The construction of structures with multiple interfaces and dielectric/magnetic heterostructures enables the design of materials with unique physical and chemical properties,which has aroused intensive interest in sci...The construction of structures with multiple interfaces and dielectric/magnetic heterostructures enables the design of materials with unique physical and chemical properties,which has aroused intensive interest in scientific and technological fields.Especially,for electromagnetic(EM)wave absorption,enhanced interface polarization and improved impedence match with high Snoek's limitation could be achieved by multiple interfaces and dielectric/magnetic heterostructures,respectively,which are benificial to high-efficiency electromagnetic wave absorption(EWA).However,by far,the principles in the design or construction of structures with multiple interfaces and dielectric/magnetic heterostructures,and the relationships between those structures or heterostructures and their EWA performance have not been fully summarized and reviewed.This article aims to provide a timely review on the research progresses of high-efficency EM wave absorbers with multiple interfaces and dielectric/magnetic heterostructures,focusing on various promising EWA materials.Particularly,EM attenuation mechanisms in those structures with multiple interfaces and dielectric/magnetic heterostructures are discussed and generalized.Furthermore,the changllenges and future developments of EM wave absorbers based on those structures are proposed.展开更多
In this paper, we develop a new technique called multiplicative extrapolation method which is used to construct higher order schemes for ordinary differential equations. We call it a new method because we only see add...In this paper, we develop a new technique called multiplicative extrapolation method which is used to construct higher order schemes for ordinary differential equations. We call it a new method because we only see additive extrapolation method before. This new method has a great advantage over additive extrapolation method because it keeps group property. If this method is used to construct higher order schemes from lower symplectic schemes, the higher order ones are also symplectic. First we introduce the concept of adjoint methods and some of their properties. We show that there is a self-adjoint scheme corresponding to every method. With this self-adjoint scheme of lower order, we can construct higher order schemes by multiplicative extrapolation method, which can be used to construct even much higher order schemes. Obviously this constructing process can be continued to get methods of arbitrary even order.展开更多
基金The authors are grateful for financial support from the National Key R&D Program of China(2019YFB2204500)the National Natural Science Foundation of China(Grants 51772160,51977009)Postdoctoral Research Foundation of China(2020SA0017).
文摘The construction of structures with multiple interfaces and dielectric/magnetic heterostructures enables the design of materials with unique physical and chemical properties,which has aroused intensive interest in scientific and technological fields.Especially,for electromagnetic(EM)wave absorption,enhanced interface polarization and improved impedence match with high Snoek's limitation could be achieved by multiple interfaces and dielectric/magnetic heterostructures,respectively,which are benificial to high-efficiency electromagnetic wave absorption(EWA).However,by far,the principles in the design or construction of structures with multiple interfaces and dielectric/magnetic heterostructures,and the relationships between those structures or heterostructures and their EWA performance have not been fully summarized and reviewed.This article aims to provide a timely review on the research progresses of high-efficency EM wave absorbers with multiple interfaces and dielectric/magnetic heterostructures,focusing on various promising EWA materials.Particularly,EM attenuation mechanisms in those structures with multiple interfaces and dielectric/magnetic heterostructures are discussed and generalized.Furthermore,the changllenges and future developments of EM wave absorbers based on those structures are proposed.
文摘In this paper, we develop a new technique called multiplicative extrapolation method which is used to construct higher order schemes for ordinary differential equations. We call it a new method because we only see additive extrapolation method before. This new method has a great advantage over additive extrapolation method because it keeps group property. If this method is used to construct higher order schemes from lower symplectic schemes, the higher order ones are also symplectic. First we introduce the concept of adjoint methods and some of their properties. We show that there is a self-adjoint scheme corresponding to every method. With this self-adjoint scheme of lower order, we can construct higher order schemes by multiplicative extrapolation method, which can be used to construct even much higher order schemes. Obviously this constructing process can be continued to get methods of arbitrary even order.