期刊文献+
共找到97篇文章
< 1 2 5 >
每页显示 20 50 100
Higher-order optimality conditions for multiobjective optimization through a new type of directional derivatives
1
作者 HUANG Zheng-gang 《Applied Mathematics(A Journal of Chinese Universities)》 2025年第3期543-557,共15页
This paper deals with extensions of higher-order optimality conditions for scalar optimization to multiobjective optimization.A type of directional derivatives for a multiobjective function is proposed,and with this n... This paper deals with extensions of higher-order optimality conditions for scalar optimization to multiobjective optimization.A type of directional derivatives for a multiobjective function is proposed,and with this notion characterizations of strict local minima of order k for a multiobjective optimization problem with a nonempty set constraint are established,generalizing the corresponding scalar case obtained by Studniarski[3].Also necessary not sufficient and sufficient not necessary optimality conditions for this minima are derived based on our directional derivatives,which are generalizations of some existing scalar results and equivalent to some existing multiobjective ones.Many examples are given to illustrate them there. 展开更多
关键词 strict local minima of order k multiobjective optimization higher-order optimality conditions higher-order directional derivatives
在线阅读 下载PDF
A FLEXIBLE OBJECTIVE-CONSTRAINT APPROACH AND A NEW ALGORITHM FOR CONSTRUCTING THE PARETO FRONT OF MULTIOBJECTIVE OPTIMIZATION PROBLEMS 被引量:1
2
作者 N.HOSEINPOOR M.GHAZNAVI 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期702-720,共19页
In this article, a novel scalarization technique, called the improved objective-constraint approach, is introduced to find efficient solutions of a given multiobjective programming problem. The presented scalarized pr... In this article, a novel scalarization technique, called the improved objective-constraint approach, is introduced to find efficient solutions of a given multiobjective programming problem. The presented scalarized problem extends the objective-constraint problem. It is demonstrated that how adding variables to the scalarized problem, can lead to find conditions for (weakly, properly) Pareto optimal solutions. Applying the obtained necessary and sufficient conditions, two algorithms for generating the Pareto front approximation of bi-objective and three-objective programming problems are designed. These algorithms are easy to implement and can achieve an even approximation of (weakly, properly) Pareto optimal solutions. These algorithms can be generalized for optimization problems with more than three criterion functions, too. The effectiveness and capability of the algorithms are demonstrated in test problems. 展开更多
关键词 multiobjective optimization Pareto front SCALARIZATION objective-constraint approach proper efficient solution
在线阅读 下载PDF
Multiobjective Differential Evolution for Higher-Dimensional Multimodal Multiobjective Optimization 被引量:1
3
作者 Jing Liang Hongyu Lin +2 位作者 Caitong Yue Ponnuthurai Nagaratnam Suganthan Yaonan Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1458-1475,共18页
In multimodal multiobjective optimization problems(MMOPs),there are several Pareto optimal solutions corre-sponding to the identical objective vector.This paper proposes a new differential evolution algorithm to solve... In multimodal multiobjective optimization problems(MMOPs),there are several Pareto optimal solutions corre-sponding to the identical objective vector.This paper proposes a new differential evolution algorithm to solve MMOPs with higher-dimensional decision variables.Due to the increase in the dimensions of decision variables in real-world MMOPs,it is diffi-cult for current multimodal multiobjective optimization evolu-tionary algorithms(MMOEAs)to find multiple Pareto optimal solutions.The proposed algorithm adopts a dual-population framework and an improved environmental selection method.It utilizes a convergence archive to help the first population improve the quality of solutions.The improved environmental selection method enables the other population to search the remaining decision space and reserve more Pareto optimal solutions through the information of the first population.The combination of these two strategies helps to effectively balance and enhance conver-gence and diversity performance.In addition,to study the per-formance of the proposed algorithm,a novel set of multimodal multiobjective optimization test functions with extensible decision variables is designed.The proposed MMOEA is certified to be effective through comparison with six state-of-the-art MMOEAs on the test functions. 展开更多
关键词 Benchmark functions diversity measure evolution-ary algorithms multimodal multiobjective optimization.
