期刊文献+
共找到970篇文章
< 1 2 49 >
每页显示 20 50 100
Recent progress on artificial intelligence-enhanced multimodal sensors integrated devices and systems 被引量:2
1
作者 Haihua Wang Mingjian Zhou +5 位作者 Xiaolong Jia Hualong Wei Zhenjie Hu Wei Li Qiumeng Chen Lei Wang 《Journal of Semiconductors》 2025年第1期179-192,共14页
Multimodal sensor fusion can make full use of the advantages of various sensors,make up for the shortcomings of a single sensor,achieve information verification or information security through information redundancy,a... Multimodal sensor fusion can make full use of the advantages of various sensors,make up for the shortcomings of a single sensor,achieve information verification or information security through information redundancy,and improve the reliability and safety of the system.Artificial intelligence(AI),referring to the simulation of human intelligence in machines that are programmed to think and learn like humans,represents a pivotal frontier in modern scientific research.With the continuous development and promotion of AI technology in Sensor 4.0 age,multimodal sensor fusion is becoming more and more intelligent and automated,and is expected to go further in the future.With this context,this review article takes a comprehensive look at the recent progress on AI-enhanced multimodal sensors and their integrated devices and systems.Based on the concept and principle of sensor technologies and AI algorithms,the theoretical underpinnings,technological breakthroughs,and pragmatic applications of AI-enhanced multimodal sensors in various fields such as robotics,healthcare,and environmental monitoring are highlighted.Through a comparative study of the dual/tri-modal sensors with and without using AI technologies(especially machine learning and deep learning),AI-enhanced multimodal sensors highlight the potential of AI to improve sensor performance,data processing,and decision-making capabilities.Furthermore,the review analyzes the challenges and opportunities afforded by AI-enhanced multimodal sensors,and offers a prospective outlook on the forthcoming advancements. 展开更多
关键词 SENSOR multimodal sensors machine learning deep learning intelligent system
在线阅读 下载PDF
Performance vs.Complexity Comparative Analysis of Multimodal Bilinear Pooling Fusion Approaches for Deep Learning-Based Visual Arabic-Question Answering Systems
2
作者 Sarah M.Kamel Mai A.Fadel +1 位作者 Lamiaa Elrefaei Shimaa I.Hassan 《Computer Modeling in Engineering & Sciences》 2025年第4期373-411,共39页
Visual question answering(VQA)is a multimodal task,involving a deep understanding of the image scene and the question’s meaning and capturing the relevant correlations between both modalities to infer the appropriate... Visual question answering(VQA)is a multimodal task,involving a deep understanding of the image scene and the question’s meaning and capturing the relevant correlations between both modalities to infer the appropriate answer.In this paper,we propose a VQA system intended to answer yes/no questions about real-world images,in Arabic.To support a robust VQA system,we work in two directions:(1)Using deep neural networks to semantically represent the given image and question in a fine-grainedmanner,namely ResNet-152 and Gated Recurrent Units(GRU).(2)Studying the role of the utilizedmultimodal bilinear pooling fusion technique in the trade-o.between the model complexity and the overall model performance.Some fusion techniques could significantly increase the model complexity,which seriously limits their applicability for VQA models.So far,there is no evidence of how efficient these multimodal bilinear pooling fusion techniques are for VQA systems dedicated to yes/no questions.Hence,a comparative analysis is conducted between eight bilinear pooling fusion techniques,in terms of their ability to reduce themodel complexity and improve themodel performance in this case of VQA systems.Experiments indicate that these multimodal bilinear pooling fusion techniques have improved the VQA model’s performance,until reaching the best performance of 89.25%.Further,experiments have proven that the number of answers in the developed VQA system is a critical factor that a.ects the effectiveness of these multimodal bilinear pooling techniques in achieving their main objective of reducing the model complexity.The Multimodal Local Perception Bilinear Pooling(MLPB)technique has shown the best balance between the model complexity and its performance,for VQA systems designed to answer yes/no questions. 展开更多
关键词 Arabic-VQA deep learning-based VQA deep multimodal information fusion multimodal representation learning VQA of yes/no questions VQA model complexity VQA model performance performance-complexity trade-off
