We analyze the suitability of existing pre-trained transformer-based language models(PLMs)for abstractive text summarization on German technical healthcare texts.The study focuses on the multilingual capabilities of t...We analyze the suitability of existing pre-trained transformer-based language models(PLMs)for abstractive text summarization on German technical healthcare texts.The study focuses on the multilingual capabilities of these models and their ability to perform the task of abstractive text summarization in the healthcare field.The research hypothesis was that large language models could perform high-quality abstractive text summarization on German technical healthcare texts,even if the model is not specifically trained in that language.Through experiments,the research questions explore the performance of transformer language models in dealing with complex syntax constructs,the difference in performance between models trained in English and German,and the impact of translating the source text to English before conducting the summarization.We conducted an evaluation of four PLMs(GPT-3,a translation-based approach also utilizing GPT-3,a German language Model,and a domain-specific bio-medical model approach).The evaluation considered the informativeness using 3 types of metrics based on Recall-Oriented Understudy for Gisting Evaluation(ROUGE)and the quality of results which is manually evaluated considering 5 aspects.The results show that text summarization models could be used in the German healthcare domain and that domain-independent language models achieved the best results.The study proves that text summarization models can simplify the search for pre-existing German knowledge in various domains.展开更多
Recent research has shown a burgeoning interest in exploring sparse models for massively Multilingual Neural Machine Translation(MNMT).In this paper,we present a comprehensive survey of this emerging topic.Massively M...Recent research has shown a burgeoning interest in exploring sparse models for massively Multilingual Neural Machine Translation(MNMT).In this paper,we present a comprehensive survey of this emerging topic.Massively MNMT,when based on sparse models,offers significant improvements in parameter efficiency and reduces interference compared to its dense model counterparts.Various methods have been proposed to leverage sparse models for enhancing translation quality.However,the lack of a thorough survey has hindered the identification and further investigation of the most promising approaches.To address this gap,we provide an exhaustive examination of the current research landscape in massively MNMT,with a special emphasis on sparse models.Initially,we categorize the various sparse model-based approaches into distinct classifications.We then delve into each category in detail,elucidating their fundamental modeling principles,core issues,and the challenges they face.Wherever possible,we conduct comparative analyses to assess the strengths and weaknesses of different methodologies.Moreover,we explore potential future research avenues for MNMT based on sparse models.This survey serves as a valuable resource for both newcomers and established experts in the field of MNMT,particularly those interested in sparse model applications.展开更多
Intelligent sorting is an important prerequisite for the full quantitative consumption and harmless disposal of kitchen waste.The existing object detection method based on an ImageNet pre-trained model is an effective...Intelligent sorting is an important prerequisite for the full quantitative consumption and harmless disposal of kitchen waste.The existing object detection method based on an ImageNet pre-trained model is an effective way of sorting.Owing to significant domain gaps between natural images and kitchen waste images,it is difficult to reflect the characteristics of diverse scales and dense distribution in kitchen waste based on an ImageNet pre-trained model,leading to poor generalisation.In this article,the authors propose the first pre-trained model for kitchen waste sorting called KitWaSor,which combines both contrastive learning(CL)and masked image modelling(MIM)through self-supervised learning(SSL).First,to address the issue of diverse scales,the authors propose a mixed masking strategy by introducing an incomplete masking branch based on the original random masking branch.It prevents the complete loss of small-scale objects while avoiding excessive leakage of large-scale object pixels.Second,to address the issue of dense distribution,the authors introduce semantic consistency constraints on the basis of the mixed masking strategy.That is,object semantic reasoning is performed through semantic consistency constraints to compensate for the lack of contextual information.To train KitWaSor,the authors construct the first million-level kitchen waste dataset across seasonal and regional distributions,named KWD-Million.Extensive experiments show that KitWaSor achieves state-of-the-art(SOTA)performance on the two most relevant downstream tasks for kitchen waste sorting(i.e.image classification and object detection),demonstrating the effectiveness of the proposed KitWaSor.展开更多