在线阅读 下载PDF
Analysis and Research on Mechanical Stress and Multiobjective Optimization of Synchronous Reluctance Motor
4
作者 Han Zhou Xiuhe Wang +1 位作者 Lixin Xiong Xin Zhang 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第3期274-283,共10页
The mechanical strength of the synchronous reluctance motor(SynRM)has always been a great challenge.This paper presents an analysis method for assessing stress equivalence and magnetic bridge stress interaction,along ... The mechanical strength of the synchronous reluctance motor(SynRM)has always been a great challenge.This paper presents an analysis method for assessing stress equivalence and magnetic bridge stress interaction,along with a multiobjective optimization approach.Considering the complex flux barrier structure and inevitable stress concentration at the bridge,the finite element model suitable for SynRM is established.Initially,a neural network structure with two inputs,one output,and three layers is established.Continuous functions are constructed to enhance accuracy.Additionally,the equivalent stress can be converted into a contour distribution of a three-dimensional stress graph.The contour line distribution illustrates the matching scheme for magnetic bridge lengths under equivalent stress.Moreover,the paper explores the analysis of magnetic bridge interaction stress.The optimization levels corresponding to the length of each magnetic bridge are defined,and each level is analyzed by the finite element method.The Taguchi method is used to determine the specific gravity of the stress source on each magnetic bridge.Based on this,a multiobjective optimization employing the Multiobjective Particle Swarm Optimization(MOPSO)technique is introduced.By taking the rotor magnetic bridge as the design parameter,ten optimization objectives including air-gap flux density,sinusoidal property,average torque,torque ripple,and mechanical stress are optimized.The relationship between the optimization objectives and the design parameters can be obtained based on the response surface method(RSM)to avoid too many experimental samples.The optimized model is compared with the initial model,and the optimized effect is verified.Finally,the temperature distribution of under rated working conditions is analyzed,providing support for addressing thermal stress as mentioned earlier. 展开更多
关键词 multiobjective optimization Neural network Stress equivalence Synchronous reluctance motor Taguchi method
在线阅读 下载PDF
MULTIOBJECTIVE OPTIMIZATION OF EIGHT-DOF VEHICLE SUSPENSION BASED ON GAME THEORY
5
作者 宋崇智 赵又群 +1 位作者 谢能刚 王璐 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第2期138-147,共10页
A systematic and effective optimization is proposed for the design of a three-dimensional (3-D) vehicle suspension model with eight degrees of freedom (DOF), including vertical seat motion, vehicle suspension, pit... A systematic and effective optimization is proposed for the design of a three-dimensional (3-D) vehicle suspension model with eight degrees of freedom (DOF), including vertical seat motion, vehicle suspension, pitching and rolling motions, and vertical wheel motions using the evolutionary game theory. A new design of the passive suspension is aided by game theory to attain the best compromise between ride quality and suspension deflections. Extensive simulations are performed on three type road surface models A, B, C pavement grades based on the guidelines provided by ISO-2631 with the Matlab/Simulink environment. The preliminary results show that, when the passive suspension is optimized via the proposed approach, a substantial improvement in the vertical ride quality is obtained while keeping the suspension deflections within their allowable clearance when the vehicle moves at a constant velocity v=20 m/s, and the comfort performance of a suspension seat can be enhanced by 20%-30%. 展开更多
关键词 vehicle suspensions multiobjective optimization game theory riding comfort
在线阅读 下载PDF
Multiobjective Optimization of Simulated Moving Bed by Tissue P System 被引量:8
6
作者 黄亮 孙磊 +1 位作者 王宁 金晓明 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第5期683-690,共8页
The binaphthol enantiomers separation process using simulation moving bed technology is simulated with the true moving bed approach (TMB). In order to systematically optimize the process with multiple productive obj... The binaphthol enantiomers separation process using simulation moving bed technology is simulated with the true moving bed approach (TMB). In order to systematically optimize the process with multiple productive objectives, this article develops a variant of tissue P system (TPS). Inspired by general tissue P systems, the special TPS has a tissue-like structure with several membranes. The key rules of each membrane are the communication rule and mutation rule. These characteristics contribute to the diversity of the population, the conquest of the multimodal of objective function, and the convergence of algorithm. The results of comparison with a popular algorithm——the non-dominated sorting genetic algorithm 2(NSGA-2) illustrate that the new algorithm has satisfactory performance. Using the algorithm, this study maximizes synchronously several conflicting objectives, purities of different products, and productivity. 展开更多