在线阅读 下载PDF
A Special Issue:“Co-optimization and mechanism design of multimodal energy systems under carbon constraints”
3
作者 Lin Cheng Xiaojun Wan 《Global Energy Interconnection》 2025年第2期I0002-I0003,共2页
Against the backdrop of active global responses to climate change and the accelerated green and low-carbon energy transition,the co-optimization and innovative mechanism design of multimodal energy systems have become... Against the backdrop of active global responses to climate change and the accelerated green and low-carbon energy transition,the co-optimization and innovative mechanism design of multimodal energy systems have become a significant instrument for propelling the energy revolution and ensuring energy security.Under increasingly stringent carbon emission constraints,how to achieve multi-dimensional improvements in energy utilization efficiency,renewable energy accommodation levels,and system economics-through the intelligent coupling of diverse energy carriers such as electricity,heat,natural gas,and hydrogen,and the effective application of market-based instruments like carbon trading and demand response-constitutes a critical scientific and engineering challenge demanding urgent solutions. 展开更多
关键词 multimodal energy systems renewable energy accommodation energy utilization efficiency co optimization carbon constraints climate change carbon emission constraintshow mechanism design
在线阅读 下载PDF
Multimodal artificial intelligence system for detecting a small esophageal high-grade squamous intraepithelial neoplasia: A case report
4
作者 Yang Zhou Rui-De Liu +3 位作者 Hui Gong Xiang-Lei Yuan Bing Hu Zhi-Yin Huang 《World Journal of Gastrointestinal Endoscopy》 2025年第1期61-65,共5页
BACKGROUND Recent advancements in artificial intelligence(AI)have significantly enhanced the capabilities of endoscopic-assisted diagnosis for gastrointestinal diseases.AI has shown great promise in clinical practice,... BACKGROUND Recent advancements in artificial intelligence(AI)have significantly enhanced the capabilities of endoscopic-assisted diagnosis for gastrointestinal diseases.AI has shown great promise in clinical practice,particularly for diagnostic support,offering real-time insights into complex conditions such as esophageal squamous cell carcinoma.CASE SUMMARY In this study,we introduce a multimodal AI system that successfully identified and delineated a small and flat carcinoma during esophagogastroduodenoscopy,highlighting its potential for early detection of malignancies.The lesion was confirmed as high-grade squamous intraepithelial neoplasia,with pathology results supporting the AI system’s accuracy.The multimodal AI system offers an integrated solution that provides real-time,accurate diagnostic information directly within the endoscopic device interface,allowing for single-monitor use without disrupting endoscopist’s workflow.CONCLUSION This work underscores the transformative potential of AI to enhance endoscopic diagnosis by enabling earlier,more accurate interventions. 展开更多
关键词 Artificial intelligence multimodal artificial intelligence system Esophageal squamous cell carcinoma High-grade intraepithelial neoplasia Case report
暂未订购
Flexible Tactile Sensing Systems:Challenges in Theoretical Research Transferring to Practical Applications
5
作者 Zhiyu Yao Wenjie Wu +6 位作者 Fengxian Gao Min Gong Liang Zhang Dongrui Wang Baochun Guo Liqun Zhang Xiang Lin 《Nano-Micro Letters》 2026年第2期19-87,共69页
Since the first design of tactile sensors was proposed by Harmon in 1982,tactile sensors have evolved through four key phases:industrial applications(1980s,basic pressure detection),miniaturization via MEMS(1990s),fle... Since the first design of tactile sensors was proposed by Harmon in 1982,tactile sensors have evolved through four key phases:industrial applications(1980s,basic pressure detection),miniaturization via MEMS(1990s),flexible electronics(2010s,stretchable materials),and intelligent systems(2020s-present,AI-driven multimodal sensing).With the innovation of material,processing techniques,and multimodal fusion of stimuli,the application of tactile sensors has been continuously expanding to a diversity of areas,including but not limited to medical care,aerospace,sports and intelligent robots.Currently,researchers are dedicated to develop tactile sensors with emerging mechanisms and structures,pursuing high-sensitivity,high-resolution,and multimodal characteristics and further constructing tactile systems which imitate and approach the performance of human organs.However,challenges in the combination between the theoretical research and the practical applications