Predicting cross-immunity between viral strains is vital for public health surveillance and vaccine development.Traditional neural network methods,such as BiLSTM,could be ineffective due to the lack of lab data for mo...Predicting cross-immunity between viral strains is vital for public health surveillance and vaccine development.Traditional neural network methods,such as BiLSTM,could be ineffective due to the lack of lab data for model training and the overshadowing of crucial features within sequence concatenation.The current work proposes a less data-consuming model incorporating a pre-trained gene sequence model and a mutual information inference operator.Our methodology utilizes gene alignment and deduplication algorithms to preprocess gene sequences,enhancing the model’s capacity to discern and focus on distinctions among input gene pairs.The model,i.e.,DNA Pretrained Cross-Immunity Protection Inference model(DPCIPI),outperforms state-of-theart(SOTA)models in predicting hemagglutination inhibition titer from influenza viral gene sequences only.Improvement in binary cross-immunity prediction is 1.58%in F1,2.34%in precision,1.57%in recall,and 1.57%in Accuracy.For multilevel cross-immunity improvements,the improvement is 2.12%in F1,3.50%in precision,2.19%in recall,and 2.19%in Accuracy.Our study showcases the potential of pre-trained gene models to improve predictions of antigenic variation and cross-immunity.With expanding gene data and advancements in pre-trained models,this approach promises significant impacts on vaccine development and public health.展开更多
Sentence classification is the process of categorizing a sentence based on the context of the sentence.Sentence categorization requires more semantic highlights than other tasks,such as dependence parsing,which requir...Sentence classification is the process of categorizing a sentence based on the context of the sentence.Sentence categorization requires more semantic highlights than other tasks,such as dependence parsing,which requires more syntactic elements.Most existing strategies focus on the general semantics of a conversation without involving the context of the sentence,recognizing the progress and comparing impacts.An ensemble pre-trained language model was taken up here to classify the conversation sentences from the conversation corpus.The conversational sentences are classified into four categories:information,question,directive,and commission.These classification label sequences are for analyzing the conversation progress and predicting the pecking order of the conversation.Ensemble of Bidirectional Encoder for Representation of Transformer(BERT),Robustly Optimized BERT pretraining Approach(RoBERTa),Generative Pre-Trained Transformer(GPT),DistilBERT and Generalized Autoregressive Pretraining for Language Understanding(XLNet)models are trained on conversation corpus with hyperparameters.Hyperparameter tuning approach is carried out for better performance on sentence classification.This Ensemble of Pre-trained Language Models with a Hyperparameter Tuning(EPLM-HT)system is trained on an annotated conversation dataset.The proposed approach outperformed compared to the base BERT,GPT,DistilBERT and XLNet transformer models.The proposed ensemble model with the fine-tuned parameters achieved an F1_score of 0.88.展开更多
We present an approach to classify medical text at a sentence level automatically.Given the inherent complexity of medical text classification,we employ adapters based on pre-trained language models to extract informa...We present an approach to classify medical text at a sentence level automatically.Given the inherent complexity of medical text classification,we employ adapters based on pre-trained language models to extract information from medical text,facilitating more accurate classification while minimizing the number of trainable parameters.Extensive experiments conducted on various datasets demonstrate the effectiveness of our approach.展开更多
The Coronavirus Disease 2019(COVID-19)is wreaking havoc around the world,bring out that the enormous pressure on national health and medical staff systems.One of the most effective and critical steps in the fight agai...The Coronavirus Disease 2019(COVID-19)is wreaking havoc around the world,bring out that the enormous pressure on national health and medical staff systems.One of the most effective and critical steps in the fight against COVID-19,is to examine the patient’s lungs based on the Chest X-ray and CT generated by radiation imaging.In this paper,five keras-related deep learning models:ResNet50,InceptionResNetV2,Xception,transfer learning and pre-trained VGGNet16 is applied to formulate an classification-detection approaches of COVID-19.Two benchmark methods SVM(Support Vector Machine),CNN(Conventional Neural Networks)are provided to compare with the classification-detection approaches based on the performance indicators,i.e.,precision,recall,F1 scores,confusion matrix,classification accuracy and three types of AUC(Area Under Curve).The highest classification accuracy derived by classification-detection based on 5857 Chest X-rays and 767 Chest CTs are respectively 84%and 75%,which shows that the keras-related deep learning approaches facilitate accurate and effective COVID-19-assisted detection.展开更多