关键词 simulated moving bed tissue P systems multiobjective optimization Pareto optimality evolutionary algorithm binaphthol enantiomers separation process
在线阅读 下载PDF
Multiobjective Optimization of the Industrial Naphtha Catalytic Re-forming Process 被引量:7
7
作者 侯卫锋 苏宏业 +1 位作者 牟盛静 褚健 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第1期75-80,共6页
In this article, a multiobjective optimization strategy for an industrial naphtha continuous catalytic reform-ing process that aims to obtain aromatic products is proposed. The process model is based on a 20-lumped ki... In this article, a multiobjective optimization strategy for an industrial naphtha continuous catalytic reform-ing process that aims to obtain aromatic products is proposed. The process model is based on a 20-lumped kinetics re-action network and has been proved to be quite effective in terms of industrial application. The primary objectives in-clude maximization of yield of the aromatics and minimization of the yield of heavy aromatics. Four reactor inlet tem-peratures, reaction pressure, and hydrogen-to-oil molar ratio are selected as the decision variables. A genetic algorithm, which is proposed by the authors and named as the neighborhood and archived genetic algorithm (NAGA), is applied to solve this multiobjective optimization problem. The relations between each decision variable and the two objectives are also proposed and used for choosing a suitable solution from the obtained Pareto set. 展开更多
关键词 multiobjective optimization catalytic reforming lumped kinetics model neighborhood and archived genetic algorithm (NAGA)
在线阅读 下载PDF
Multiobjective optimization and multivariable control of the beer fermentation process with the use of evolutionary algorithms 被引量:7
8
作者 ANDRES-TOROB. GIRON-SIERRAJ.M. FERNANDEZ-BLANCOP. LOPEZ-OROZCOJ.A. BESADA-PORTASE. 《Journal of Zhejiang University Science》 CSCD 2004年第4期378-389,共12页
This paper describes empirical research on the model, optimization and supervisory control of beer fermentation.Conditions in the laboratory were made as similar as possible to brewery industry conditions. Since mathe... This paper describes empirical research on the model, optimization and supervisory control of beer fermentation.Conditions in the laboratory were made as similar as possible to brewery industry conditions. Since mathematical models that consider realistic industrial conditions were not available, a new mathematical model design involving industrial conditions was first developed. Batch fermentations are multiobjective dynamic processes that must be guided along optimal paths to obtain good results.The paper describes a direct way to apply a Pareto set approach with multiobjective evolutionary algorithms (MOEAs).Successful finding of optimal ways to drive these processes were reported.Once obtained, the mathematical fermentation model was used to optimize the fermentation process by using an intelligent control based on certain rules. 展开更多
关键词 multiobjective optimization Genetic algorithms Industrial control Multivariable control systems Fermenta- tion processes
在线阅读 下载PDF
Multiobjective optimization scheme for industrial synthesis gas sweetening plant in GTL process 被引量:4
9
作者 Alireza Behroozsarand Akbar Zamaniyan 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第1期99-109,共11页
In industrial amine plants the optimized operating conditions are obtained from the conclusion of occurred events and challenges that are normal in the working units. For the sake of reducing the costs, time consuming... In industrial amine plants the optimized operating conditions are obtained from the conclusion of occurred events and challenges that are normal in the working units. For the sake of reducing the costs, time consuming, and preventing unsuitable accidents, the optimization could be performed by a computer program. In this paper, simulation and parameter analysis of amine plant is performed at first. The optimization of this unit is studied using Non-Dominated Sorting Genetic Algorithm-II in order to produce sweet gas with CO 2 mole percentage less than 2.0% and H 2 S concentration less than 10 ppm for application in Fischer-Tropsch synthesis. The simulation of the plant in HYSYS v.3.1 software has been linked with MATLAB code for real-parameter NSGA-II to simulate and optimize the amine process. Three scenarios are selected to cover the effect of (DEA/MDEA) mass composition percent ratio at amine solution on objective functions. Results show that sour gas temperature and pressure of 33.98 ? C and 14.96 bar, DEA/CO 2 molar flow ratio of 12.58, regeneration gas temperature and pressure of 94.92 ? C and 3.0 bar, regenerator pressure of 1.53 bar, and ratio of DEA/MDEA = 20%/10% are the best values for minimizing plant energy consumption, amine circulation rate, and carbon dioxide recovery. 展开更多
关键词 amine plant multiobjective optimization Non-Dominated Sorting Genetic Algorithm amine circulation rate
在线阅读 下载PDF
Reliability based multiobjective optimization for design of structures subject to random vibrations 被引量:1
10
作者 Giuseppe Carlo MARANO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第1期15-25,共11页