are still significant.There is a lack of comprehensive understanding in the state of the art of such knowledge transferring from academic work to technical products.Scaled-up production of laboratory materials faces fatal challenges like high costs,small scale,and inconsistent quality.Ambient factors,such as temperature,humidity,and electromagnetic interference,also impair signal reliability.Moreover,tactile sensors must operate across a wide pressure range(0.1 k Pa to several or even dozens of MPa)to meet diverse application needs.Meanwhile,the existing algorithms,data models and sensing systems commonly reveal insufficient precision as well as undesired robustness in data processing,and there is a realistic gap between the designed and the demanded system response speed.In this review,oriented by the design requirements of intelligent tactile sensing systems,we summarize the common sensing mechanisms,inspired structures,key performance,and optimizing strategies,followed by a brief overview of the recent advances in the perspectives of system integration and algorithm implementation,and the possible roadmap of future development of tactile sensors,providing a forward-looking as well as critical discussions in the future industrial applications of flexible tactile sensors. 展开更多
关键词 Tactile sensation FLEXIBILITY multimodal system integration Robotic haptics
在线阅读 下载PDF
Multimodal clinical parameters-based immune status associated with the prognosis in patients with hepatocellular carcinoma
6
作者 Yu-Zhou Zhang Yuan-Ze Tang +4 位作者 Yun-Xuan He Shu-Tong Pan Hao-Cheng Dai Yu Liu Hai-Feng Zhou 《World Journal of Gastrointestinal Oncology》 2026年第1期75-91,共17页
Hepatocellular carcinoma presents with three distinct immune phenotypes,including immune-desert,immune-excluded,and immune-inflamed,indicating various treatment responses and prognostic outcomes.The clinical applicati... Hepatocellular carcinoma presents with three distinct immune phenotypes,including immune-desert,immune-excluded,and immune-inflamed,indicating various treatment responses and prognostic outcomes.The clinical application of multi-omics parameters is still restricted by the expensive and less accessible assays,although they accurately reflect immune status.A comprehensive evaluation framework based on“easy-to-obtain”multi-model clinical parameters is urgently required,incorporating clinical features to establish baseline patient profiles and disease staging;routine blood tests assessing systemic metabolic and functional status;immune cell subsets quantifying subcluster dynamics;imaging features delineating tumor morphology,spatial configuration,and perilesional anatomical relationships;immunohistochemical markers positioning qualitative and quantitative detection of tumor antigens from the cellular and molecular level.This integrated phenomic approach aims to improve prognostic stratification and clinical decision-making in hepatocellular carcinoma management conveniently and practically. 展开更多
关键词 Hepatocellular carcinoma Immune status PHENOTYPE multimodal parameters PROGNOSIS
暂未订购
Multimodal artificial intelligence integrates imaging,endoscopic,and omics data for intelligent decision-making in individualized gastrointestinal tumor treatment
7
作者 Hui Nian Yi-Bin Wu +5 位作者 Yu Bai Zhi-Long Zhang Xiao-Huang Tu Qi-Zhi Liu De-Hua Zhou Qian-Cheng Du 《Artificial Intelligence in Gastroenterology》 2026年第1期1-19,共19页
Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including ... Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including computed tomography(CT),magnetic resonance imaging(MRI),endoscopic imaging,and genomic profiles-to enable intelligent decision-making for individualized therapy.This approach leverages AI algorithms to fuse imaging,endoscopic,and omics data,facilitating comprehensive characterization of tumor biology,prediction of treatment response,and optimization of therapeutic strategies.By combining CT and MRI for structural assessment,endoscopic data for real-time visual inspection,and genomic information for molecular profiling,multimodal AI enhances the accuracy of patient stratification and treatment personalization.The clinical implementation of this technology demonstrates potential for improving patient outcomes,advancing precision oncology,and supporting individualized care in gastrointestinal cancers.Ultimately,multimodal AI serves as a transformative tool in oncology,bridging data integration with clinical application to effectively tailor therapies. 展开更多
关键词 multimodal artificial intelligence Gastrointestinal tumors Individualized therapy Intelligent diagnosis Treatment optimization Prognostic prediction Data fusion Deep learning Precision medicine