As important geological data,a geological report contains rich expert and geological knowledge,but the challenge facing current research into geological knowledge extraction and mining is how to render accurate unders...As important geological data,a geological report contains rich expert and geological knowledge,but the challenge facing current research into geological knowledge extraction and mining is how to render accurate understanding of geological reports guided by domain knowledge.While generic named entity recognition models/tools can be utilized for the processing of geoscience reports/documents,their effectiveness is hampered by a dearth of domain-specific knowledge,which in turn leads to a pronounced decline in recognition accuracy.This study summarizes six types of typical geological entities,with reference to the ontological system of geological domains and builds a high quality corpus for the task of geological named entity recognition(GNER).In addition,Geo Wo BERT-adv BGP(Geological Word-base BERTadversarial training Bi-directional Long Short-Term Memory Global Pointer)is proposed to address the issues of ambiguity,diversity and nested entities for the geological entities.The model first uses the fine-tuned word granularitybased pre-training model Geo Wo BERT(Geological Word-base BERT)and combines the text features that are extracted using the Bi LSTM(Bi-directional Long Short-Term Memory),followed by an adversarial training algorithm to improve the robustness of the model and enhance its resistance to interference,the decoding finally being performed using a global association pointer algorithm.The experimental results show that the proposed model for the constructed dataset achieves high performance and is capable of mining the rich geological information.展开更多
With the construction of new power systems,the power grid has become extremely large,with an increasing proportion of new energy and AC/DC hybrid connections.The dynamic characteristics and fault patterns of the power...With the construction of new power systems,the power grid has become extremely large,with an increasing proportion of new energy and AC/DC hybrid connections.The dynamic characteristics and fault patterns of the power grid are complex;additionally,power grid control is difficult,operation risks are high,and the task of fault handling is arduous.Traditional power-grid fault handling relies primarily on human experience.The difference in and lack of knowledge reserve of control personnel restrict the accuracy and timeliness of fault handling.Therefore,this mode of operation is no longer suitable for the requirements of new systems.Based on the multi-source heterogeneous data of power grid dispatch,this paper proposes a joint entity–relationship extraction method for power-grid dispatch fault processing based on a pre-trained model,constructs a knowledge graph of power-grid dispatch fault processing and designs,and develops a fault-processing auxiliary decision-making system based on the knowledge graph.It was applied to study a provincial dispatch control center,and it effectively improved the accident processing ability and intelligent level of accident management and control of the power grid.展开更多
Automatic speech recognition (ASR) is vital for very low-resource languages for mitigating the extinction trouble. Chaha is one of the low-resource languages, which suffers from the problem of resource insufficiency a...Automatic speech recognition (ASR) is vital for very low-resource languages for mitigating the extinction trouble. Chaha is one of the low-resource languages, which suffers from the problem of resource insufficiency and some of its phonological, morphological, and orthographic features challenge the development and initiatives in the area of ASR. By considering these challenges, this study is the first endeavor, which analyzed the characteristics of the language, prepared speech corpus, and developed different ASR systems. A small 3-hour read speech corpus was prepared and transcribed. Different basic and rounded phone unit-based speech recognizers were explored using multilingual deep neural network (DNN) modeling methods. The experimental results demonstrated that all the basic phone and rounded phone unit-based multilingual models outperformed the corresponding unilingual models with the relative performance improvements of 5.47% to 19.87% and 5.74% to 16.77%, respectively. The rounded phone unit-based multilingual models outperformed the equivalent basic phone unit-based models with relative performance improvements of 0.95% to 4.98%. Overall, we discovered that multilingual DNN modeling methods are profoundly effective to develop Chaha speech recognizers. Both the basic and rounded phone acoustic units are convenient to build Chaha ASR system. However, the rounded phone unit-based models are superior in performance and faster in recognition speed over the corresponding basic phone unit-based models. Hence, the rounded phone units are the most suitable acoustic units to develop Chaha ASR systems.展开更多