Based on a multiobjective approach whose objective function (OF) vector collects stochastic reliability performance and structural cost indices, a structural optimization criterion for mechanical systems subject to ra... Based on a multiobjective approach whose objective function (OF) vector collects stochastic reliability performance and structural cost indices, a structural optimization criterion for mechanical systems subject to random vibrations is presented for supporting engineer’s design. This criterion differs from the most commonly used conventional optimum design criterion for random vibrating structure, which is based on minimizing displacement or acceleration variance of main structure responses, without considering explicitly required performances against failure. The proposed criterion can properly take into account the design-reliability required performances, and it becomes a more efficient support for structural engineering decision making. The multiobjective optimum (MOO) design of a tuned mass damper (TMD) has been developed in a typical seismic design problem, to control structural vibration induced on a multi-storey building structure excited by nonstationary base acceleration random process. A numerical example for a three-storey building is developed and a sensitivity analysis is carried out. The results are shown in a useful manner for TMD design decision support. 展开更多
关键词 Structural optimization multiobjective optimization (MOO) Random vibration Tuned mass damper (TMD)
在线阅读 下载PDF
Multiobjective Optimization of Hull Form Based on Global Optimization Algorithm 被引量:1
11
作者 LIU Jie ZHANG Baoji 《Journal of Shanghai Jiaotong university(Science)》 EI 2022年第3期346-355,共10页
Rankine source method,optimization technology,parametric modeling technology,and improved multiobjective optimization algorithm were combined to investigate the multiobjective optimization design of hull form.A multio... Rankine source method,optimization technology,parametric modeling technology,and improved multiobjective optimization algorithm were combined to investigate the multiobjective optimization design of hull form.A multiobjective and multilevel optimization design framework was constructed for the comprehensive navigation performance of ships.CAESES software was utilized as the optimization platform,and nondominated sorting genetic algorithm II(NSGA-II)was used to conduct multiobjective optimization research on the resistance and sea-keeping performance of the ITTC Ship A-2 fishing vessel.Optimization objectives of this study are heave/pitch response amplitude and wave-making resistance.Taking the displacement and the length between perpendiculars as constraints,we optimized the profile of the hull.Analytic hierarchy process(AHP)and technique for order preference by similarity to ideal solution(TOPSIS)were used to sort and select Pareto solutions and determine weight coefficient of each navigation performance objective in the general objective.Finally,the hydrodynamic performance before and after the parametric deformation of the hull was compared.The results show that both the wave-making resistance and heave/pitch amplitude of the optimized hull form are reduced,and the satisfactory optimal hull form is obtained.The results of this study have a certain reference value for the initial stage of multiobjective optimization design of hull form. 展开更多
关键词 multiobjective optimization Rankine source method global optimization algorithm nondominated sorting genetic algorithm II(NSGA-II)
原文传递
UAV Task Allocation for Hierarchical Multiobjective Optimization in Complex Conditions Using Modified NSGA-III with Segmented Encoding 被引量:1
12
作者 JIN Yudong FENG Jiabo ZHANG Weijun 《Journal of Shanghai Jiaotong university(Science)》 EI 2021年第4期431-445,共15页
With the recent boom in unmanned aerial vehicle (UAV) technology, many UAV applications involving complex and risky tasks in military and civilian fields have emerged, such as military strikes and disaster monitoring.... With the recent boom in unmanned aerial vehicle (UAV) technology, many UAV applications involving complex and risky tasks in military and civilian fields have emerged, such as military strikes and disaster monitoring. Task allocation for UAVs is the process of planning the division of work among UAVs, controlled from ground stations by human operators. This study formulates the UAV task-allocation problem as an extended traveling salesman problem and presents a novel UAV task-allocation model for complex air concentration monitoring tasks. Then, an optimized non-dominated sorting genetic algorithm III (NSGA-III) based on a twin-exclusion mechanism, hierarchical objective-domination operator, and segmented gene encoding (i.e., NSGA-III-TEHOD) is developed to solve complex task-allocation problems involving multiple UAVs, hierarchical objectives, obstacles, and ambient wind. The algorithm is tested in several simulations, and the results demonstrate that the new algorithm outperforms NSGA-III, non-dominated sorting genetic algorithm II (NSGA-II), and genetic algorithm (GA) in terms of efficiency of global convergence and early maturation prevention and is available for the hierarchical objective-optimization problems. 展开更多