在线阅读 下载PDF
AI-driven integration of multi-omics and multimodal data for precision medicine
8
作者 Heng-Rui Liu 《Medical Data Mining》 2026年第1期1-2,共2页
High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging ... High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging foundation models and multimodal learning frameworks are enabling scalable and transferable representations of cellular states,while advances in interpretability and real-world data integration are bridging the gap between discovery and clinical application.This paper outlines a concise roadmap for AI-driven,transcriptome-centered multi-omics integration in precision medicine(Figure 1). 展开更多
关键词 high throughput transcriptomics multi omics single cell multimodal learning frameworks foundation models omics data modalitiesemerging ai driven precision medicine
在线阅读 下载PDF
A quantum inspired genetic algorithm for multimodal optimization of wind disturbance alleviation flight control system 被引量:4
9
作者 Qi BIAN Brett NENER Xinmin WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第11期2480-2488,共9页
This paper develops a Quantum-inspired Genetic Algorithm(QGA) to find the sets of optimal parameters for the wind disturbance alleviation Flight Control System(FCS). To search the problem domain more evenly and unifor... This paper develops a Quantum-inspired Genetic Algorithm(QGA) to find the sets of optimal parameters for the wind disturbance alleviation Flight Control System(FCS). To search the problem domain more evenly and uniformly, the lattice rule based stratification method is used to create new chromosomes. The chromosomes are coded and updated according to quantuminspired strategies. A niching method is used to ensure every chromosome can converge to its corresponding local minimum in the optimization process. A parallel archive system is adopted to monitor the chromosomes on-line and save all potential feasible solutions in the optimization process. An adaptive search strategy is used to gradually adjust the search domain of each niche to finally approach the local minima. The solutions found by the QGA are compared with some other Multimodal Optimization(MO) algorithms and are tested on the FCS of the Boeing 747 to demonstrate the effectiveness of the proposed algorithm. 展开更多
关键词 Flight control system Genetic algorithm multimodal optimization Quantum inspired algorithm Wind disturbance alleviation
原文传递
Interactive System for Video Summarization Based on Multimodal Fusion 被引量:1
10
作者 Zheng Li Xiaobing Du +2 位作者 Cuixia Ma Yanfeng Li Hongan Wang 《Journal of Beijing Institute of Technology》 EI CAS 2019年第1期27-34,共8页
Biography videos based on life performances of prominent figures in history aim to describe great mens' life.In this paper,a novel interactive video summarization for biography video based on multimodal fusion is ... Biography videos based on life performances of prominent figures in history aim to describe great mens' life.In this paper,a novel interactive video summarization for biography video based on multimodal fusion is proposed,which is a novel approach of visualizing the specific features for biography video and interacting with video content by taking advantage of the ability of multimodality.In general,a story of movie progresses by dialogues of characters and the subtitles are produced with the basis on the dialogues which contains all the information related to the movie.In this paper,JGibbsLDA is applied to extract key words from subtitles because the biography video consists of different aspects to depict the characters' whole life.In terms of fusing keywords and key-frames,affinity propagation is adopted to calculate the similarity between each key-frame cluster and keywords.Through the method mentioned above,a video summarization is presented based on multimodal fusion which describes video content more completely.In order to reduce the time spent on searching the interest video content and get the relationship between main characters,a kind of map is adopted to visualize video content and interact with video summarization.An experiment is conducted to evaluate video summarization and the results demonstrate that this system can formally facilitate the exploration of video content while improving interaction and finding events of interest efficiently. 展开更多
关键词 VIDEO VISUALIZATION INTERACTION multimodal FUSION VIDEO SUMMARIZATION
在线阅读 下载PDF
Fuzzy least brain storm optimization and entropy-based Euclidean distance for multimodal vein-based recognition system 被引量:1
11
作者 Dipti Verma Sipi Dubey 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2360-2371,共12页