Multimodal sentiment analysis is an essential area of research in artificial intelligence that combines multiple modes,such as text and image,to accurately assess sentiment.However,conventional approaches that rely on...Multimodal sentiment analysis is an essential area of research in artificial intelligence that combines multiple modes,such as text and image,to accurately assess sentiment.However,conventional approaches that rely on unimodal pre-trained models for feature extraction from each modality often overlook the intrinsic connections of semantic information between modalities.This limitation is attributed to their training on unimodal data,and necessitates the use of complex fusion mechanisms for sentiment analysis.In this study,we present a novel approach that combines a vision-language pre-trained model with a proposed multimodal contrastive learning method.Our approach harnesses the power of transfer learning by utilizing a vision-language pre-trained model to extract both visual and textual representations in a unified framework.We employ a Transformer architecture to integrate these representations,thereby enabling the capture of rich semantic infor-mation in image-text pairs.To further enhance the representation learning of these pairs,we introduce our proposed multimodal contrastive learning method,which leads to improved performance in sentiment analysis tasks.Our approach is evaluated through extensive experiments on two publicly accessible datasets,where we demonstrate its effectiveness.We achieve a significant improvement in sentiment analysis accuracy,indicating the supe-riority of our approach over existing techniques.These results highlight the potential of multimodal sentiment analysis and underscore the importance of considering the intrinsic semantic connections between modalities for accurate sentiment assessment.展开更多
To improve the accuracy and generalization of well logging curve reconstruction,this paper proposes an artificial intelligence large language model“Gaia”and conducts model evaluation experiments.By fine-tuning the p...To improve the accuracy and generalization of well logging curve reconstruction,this paper proposes an artificial intelligence large language model“Gaia”and conducts model evaluation experiments.By fine-tuning the pre-trained large language model,the Gaia significantly improved its ability in extracting sequential patterns and spatial features from well-log curves.Leveraging the adapter method for fine-tuning,this model required training only about 1/70 of its original parameters,greatly improving training efficiency.Comparative experiments,ablation experiments,and generalization experiments were designed and conducted using well-log data from 250 wells.In the comparative experiment,the Gaia model was benchmarked against cutting-edge small deep learning models and conventional large language models,demonstrating that the Gaia model reduced the mean absolute error(MAE)by at least 20%.In the ablation experiments,the synergistic effect of the Gaia model's multiple components was validated,with its MAE being at least 30%lower than that of single-component models.In the generalization experiments,the superior performance of the Gaia model in blind-well predictions was further confirmed.Compared to traditional models,the Gaia model is significantly superior in accuracy and generalization for logging curve reconstruction,fully showcasing the potential of large language models in the field of well-logging.This provides a new approach for future intelligent logging data processing.展开更多
In task-oriented dialogue systems, intent, emotion, and actions are crucial elements of user activity. Analyzing the relationships among these elements to control and manage task-oriented dialogue systems is a challen...In task-oriented dialogue systems, intent, emotion, and actions are crucial elements of user activity. Analyzing the relationships among these elements to control and manage task-oriented dialogue systems is a challenging task. However, previous work has primarily focused on the independent recognition of user intent and emotion, making it difficult to simultaneously track both aspects in the dialogue tracking module and to effectively utilize user emotions in subsequent dialogue strategies. We propose a Multi-Head Encoder Shared Model (MESM) that dynamically integrates features from emotion and intent encoders through a feature fusioner. Addressing the scarcity of datasets containing both emotion and intent labels, we designed a multi-dataset learning approach enabling the model to generate dialogue summaries encompassing both user intent and emotion. Experiments conducted on the MultiWoZ and MELD datasets demonstrate that our model effectively captures user intent and emotion, achieving extremely competitive results in dialogue state tracking tasks.展开更多