关键词 unmanned aerial vehicle(UAV) task allocation non-dominated sorting genetic algorithm(NSGA) multiobjective optimization
原文传递
Reactive Search Optimization;Application to Multiobjective Optimization Problems 被引量:1
13
作者 Amir Mosavi Atieh Vaezipour 《Applied Mathematics》 2012年第10期1572-1582,共11页
During the last few years we have witnessed impressive developments in the area of stochastic local search techniques for intelligent optimization and Reactive Search Optimization. In order to handle the complexity, i... During the last few years we have witnessed impressive developments in the area of stochastic local search techniques for intelligent optimization and Reactive Search Optimization. In order to handle the complexity, in the framework of stochastic local search optimization, learning and optimization has been deeply interconnected through interaction with the decision maker via the visualization approach of the online graphs. Consequently a number of complex optimization problems, in particular multiobjective optimization problems, arising in widely different contexts have been effectively treated within the general framework of RSO. In solving real-life multiobjective optimization problems often most emphasis are spent on finding the complete Pareto-optimal set and less on decision-making. However the com-plete task of multiobjective optimization is considered as a combined task of optimization and decision-making. In this paper, we suggest an interactive procedure which will involve the decision-maker in the optimization process helping to choose a single solution at the end. Our proposed method works on the basis of Reactive Search Optimization (RSO) algorithms and available software architecture packages. The procedure is further compared with the excising novel method of Interactive Multiobjective Optimization and Decision-Making, using Evolutionary method (I-MODE). In order to evaluate the effectiveness of both methods the well-known study case of welded beam design problem is reconsidered. 展开更多
关键词 Stochastic Local Search Real-Life Application Multi Criteria Decision Making multiobjective optimization Reactive Search optimization
暂未订购
Evolutionary Algorithm with Ensemble Classifier Surrogate Model for Expensive Multiobjective Optimization
14
作者 LAN Tian 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第S01期76-87,共12页
For many real-world multiobjective optimization problems,the evaluations of the objective functions are computationally expensive.Such problems are usually called expensive multiobjective optimization problems(EMOPs).... For many real-world multiobjective optimization problems,the evaluations of the objective functions are computationally expensive.Such problems are usually called expensive multiobjective optimization problems(EMOPs).One type of feasible approaches for EMOPs is to introduce the computationally efficient surrogates for reducing the number of function evaluations.Inspired from ensemble learning,this paper proposes a multiobjective evolutionary algorithm with an ensemble classifier(MOEA-EC)for EMOPs.More specifically,multiple decision tree models are used as an ensemble classifier for the pre-selection,which is be more helpful for further reducing the function evaluations of the solutions than using single inaccurate model.The extensive experimental studies have been conducted to verify the efficiency of MOEA-EC by comparing it with several advanced multiobjective expensive optimization algorithms.The experimental results show that MOEA-EC outperforms the compared algorithms. 展开更多
关键词 multiobjective evolutionary algorithm expensive multiobjective optimization ensemble classifier surrogate model
在线阅读 下载PDF
Multiobjective Optimization of Truss Topology by Linear/Sequential Linear Programming Method
15
作者 Toyofumi Takada 《Journal of Mechanics Engineering and Automation》 2012年第10期585-593,共9页
The present paper deals with a multiobjective optimization of truss topology by either Sequential Linear Programming (SLP) method or Linear Programming (LP) method. The ground structure approach is often used to s... The present paper deals with a multiobjective optimization of truss topology by either Sequential Linear Programming (SLP) method or Linear Programming (LP) method. The ground structure approach is often used to solve this kind of design problems. In this paper, the topology optimization is formulated as a Multiobjective Optimization Problem (MOP), which is to find the cross-sectional area of truss members, such that both the total volume of members and the weighted mean compliance are minimized. Based upon the Karush-Kuhn-Tucker conditions (the optimality condition), the Pareto optimal front of this problem can be obtained theoretically. The truss topology optimization under multiple load cases can be solved by the SLP. On the other hand, the LP such as the Simplex method or the interior point method can be applied to find one of the Pareto optimal solutions of the MOP under single load case. The applications of either the SLP or the LP are illustrated in numerical examples with discussion on characteristics of design results. 展开更多
关键词 Topology optimization multiobjective optimization multi load cases single load case.