Nowadays, the vein based recognition system becomes an emerging and facilitating biometric technology in the recognition system. Vein recognition exploits the different modalities such as finger, palm and hand image f... Nowadays, the vein based recognition system becomes an emerging and facilitating biometric technology in the recognition system. Vein recognition exploits the different modalities such as finger, palm and hand image for the person identification. In this work, the fuzzy least brain storm optimization and Euclidean distance(EED) are proposed for the vein based recognition system. Initially, the input image is fed into the region of interest(ROI) extraction which obtains the appropriate image for the subsequent step. Then, features or vein pattern is extracted by the image enlightening, circular averaging filter and holoentropy based thresholding. After the features are obtained, the entropy based Euclidean distance is proposed to fuse the features by the score level fusion with the weight score value. Finally, the optimal matching score is computed iteratively by the newly developed fuzzy least brain storm optimization(FLBSO) algorithm. The novel algorithm is developed by the least mean square(LMS) algorithm and fuzzy brain storm optimization(FBSO). Thus, the experimental results are evaluated and the performance is compared with the existing systems using false acceptance rate(FAR), false rejection rate(FRR) and accuracy. The performance outcome of the proposed algorithm attains the higher accuracy of 89.9% which ensures the better recognition rate. 展开更多
关键词 multimodalITY BRAIN STORM OPTIMIZATION (BSO) least mean square (LMS) score level fusion recognition
在线阅读 下载PDF
A Study of Multimodal Intelligent Adaptive Learning System and Its Pattern of Promoting Learners’Online Learning Engagement
12
作者 ZHANG Chao SHI Qing TONG Mingwen 《Psychology Research》 2023年第5期202-206,共5页
As the field of artificial intelligence continues to evolve,so too does the application of multimodal learning analysis and intelligent adaptive learning systems.This trend has the potential to promote the equalizatio... As the field of artificial intelligence continues to evolve,so too does the application of multimodal learning analysis and intelligent adaptive learning systems.This trend has the potential to promote the equalization of educational resources,the intellectualization of educational methods,and the modernization of educational reform,among other benefits.This study proposes a construction framework for an intelligent adaptive learning system that is supported by multimodal data.It provides a detailed explanation of the system’s working principles and patterns,which aim to enhance learners’online engagement in behavior,emotion,and cognition.The study seeks to address the issue of intelligent adaptive learning systems diagnosing learners’learning behavior based solely on learning achievement,to improve learners’online engagement,enable them to master more required knowledge,and ultimately achieve better learning outcomes. 展开更多
关键词 multimodal intelligent adaptive learning system online learning engagement
在线阅读 下载PDF
Design of a Multimodal Light Sheet Optical System for Multivariate Applications in Phytopathology
13
作者 Mama Sangare Mathieu Hebert +1 位作者 Anthony Cazier Pierre Chavel 《Optics and Photonics Journal》 2021年第5期110-120,共11页
The design of optical instruments is an active subject due to improvement in lens techniques, fabrication technology, and data handling capacity. Much remains to do to expand its application to phytopathology, which w... The design of optical instruments is an active subject due to improvement in lens techniques, fabrication technology, and data handling capacity. Much remains to do to expand its application to phytopathology, which would be in particular quite useful to improve crop growth monitoring in countries like Mali. An optical multimodal system for plant samples has been developed to improve the characterization of leaf disease symptoms, provide information on their effects, and avoid their spread. Potentially inexpensive components (laser, lens, turntables camera and sample, filter, lens, camera and computer) have been selected, assembled and aligned on an optical table into a multimodal system operating in transmission, reflection, diffusion and fluorescence. The illumination and observation angles can be adjusted to optimize viewing conditions in the four modes. This scientific contribution has been an initiation into the design and implementation of an optical instrument. Initial results are shown and will now be extended in cooperation with agronomic laboratories in African countries for tests on specific plant diseases in relation with prevailing climate conditions. 展开更多
