An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variat...An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variation of the tidal level is a time-varying process. The time-varying factors including interference from the external environment that cause the change of tides are fairly complicated. Furthermore, tidal variations are affected not only by periodic movement of celestial bodies but also by time-varying interference from the external environment. Consequently, for the efficient and precise tidal level prediction, a neuro-fuzzy hybrid technology based on the combination of harmonic analysis and adaptive network-based fuzzy inference system(ANFIS)model is utilized to construct a precise tidal level prediction system, which takes both advantages of the harmonic analysis method and the ANFIS network. The proposed prediction model is composed of two modules: the astronomical tide module caused by celestial bodies’ movement and the non-astronomical tide module caused by various meteorological and other environmental factors. To generate a fuzzy inference system(FIS) structure,three approaches which include grid partition(GP), fuzzy c-means(FCM) and sub-clustering(SC) are used in the ANFIS network constructing process. Furthermore, to obtain the optimal ANFIS based prediction model, large numbers of simulation experiments are implemented for each FIS generating approach. In this tidal prediction study, the optimal ANFIS model is used to predict the non-astronomical tide module, while the conventional harmonic analysis model is used to predict the astronomical tide module. The final prediction result is performed by combining the estimation outputs of the harmonious analysis model and the optimal ANFIS model. To demonstrate the applicability and capability of the proposed novel prediction model, measured tidal level samples of Fort Pulaski tidal station are selected as the testing database. Simulation and experimental results confirm that the proposed prediction approach can achieve precise predictions for the tidal level with high accuracy, satisfactory convergence and stability.展开更多
Since plastic products are with the features as light, anticorrosive and low cost etc., that are generally used in several of tools or components. Consequently, the requirements on the quality and effectiveness in pro...Since plastic products are with the features as light, anticorrosive and low cost etc., that are generally used in several of tools or components. Consequently, the requirements on the quality and effectiveness in production are increasingly serious. However, there are many factors affecting the yield rate of injection products such as material characteristic, mold design, and manufacturing parameters etc. involved with injection machine and the whole manufacturing process. Traditionally, these factors can only be designed and adjusted by many times of trial-and-error tests. It is not only waste of time and resource, but also lack of methodology for referring. Although there are some methods as Taguchi method or neural network etc. proposed for serving and optimizing this problem, they are still insufficient for the needs. For the reasons, a method for determining the optimal parameters by the inverse model of manufacturing platform is proposed in this paper. Through the integration of inverse model basing on MANFIS and Taguchi method, inversely, the optimal manufacturing parameters can be found by using the product requirements. The effectiveness and feasibility of this proposal is confirmed through numerical studies on a real case example.展开更多
迈尔斯-布里格斯人格类型指标分类(Myers-Briggs type indicator,MBTI)测验被认为是预测人格类型最热门和最可靠的方法之一,但传统的问卷调查或专业人士咨询的检测方式在实施过程中面临着高昂的人力和时间成本以及潜在的隐私泄露风险。...迈尔斯-布里格斯人格类型指标分类(Myers-Briggs type indicator,MBTI)测验被认为是预测人格类型最热门和最可靠的方法之一,但传统的问卷调查或专业人士咨询的检测方式在实施过程中面临着高昂的人力和时间成本以及潜在的隐私泄露风险。针对这类问题,本文提出一种基于自适应神经模糊推理系统(adaptive-network-based fuzzy inference system,ANFIS)的MBTI模型(ANFIS-MBTI)。该模型将深度神经网络与模糊逻辑推理有机融合,使其能够通过自学习和参数优化策略,灵活适应并精准捕捉社交文本数据中隐含的非线性、模糊和不确定性特征,自动识别出分析社交媒体数据集中的用户行为模式,从而揭示其在信息获取、决策制定及行为方式等方面的心理特质和性格特点。实验结果表明,本文构建的ANFIS-MBTI模型能够高效而准确地从社交文本中挖掘出16种不同的MBTI人格类型,其多层级特征融合机制使人格分类任务的自动化程度显著提升;同时通过模糊规则约束有效控制人工干预需求与数据隐私风险,为大规模在线人格分析提供了具有可扩展性的创新技术路径。展开更多
基金The National Natural Science Foundation of China under contract No.51379002the Fundamental Research Funds for the Central Universities of China under contract Nos 3132016322 and 3132016314the Applied Basic Research Project Fund of the Chinese Ministry of Transport of China under contract No.2014329225010
文摘An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variation of the tidal level is a time-varying process. The time-varying factors including interference from the external environment that cause the change of tides are fairly complicated. Furthermore, tidal variations are affected not only by periodic movement of celestial bodies but also by time-varying interference from the external environment. Consequently, for the efficient and precise tidal level prediction, a neuro-fuzzy hybrid technology based on the combination of harmonic analysis and adaptive network-based fuzzy inference system(ANFIS)model is utilized to construct a precise tidal level prediction system, which takes both advantages of the harmonic analysis method and the ANFIS network. The proposed prediction model is composed of two modules: the astronomical tide module caused by celestial bodies’ movement and the non-astronomical tide module caused by various meteorological and other environmental factors. To generate a fuzzy inference system(FIS) structure,three approaches which include grid partition(GP), fuzzy c-means(FCM) and sub-clustering(SC) are used in the ANFIS network constructing process. Furthermore, to obtain the optimal ANFIS based prediction model, large numbers of simulation experiments are implemented for each FIS generating approach. In this tidal prediction study, the optimal ANFIS model is used to predict the non-astronomical tide module, while the conventional harmonic analysis model is used to predict the astronomical tide module. The final prediction result is performed by combining the estimation outputs of the harmonious analysis model and the optimal ANFIS model. To demonstrate the applicability and capability of the proposed novel prediction model, measured tidal level samples of Fort Pulaski tidal station are selected as the testing database. Simulation and experimental results confirm that the proposed prediction approach can achieve precise predictions for the tidal level with high accuracy, satisfactory convergence and stability.
文摘Since plastic products are with the features as light, anticorrosive and low cost etc., that are generally used in several of tools or components. Consequently, the requirements on the quality and effectiveness in production are increasingly serious. However, there are many factors affecting the yield rate of injection products such as material characteristic, mold design, and manufacturing parameters etc. involved with injection machine and the whole manufacturing process. Traditionally, these factors can only be designed and adjusted by many times of trial-and-error tests. It is not only waste of time and resource, but also lack of methodology for referring. Although there are some methods as Taguchi method or neural network etc. proposed for serving and optimizing this problem, they are still insufficient for the needs. For the reasons, a method for determining the optimal parameters by the inverse model of manufacturing platform is proposed in this paper. Through the integration of inverse model basing on MANFIS and Taguchi method, inversely, the optimal manufacturing parameters can be found by using the product requirements. The effectiveness and feasibility of this proposal is confirmed through numerical studies on a real case example.