在线阅读 下载PDF
Lagrangian Relaxation Method for Multiobjective Optimization Methods: Solution Approaches
16
作者 H. S. Faruque Alam 《Journal of Applied Mathematics and Physics》 2022年第5期1619-1630,共12页
This paper introduces the Lagrangian relaxation method to solve multiobjective optimization problems. It is often required to use the appropriate technique to determine the Lagrangian multipliers in the relaxation met... This paper introduces the Lagrangian relaxation method to solve multiobjective optimization problems. It is often required to use the appropriate technique to determine the Lagrangian multipliers in the relaxation method that leads to finding the optimal solution to the problem. Our analysis aims to find a suitable technique to generate Lagrangian multipliers, and later these multipliers are used in the relaxation method to solve Multiobjective optimization problems. We propose a search-based technique to generate Lagrange multipliers. In our paper, we choose a suitable and well-known scalarization method that transforms the original multiobjective into a scalar objective optimization problem. Later, we solve this scalar objective problem using Lagrangian relaxation techniques. We use Brute force techniques to sort optimum solutions. Finally, we analyze the results, and efficient methods are recommended. 展开更多
关键词 multiobjective optimization Problem Lagrangian Relaxation Lagrange Multipliers Scalarization Method
在线阅读 下载PDF
Multiobjective optimization of dielectric,thermal,and mechanical properties of inorganic glasses utilizing explainable machine learning and genetic algorithm
17
作者 Jincheng Qin Faqiang Zhang +2 位作者 Mingsheng Ma Yongxiang Li Zhifu Liu 《Materials Genome Engineering Advances》 2025年第2期133-145,共13页
To meet the demands of advanced electronic devices,inorganic glasses are required to have comprehensive dielectric,thermal,and mechanical properties.However,the complex composition–property relationship and vast comp... To meet the demands of advanced electronic devices,inorganic glasses are required to have comprehensive dielectric,thermal,and mechanical properties.However,the complex composition–property relationship and vast compositional diversity hinder optimization.This study developed machine learning models to predict permittivity,dielectric loss,thermal conductivity,coefficient of thermal expansion,and Young’s modulus based on the composition features of inorganic glasses.The optimal models achieve R^(2)values of 0.9614,0.7411,0.9454,0.9684,and 0.8164,respectively.By integrating domain knowledge with model-agnostic interpretation methods,feature contributions and interactions were analyzed.The mixed alkali effect is crucial for property regulation,especially Na-K for dielectric loss and Na-Li for thermal conductivity.Boron anomaly shifts the high-λregion to a balanced composition of alkali metals with rising B%.The multiobjective optimization of properties was realized using a genetic algorithm framework.After 23 iterations,the optimal material in the MgO-Al_(2)O_(3)-B_(2)O_(3)-SiO2 system exhibitsε_(r)=4.78,tanδ=0.00063,λ=2.59 W/(m⋅K),α=50.27�10−7K−1,and E=82.41 GPa,outperforming all materials in the dataset.The computational effort was reduced to 1/19 of that required using exhaustive search methods.This study provides a model interpretation framework and an effective multiobjective optimization strategy for glass design. 展开更多
关键词 genetic algorithm inorganic glass machine learning model-agnostic interpretation multiobjective optimization
在线阅读 下载PDF
Automated inverse design of asymmetric excavation retaining structures using multiobjective optimization
18
作者 Qiwei Wan Changjie Xu +2 位作者 Xiangyu Wang Haibin Ding Xiaozhen Fan 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第11期7351-7366,共16页
Conventional pit excavation engineering methods often struggle to manage the complex deformation patterns associated with asymmetric excavations,resulting in significant safety risks and increased project costs.These ... Conventional pit excavation engineering methods often struggle to manage the complex deformation patterns associated with asymmetric excavations,resulting in significant safety risks and increased project costs.These challenges highlight the need for more precise and efficient design methodologies to ensure structural stability and economic feasibility.This research proposes an innovative automatic optimization inverse design method(AOIDM)that integrates an enhanced genetic algorithm(EGA)with a multiobjective