期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Multiple hypothesis tracking based on the Shiryayev sequential probability ratio test 被引量:2
1
作者 Jinbin FU Jinping SUN +1 位作者 Songtao LU Yingjing ZHANG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第12期86-96,共11页
To date, Wald sequential probability ratio test(WSPRT) has been widely applied to track management of multiple hypothesis tracking(MHT). But in a real situation, if the false alarm spatial density is much larger than ... To date, Wald sequential probability ratio test(WSPRT) has been widely applied to track management of multiple hypothesis tracking(MHT). But in a real situation, if the false alarm spatial density is much larger than the new target spatial density, the original track score will be very close to the deletion threshold of the WSPRT. Consequently, all tracks, including target tracks, may easily be deleted, which means that the tracking performance is sensitive to the tracking environment. Meanwhile, if a target exists for a long time, its track will have a high score, which will make the track survive for a long time even after the target has disappeared. In this paper, to consider the relationship between the hypotheses of the test, we adopt the Shiryayev SPRT(SSPRT) for track management in MHT. By introducing a hypothesis transition probability, the original track score can increase faster, which solves the first problem. In addition, by setting an independent SSPRT for track deletion, the track score can decrease faster, which solves the second problem. The simulation results show that the proposed SSPRT-based MHT can achieve better tracking performance than MHT based on the WSPRT under a high false alarm spatial density. 展开更多
关键词 multiple target tracking multiple hypothesis tracking Shiryayev sequential probability ratio test track management track score
原文传递
Group tracking algorithm for split maneuvering based on complex domain topological descriptions 被引量:1
2
作者 Cong WANG Chen GUO +1 位作者 Yu LIU You HE 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第1期126-136,共11页
A group tracking algorithm for split maneuvering based on complex domain topological descriptions is proposed for the tracking of members in a maneuvering group. According to the split characteristics of a group targe... A group tracking algorithm for split maneuvering based on complex domain topological descriptions is proposed for the tracking of members in a maneuvering group. According to the split characteristics of a group target, split models of group targets are established based on a sliding window feedback mechanism to determine the occurrence and classification of split maneuvering, which makes the tracked objects focus by group members effectively. The track of an outlier single target is reconstructed by the sequential least square method. At the same time, the relationship between the group members is expressed by the complex domain topological description method, which solves the problem of point-track association between the members. The Singer method is then used to update the tracks. Compared with classical multi-target tracking algorithms based on Multiple Hypothesis Tracking (MHT) and the Different Structure Joint Probabilistic Data Association (DS-JPDA) algorithm, the proposed algorithm has better tracking accuracy and stability, is robust against environmental clutter and has stable time-consumption under both classical radar conditions and partly resolvable conditions. 展开更多
关键词 Complex domain Group targets Joint probabitistic data association multiple hypothesis tracking Sliding window feedback tracking
原文传递
IMM/MHT FUSING FEATURE INFORMATION IN VISUAL TRACKING
3
作者 Li Shuangquan Sun Shuyan Jiang Sheng Huang Zhipei Wu Jiankang 《Journal of Electronics(China)》 2009年第6期765-770,共6页
In multi-target tracking,Multiple Hypothesis Tracking (MHT) can effectively solve the data association problem. However,traditional MHT can not make full use of motion information. In this work,we combine MHT with Int... In multi-target tracking,Multiple Hypothesis Tracking (MHT) can effectively solve the data association problem. However,traditional MHT can not make full use of motion information. In this work,we combine MHT with Interactive Multiple Model (IMM) estimator and feature fusion. New algorithm greatly improves the tracking performance due to the fact that IMM estimator provides better estimation and feature information enhances the accuracy of data association. The new algorithm is tested by tracking tropical fish in fish container. Experimental result shows that this algorithm can significantly reduce tracking lost rate and restrain the noises with higher computational effectiveness when compares with traditional MHT. 展开更多
关键词 multiple hypothesis tracking (MHT) Interacting multiple Model (IMM) Feature information fusion Data association
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部