Smart contracts,which automatically execute on decentralized platforms like Ethereum,require high security and low gas consumption.As a result,developers have a strong demand for semantic code search tools that utiliz...Smart contracts,which automatically execute on decentralized platforms like Ethereum,require high security and low gas consumption.As a result,developers have a strong demand for semantic code search tools that utilize natural language queries to efficiently search for existing code snippets.However,existing code search models face a semantic gap between code and queries,which requires a large amount of training data.In this paper,we propose a fine-tuning approach to bridge the semantic gap in code search and improve the search accuracy.We collect 80723 different pairs of<comment,code snippet>from Etherscan.io and use these pairs to fine-tune,validate,and test the pre-trained CodeBERT model.Using the fine-tuned model,we develop a code search engine specifically for smart contracts.We evaluate the Recall@k and Mean Reciprocal Rank(MRR)of the fine-tuned CodeBERT model using different proportions of the finetuned data.It is encouraging that even a small amount of fine-tuned data can produce satisfactory results.In addition,we perform a comparative analysis between the fine-tuned CodeBERT model and the two state-of-the-art models.The experimental results show that the finetuned CodeBERT model has superior performance in terms of Recall@k and MRR.These findings highlight the effectiveness of our finetuning approach and its potential to significantly improve the code search accuracy.展开更多
The pursuit of optimal neural network architectures is foundational to the progression of Neural Architecture Search (NAS). However, the existing NAS methods suffer from the following problem using traditional search ...The pursuit of optimal neural network architectures is foundational to the progression of Neural Architecture Search (NAS). However, the existing NAS methods suffer from the following problem using traditional search strategies, i.e., when facing a large and complex search space, it is difficult to mine more effective architectures within a reasonable time, resulting in inferior search results. This research introduces the Generative Pre-trained Transformer NAS (GPT-NAS), an innovative approach designed to overcome the limitations which are inherent in traditional NAS strategies. This approach improves search efficiency and obtains better architectures by integrating GPT model into the search process. Specifically, we design a reconstruction strategy that utilizes the trained GPT to reorganize the architectures obtained from the search. In addition, to equip the GPT model with the design capabilities of neural architecture, we propose the use of the GPT model for training on a neural architecture dataset. For each architecture, the structural information of its previous layers is utilized to predict the next layer of structure, iteratively traversing the entire architecture. In this way, the GPT model can efficiently learn the key features required for neural architectures. Extensive experimental validation shows that our GPT-NAS approach beats both manually constructed neural architectures and automatically generated architectures by NAS. In addition, we validate the superiority of introducing the GPT model in several ways, and find that the accuracy of the neural architecture on the image dataset obtained from the search after introducing the GPT model is improved by up to about 9%.展开更多
This article elucidates the concept of large model technology,summarizes the research status of large model technology both domestically and internationally,provides an overview of the application status of large mode...This article elucidates the concept of large model technology,summarizes the research status of large model technology both domestically and internationally,provides an overview of the application status of large models in vertical industries,outlines the challenges and issues confronted in applying large models in the oil and gas sector,and offers prospects for the application of large models in the oil and gas industry.The existing large models can be briefly divided into three categories:large language models,visual large models,and multimodal large models.The application of large models in the oil and gas industry is still in its infancy.Based on open-source large language models,some oil and gas enterprises have released large language model products using methods like fine-tuning and retrieval augmented generation.Scholars have attempted to develop scenario-specific models for oil and gas operations by using visual/multimodal foundation models.A few researchers have constructed pre-trained foundation models for seismic data processing and interpretation,as well as core analysis.The application of large models in the oil and gas industry faces challenges such as current data quantity and quality being difficult to support the training of large models,high research and development costs,and poor algorithm autonomy and control.The application of large models should be guided by the needs of oil and gas business,taking the application of large models as an opportunity to improve data lifecycle management,enhance data governance capabilities,promote the construction of computing power,strengthen the construction of“artificial intelligence+energy”composite teams,and boost the autonomy and control of large model technology.展开更多