关键词 DESIGN Optical system Light Sheet multimodal MULTIVARIATE PHYTOPATHOLOGY
在线阅读 下载PDF
TGNet:Intelligent Identification of Thunderstorm Wind Gusts Using Multimodal Fusion 被引量:3
14
作者 Xiaowen ZHANG Yongguang ZHENG +3 位作者 Hengde ZHANG Jie SHENG Bingjian LU Shuo FENG 《Advances in Atmospheric Sciences》 2025年第1期146-164,共19页
Thunderstorm wind gusts are small in scale,typically occurring within a range of a few kilometers.It is extremely challenging to monitor and forecast thunderstorm wind gusts using only automatic weather stations.There... Thunderstorm wind gusts are small in scale,typically occurring within a range of a few kilometers.It is extremely challenging to monitor and forecast thunderstorm wind gusts using only automatic weather stations.Therefore,it is necessary to establish thunderstorm wind gust identification techniques based on multisource high-resolution observations.This paper introduces a new algorithm,called thunderstorm wind gust identification network(TGNet).It leverages multimodal feature fusion to fuse the temporal and spatial features of thunderstorm wind gust events.The shapelet transform is first used to extract the temporal features of wind speeds from automatic weather stations,which is aimed at distinguishing thunderstorm wind gusts from those caused by synoptic-scale systems or typhoons.Then,the encoder,structured upon the U-shaped network(U-Net)and incorporating recurrent residual convolutional blocks(R2U-Net),is employed to extract the corresponding spatial convective characteristics of satellite,radar,and lightning observations.Finally,by using the multimodal deep fusion module based on multi-head cross-attention,the temporal features of wind speed at each automatic weather station are incorporated into the spatial features to obtain 10-minutely classification of thunderstorm wind gusts.TGNet products have high accuracy,with a critical success index reaching 0.77.Compared with those of U-Net and R2U-Net,the false alarm rate of TGNet products decreases by 31.28%and 24.15%,respectively.The new algorithm provides grid products of thunderstorm wind gusts with a spatial resolution of 0.01°,updated every 10minutes.The results are finer and more accurate,thereby helping to improve the accuracy of operational warnings for thunderstorm wind gusts. 展开更多
关键词 thunderstorm wind gusts shapelet transform multimodal deep feature fusion
在线阅读 下载PDF
A Comprehensive Review of Multimodal Deep Learning for Enhanced Medical Diagnostics 被引量:1
15
作者 Aya M.Al-Zoghby Ahmed Ismail Ebada +2 位作者 Aya S.Saleh Mohammed Abdelhay Wael A.Awad 《Computers, Materials & Continua》 2025年第9期4155-4193,共39页
Multimodal deep learning has emerged as a key paradigm in contemporary medical diagnostics,advancing precision medicine by enabling integration and learning from diverse data sources.The exponential growth of high-dim... Multimodal deep learning has emerged as a key paradigm in contemporary medical diagnostics,advancing precision medicine by enabling integration and learning from diverse data sources.The exponential growth of high-dimensional healthcare data,encompassing genomic,transcriptomic,and other omics profiles,as well as radiological imaging and histopathological slides,makes this approach increasingly important because,when examined separately,these data sources only offer a fragmented picture of intricate disease processes.Multimodal deep learning leverages the complementary properties of multiple data modalities to enable more accurate prognostic modeling,more robust disease characterization,and improved treatment decision-making.This review provides a comprehensive overview of the current state of multimodal deep learning approaches in medical diagnosis.We classify and examine important application domains,such as(1)radiology,where automated report generation and lesion detection are facilitated by image-text integration;(2)histopathology,where fusion models improve tumor classification and grading;and(3)multi-omics,where molecular subtypes and latent biomarkers are revealed through cross-modal learning.We provide an overview of representative research,methodological advancements,and clinical consequences for each domain.Additionally,we critically analyzed the fundamental issues preventing wider adoption,including computational complexity(particularly in training scalable,multi-branch networks),data heterogeneity(resulting from modality-specific noise,resolution variations,and inconsistent annotations),and the challenge of maintaining significant cross-modal correlations during fusion.These problems impede interpretability,which is crucial for clinical trust and use,in addition to performance and generalizability.Lastly,we outline important areas for future research,including the development of standardized protocols for harmonizing data,the creation of lightweight and interpretable fusion architectures,the integration of real-time clinical decision support systems,and the promotion of cooperation for federated multimodal learning.Our goal is to provide researchers and clinicians with a concise overview of the field’s present state,enduring constraints,and exciting directions for further research through this review. 展开更多
