly for the intra-annual distribution of precipitation.Especially,the reduction tendency rate in the middle arid area reached 100.0%.[Conclusion] The study provided references for the effective utilization of the local precipitation,and the coordinated development of the regional social economy and ecological environment.展开更多
基金Key Research Project of Hubei Provincial Tobacco Company(027Y2022-006)Hubei Provincial Natural Science Foundation and Meteorological Innovation and Development Joint Foundation of China(2023AFD104,2022CFD132)+4 种基金Open Project Fund of China Meteorological Administration Basin Heavy Rainfall Key Laboratory(2023BHR-Y03)Open Re-search Fund of China Meteorological Administration/Ministry of Rural Agriculture Tobacco Meteorological Service Center(KYZX2023-08)National Natural Science Foundation of China(42105039)Basic Research Fund of WHIHR(202314)Open Research Topics of Key Open Laboratory of Hydro-Meteorology,China Meteorological Administration(23SWQXM018)。
文摘Based on rain gauge data during 2008-2021 from national meteorological observation stations,this study investigated the performance of the precipitation field from the 1-km-resolution version of the China Atmospheric Realtime Analysis(CARAS)over Hubei from the perspective of climatology,multiple-time scale variations,as well as fusion accuracy and detection capability at multiple temporal scales.The results show that CARAS precipitation can reproduce the spatial distribution patterns of climatological seasonal precipitation and rainy days well over the whole of Hubei compared with observational(OBS)precipitation,albeit deviations exist between CARAS and OBS in terms of magnitude.Moreover,high correlation and consistency between CARAS and OBS can be found in multiple-time scale variations over Hubei,with correlation coefficients of interannual,seasonal,and diurnal variation generally exceeding 0.85,0.98,and 0.95,respectively.Furthermore,CARAS has a relatively higher fusion accuracy in summer and winter,and stronger/weaker detection capability in spring/winter at a daily scale.However,the detection capability of CARAS at an hourly scale is weaker than that at a daily scale.With different precipitation intensity levels considered,CARAS daily precipitation shows relatively higher fusion accuracy in estimating moderate and heavy rain,and better detection capability in capturing no rain events.The variations of accuracy metrics and detection metrics under different precipitation intensities at an hourly scale generally resemble those at a daily scale.However,CARAS precipitation at an hourly scale shows a relatively lower fusion accuracy and weaker detection capability compared with that at a daily scale.This paper provides an insight into the characteristics of systematic deviations in CARAS precipitation over Hubei,which will benefit relevant applications of CARAS in meteorological operations over Hubei and the improvement of CARAS in the future.
基金Supported by Ningxia Natural Science Fund (NZ10215)National Science and Technology Planning Project (2011BAD29B07)Ningxia Natural Science Fund (NZ10214)
文摘[Objective] The aim was to study the characteristics of the spatial structural patterns and temporal variability of annual precipitation in Ningxia.[Method] Using rotated empirical orthogonal function,the precipitation concentration index,wavelet analysis and Mann-Kendall rank statistic method,the characteristics of precipitation on the spatial-temporal variability and trend were analyzed by the monthly precipitation series in Ningxia during 1951-2008.[Result] In Ningxia,the spatial structural patterns of annual precipitation appeared 'North-south type' and 'North-center-south type'.It increased from north to south,the changes of interannual precipitation decreased from north to south.Precipitation changed significantly in month and distributed differently in the Yellow River irrigation area.But it was conversely steady in central arid zone and mountainous area of southern Ningxia.The probability of single abundant precipitation year was higher than single short precipitation year and the continuous short precipitation year was higher than continuous abundant precipitation year.The main cycles were 3a,6a and 10a approximately.In the mid arid zone and the mountainous area of southern Ningxia,the probability of precipitation reduction was about 75% and the Yellow river irrigation area,71.4%,respectively.The reduction in the entire area was about 73.3%.The annual precipitation in the middle arid area and irrigation area was increasing.The variability would change slowly for the intra-annual distribution of precipitation.Especially,the reduction tendency rate in the middle arid area reached 100.0%.[Conclusion] The study provided references for the effective utilization of the local precipitation,and the coordinated development of the regional social economy and ecological environment.