This letter evaluates the article by Gravina et al on ChatGPT’s potential in providing medical information for inflammatory bowel disease patients.While promising,it highlights the need for advanced techniques like r...This letter evaluates the article by Gravina et al on ChatGPT’s potential in providing medical information for inflammatory bowel disease patients.While promising,it highlights the need for advanced techniques like reasoning+action and retrieval-augmented generation to improve accuracy and reliability.Emphasizing that simple question and answer testing is insufficient,it calls for more nuanced evaluation methods to truly gauge large language models’capabilities in clinical applications.展开更多
The accurate prediction of photovoltaic(PV)power generation is an important basis for hybrid grid scheduling.With the expansion of the scale of PV power plants and the popularization of distributed PV,this study propo...The accurate prediction of photovoltaic(PV)power generation is an important basis for hybrid grid scheduling.With the expansion of the scale of PV power plants and the popularization of distributed PV,this study proposes a multilayer PV power generation prediction model based on transfer learning to solve the problems of the lack of data on new PV bases and the low accuracy of PV power generation prediction.The proposed model,called DRAM,concatenates a dilated convolutional neural network(DCNN)module with a bidirectional long short-term memory(BiLSTM)module,and integrates an attention mechanism.First,the processed data are input into the DCNN layer,and the dilation convolution mechanism captures the spatial features of the wide sensory field of the input data.Subsequently,the temporal characteristics between the features are extracted in the BiLSTM layer.Finally,an attention mechanism is used to strengthen the key features by assigning weights to efficiently construct the relationship between the features and output variables.In addition,the power prediction accuracy of the new PV sites was improved by transferring the pre-trained model parameters to the new PV site prediction model.In this study,the pre-training of models using data from different source domains and the correlations between these pre-trained models and the target domain were analyzed.展开更多
A large language model(LLM)is constructed to address the sophisticated demands of data retrieval and analysis,detailed well profiling,computation of key technical indicators,and the solutions to complex problems in re...A large language model(LLM)is constructed to address the sophisticated demands of data retrieval and analysis,detailed well profiling,computation of key technical indicators,and the solutions to complex problems in reservoir performance analysis(RPA).The LLM is constructed for RPA scenarios with incremental pre-training,fine-tuning,and functional subsystems coupling.Functional subsystem and efficient coupling methods are proposed based on named entity recognition(NER),tool invocation,and Text-to-SQL construction,all aimed at resolving pivotal challenges in developing the specific application of LLMs for RDA.This study conducted a detailed accuracy test on feature extraction models,tool classification models,data retrieval models and analysis recommendation models.The results indicate that these models have demonstrated good performance in various key aspects of reservoir dynamic analysis.The research takes some injection and production well groups in the PK3 Block of the Daqing Oilfield as an example for testing.Testing results show that our model has significant potential and practical value in assisting reservoir engineers with RDA.The research results provide a powerful support to the application of LLM in reservoir performance analysis.展开更多
文摘We analyze the suitability of existing pre-trained transformer-based language models(PLMs)for abstractive text summarization on German technical healthcare texts.The study focuses on the multilingual capabilities of these models and their ability to perform the task of abstractive text summarization in the healthcare field.The research hypothesis was that large language models could perform high-quality abstractive text summarization on German technical healthcare texts,even if the model is not specifically trained in that language.Through experiments,the research questions explore the performance of transformer language models in dealing with complex syntax constructs,the difference in performance between models trained in English and German,and the impact of translating the source text to English before conducting the summarization.We conducted an evaluation of four PLMs(GPT-3,a translation-based approach also utilizing GPT-3,a German language Model,and a domain-specific bio-medical model approach).The evaluation considered the informativeness using 3 types of metrics based on Recall-Oriented Understudy for Gisting Evaluation(ROUGE)and the quality of results which is manually evaluated considering 5 aspects.The results show that text summarization models could be used in the German healthcare domain and that domain-independent language models achieved the best results.The study proves that text summarization models can simplify the search for pre-existing German knowledge in various domains.