optimization model.By combining advanced computational techniques with engineering principles,this approach improves search efficiency by 30%and enhances deformation control accuracy by 25%.Additionally,the approach exhibits potential for reducing carbon emissions to align with sustainable engineering goals.The effectiveness of this approach was validated through comprehensive data analysis and practical case studies,demonstrating its ability to optimize retaining structure designs under complex asymmetric loading conditions.This research establishes a new standard for precision and efficiency in automated excavation design,with accompanying improvements in safety and cost-effectiveness.Furthermore,it lays the foundation for future geotechnical engineering advancements,offering a robust solution to one of the most challenging aspects of modern excavation projects. 展开更多
关键词 multiobjective optimization Enhanced genetic algorithm(EGA) Inverse design Deformation control Economic optimization
在线阅读 下载PDF
A New Multiobjective Particle Swarm Optimization Using Local Displacement and Local Guides 被引量:1
19
作者 Saïd Charriffaini Rawhoudine Abdoulhafar Halassi Bacar 《Open Journal of Optimization》 2024年第2期31-49,共19页
This paper introduces a novel variant of particle swarm optimization that leverages local displacements through attractors for addressing multiobjective optimization problems. The method incorporates a square root dis... This paper introduces a novel variant of particle swarm optimization that leverages local displacements through attractors for addressing multiobjective optimization problems. The method incorporates a square root distance mechanism into the external archives to enhance the diversity. We evaluate the performance of the proposed approach on a set of constrained and unconstrained multiobjective test functions, establishing a benchmark for comparison. In order to gauge its effectiveness relative to established techniques, we conduct a comprehensive comparison with well-known approaches such as SMPSO, NSGA2 and SPEA2. The numerical results demonstrate that our method not only achieves efficiency but also exhibits competitiveness when compared to evolutionary algorithms. Particularly noteworthy is its superior performance in terms of convergence and diversification, surpassing the capabilities of its predecessors. 展开更多
关键词 Particle Swarm optimization multiobjective optimization Attractor-Based Displacement Square Root Distance Crowding Distance
在线阅读 下载PDF
Design-space adaptation method for multiobjective and multidisciplinary optimization
20
作者 Jongho JUNG Kwanjung YEE Shinkyu JEONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第8期166-189,共24页
This paper developed a new method that adaptively adjusts a design space by considering the actual solution distribution of a problem to overcome the conventional design-space adaptation method that assumes the soluti... This paper developed a new method that adaptively adjusts a design space by considering the actual solution distribution of a problem to overcome the conventional design-space adaptation method that assumes the solutions distribution to be a normal distribution because the distributions of solutions are rarely normal distributions for real-world problems.The developed method was applied to nineteen multiobjective test functions that are widely used to evaluate the characteristics and performance of optimization approaches.The results showed that this method adapted the design space to an appropriate design space where the solution existence probability was high.The optimization performance achieved using the developed method was higher than that of the conventional methods.Furthermore,the developed method was applied to the conceptual design of an unmanned spacecraft to confirm its validity in real-world design and multidisciplinaryoptimization problems.The results showed that the Pareto solutions of the developed method were superior to those of conventional methods.Additionally,the optimization efficiency with the developed method was improved by more than 1.4 times over that of the conventional methods.In this regard,the developed method has the potential to be applied to complicated real-world optimization problems to achieve better performance and efficiency. 展开更多
关键词 multiobjective optimization multiobjective genetic algorithm Design-space adaptation Multidisciplinary optimization Hypersonic vehicle
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部