关键词 multimodal deep learning medical diagnostics multimodal healthcare fusion healthcare data integration
暂未订购
A Flexible‑Integrated Multimodal Hydrogel‑Based Sensing Patch 被引量:1
16
作者 Peng Wang Guoqing Wang +4 位作者 Guifen Sun Chenchen Bao Yang Li Chuizhou Meng Zhao Yao 《Nano-Micro Letters》 2025年第7期107-125,共19页
Sleep monitoring is an important part of health management because sleep quality is crucial for restoration of human health.However,current commercial products of polysomnography are cumbersome with connecting wires a... Sleep monitoring is an important part of health management because sleep quality is crucial for restoration of human health.However,current commercial products of polysomnography are cumbersome with connecting wires and state-of-the-art flexible sensors are still interferential for being attached to the body.Herein,we develop a flexible-integrated multimodal sensing patch based on hydrogel and its application in unconstraint sleep monitoring.The patch comprises a bottom hydrogel-based dualmode pressure–temperature sensing layer and a top electrospun nanofiber-based non-contact detection layer as one integrated device.The hydrogel as core substrate exhibits strong toughness and water retention,and the multimodal sensing of temperature,pressure,and non-contact proximity is realized based on different sensing mechanisms with no crosstalk interference.The multimodal sensing function is verified in a simulated real-world scenario by a robotic hand grasping objects to validate its practicability.Multiple multimodal sensing patches integrated on different locations of a pillow are assembled for intelligent sleep monitoring.Versatile human–pillow interaction information as well as their evolution over time are acquired and analyzed by a one-dimensional convolutional neural network.Track of head movement and recognition of bad patterns that may lead to poor sleep are achieved,which provides a promising approach for sleep monitoring. 展开更多
关键词 multimodal sensing Proximity sensor Pressure sensor Temperature sensor Electrospun nanofibers
在线阅读 下载PDF
A multimodal contrastive learning framework for predicting P-glycoprotein substrates and inhibitors 被引量:1
17
作者 Yixue Zhang Jialu Wu +1 位作者 Yu Kang Tingjun Hou 《Journal of Pharmaceutical Analysis》 2025年第8期1810-1824,共15页
P-glycoprotein(P-gp)is a transmembrane protein widely involved in the absorption,distribution,metabolism,excretion,and toxicity(ADMET)of drugs within the human body.Accurate prediction of Pgp inhibitors and substrates... P-glycoprotein(P-gp)is a transmembrane protein widely involved in the absorption,distribution,metabolism,excretion,and toxicity(ADMET)of drugs within the human body.Accurate prediction of Pgp inhibitors and substrates is crucial for drug discovery and toxicological assessment.However,existing models rely on limited molecular information,leading to suboptimal model performance for predicting P-gp inhibitors and substrates.To overcome this challenge,we compiled an extensive dataset from public databases and literature,consisting of 5,943 P-gp inhibitors and 4,018 substrates,notable for their high quantity,quality,and structural uniqueness.In addition,we curated two external test sets to validate the model's generalization capability.Subsequently,we developed a multimodal graph contrastive learning(GCL)model for the prediction of P-gp inhibitors and substrates(MC-PGP).This framework integrates three types of features from Simplified Molecular Input Line Entry System(SMILES)sequences,molecular fingerprints,and molecular graphs using an attention-based fusion strategy to generate a unified molecular representation.Furthermore,we employed a GCL approach to enhance structural representations by aligning local and global structures.Extensive experimental results highlight the superior performance of MC-PGP,which achieves improvements in the area under the curve of receiver operating characteristic(AUC-ROC)of 9.82%and 10.62%on the external P-gp inhibitor and external P-gp substrate datasets,respectively,compared with 12 state-of-the-art methods.Furthermore,the interpretability analysis of all three molecular feature types offers comprehensive and complementary insights,demonstrating that MC-PGP effectively identifies key functional groups involved in P-gp interactions.These chemically intuitive insights provide valuable guidance for the design and optimization of drug candidates. 展开更多
关键词 P-GLYCOPROTEIN Deep learning multimodal fusion Graph contrastive learning
暂未订购
Text-Image Feature Fine-Grained Learning for Joint Multimodal Aspect-Based Sentiment Analysis
18
作者 Tianzhi Zhang Gang Zhou +4 位作者 Shuang Zhang Shunhang Li Yepeng Sun Qiankun Pi Shuo Liu 《Computers, Materials & Continua》 SCIE EI 2025年第1期279-305,共27页
Joint Multimodal Aspect-based Sentiment Analysis(JMASA)is a significant task in the research of multimodal fine-grained sentiment analysis,which combines two subtasks:Multimodal Aspect Term Extraction(MATE)and Multimo... Joint Multimodal Aspect-based Sentiment Analysis(JMASA)is a significant task in the research of multimodal fine-grained sentiment analysis,which combines two subtasks:Multimodal Aspect Term Extraction(MATE)and Multimodal Aspect-oriented Sentiment Classification(MASC).Currently,most existing models for JMASA only perform text and image feature encoding from a basic level,but often neglect the in-depth analysis of unimodal intrinsic features,which may lead to the low accuracy of aspect term extraction and the poor ability of sentiment prediction due to the insufficient learning of intra-modal features.Given this problem,we propose a Text-Image Feature Fine-grained Learning(TIFFL)model for JMASA.First,we construct an enhanced adjacency matrix of word dependencies and adopt graph convolutional network to learn the syntactic structure features for text,which addresses the context interference problem of identifying different aspect terms.Then,the adjective-noun pairs extracted from image are introduced to enable the semantic representation of visual features more intuitive,which addresses the ambiguous semantic extraction problem during image feature learning.Thereby,the model performance of aspect term extraction and sentiment polarity prediction can be further optimized and enhanced.Experiments on two Twitter benchmark datasets demonstrate that TIFFL achieves competitive results for JMASA,MATE and MASC,thus validating the effectiveness of our proposed methods. 展开更多
关键词 multimodal sentiment analysis aspect-based sentiment analysis feature fine-grained learning graph convolutional network adjective-noun pairs
在线阅读 下载PDF
GLAMSNet:A Gated-Linear Aspect-Aware Multimodal Sentiment Network with Alignment Supervision and External Knowledge Guidance
19
作者 Dan Wang Zhoubin Li +1 位作者 Yuze Xia Zhenhua Yu 《Computers, Materials & Continua》 2025年第12期5823-5845,共23页
Multimodal Aspect-Based Sentiment Analysis(MABSA)aims to detect sentiment polarity toward specific aspects by leveraging both textual and visual inputs.However,existing models suffer from weak aspectimage alignment,mo... Multimodal Aspect-Based Sentiment Analysis(MABSA)aims to detect sentiment polarity toward specific aspects by leveraging both textual and visual inputs.However,existing models suffer from weak aspectimage alignment,modality imbalance dominated by textual signals,and limited reasoning for implicit or ambiguous sentiments requiring external knowledge.To address these issues,we propose a unified framework named Gated-Linear Aspect-Aware Multimodal Sentiment Network(GLAMSNet).First of all,an input encoding module is employed to construct modality-specific and aspect-aware representations.Subsequently,we introduce an image–aspect correlation matching module to provide hierarchical supervision for visual-textual alignment.Building upon these components,we further design a Gated-Linear Aspect-Aware Fusion(GLAF)module to enhance aspect-aware representation learning by adaptively filtering irrelevant textual information and refining semantic alignment under aspect guidance.Additionally,an External Language Model Knowledge-Guided mechanism is integrated to incorporate sentimentaware prior knowledge from GPT-4o,enabling robust semantic reasoning especially under noisy or ambiguous inputs.Experimental studies conducted based on Twitter-15 and Twitter-17 datasets demonstrate that the proposed model outperforms most state-of-the-art methods,achieving 79.36%accuracy and 74.72%F1-score,and 74.31%accuracy and 72.01%F1-score,respectively. 展开更多
关键词 Sentiment analysis multimodal aspect-based sentiment analysis cross-modal alignment multimodal sentiment classification large language model
在线阅读 下载PDF
上一页 1 2 49 下一页 到第
使用帮助 返回顶部