基金supported by the Key Research and Development Program of Yunnan Province(No.202203AA080004)the National Natural Science Foundation of China Youth Found(No.62306210).
文摘Recent research has shown a burgeoning interest in exploring sparse models for massively Multilingual Neural Machine Translation(MNMT).In this paper,we present a comprehensive survey of this emerging topic.Massively MNMT,when based on sparse models,offers significant improvements in parameter efficiency and reduces interference compared to its dense model counterparts.Various methods have been proposed to leverage sparse models for enhancing translation quality.However,the lack of a thorough survey has hindered the identification and further investigation of the most promising approaches.To address this gap,we provide an exhaustive examination of the current research landscape in massively MNMT,with a special emphasis on sparse models.Initially,we categorize the various sparse model-based approaches into distinct classifications.We then delve into each category in detail,elucidating their fundamental modeling principles,core issues,and the challenges they face.Wherever possible,we conduct comparative analyses to assess the strengths and weaknesses of different methodologies.Moreover,we explore potential future research avenues for MNMT based on sparse models.This survey serves as a valuable resource for both newcomers and established experts in the field of MNMT,particularly those interested in sparse model applications.
基金National Key Research and Development Program of China,Grant/Award Number:2021YFC1910402。
文摘Intelligent sorting is an important prerequisite for the full quantitative consumption and harmless disposal of kitchen waste.The existing object detection method based on an ImageNet pre-trained model is an effective way of sorting.Owing to significant domain gaps between natural images and kitchen waste images,it is difficult to reflect the characteristics of diverse scales and dense distribution in kitchen waste based on an ImageNet pre-trained model,leading to poor generalisation.In this article,the authors propose the first pre-trained model for kitchen waste sorting called KitWaSor,which combines both contrastive learning(CL)and masked image modelling(MIM)through self-supervised learning(SSL).First,to address the issue of diverse scales,the authors propose a mixed masking strategy by introducing an incomplete masking branch based on the original random masking branch.It prevents the complete loss of small-scale objects while avoiding excessive leakage of large-scale object pixels.Second,to address the issue of dense distribution,the authors introduce semantic consistency constraints on the basis of the mixed masking strategy.That is,object semantic reasoning is performed through semantic consistency constraints to compensate for the lack of contextual information.To train KitWaSor,the authors construct the first million-level kitchen waste dataset across seasonal and regional distributions,named KWD-Million.Extensive experiments show that KitWaSor achieves state-of-the-art(SOTA)performance on the two most relevant downstream tasks for kitchen waste sorting(i.e.image classification and object detection),demonstrating the effectiveness of the proposed KitWaSor.
基金supported by the Bill & Melinda Gates Foundation and the Minderoo Foundation
文摘Predicting cross-immunity between viral strains is vital for public health surveillance and vaccine development.Traditional neural network methods,such as BiLSTM,could be ineffective due to the lack of lab data for model training and the overshadowing of crucial features within sequence concatenation.The current work proposes a less data-consuming model incorporating a pre-trained gene sequence model and a mutual information inference operator.Our methodology utilizes gene alignment and deduplication algorithms to preprocess gene sequences,enhancing the model’s capacity to discern and focus on distinctions among input gene pairs.The model,i.e.,DNA Pretrained Cross-Immunity Protection Inference model(DPCIPI),outperforms state-of-theart(SOTA)models in predicting hemagglutination inhibition titer from influenza viral gene sequences only.Improvement in binary cross-immunity prediction is 1.58%in F1,2.34%in precision,1.57%in recall,and 1.57%in Accuracy.For multilevel cross-immunity improvements,the improvement is 2.12%in F1,3.50%in precision,2.19%in recall,and 2.19%in Accuracy.Our study showcases the potential of pre-trained gene models to improve predictions of antigenic variation and cross-immunity.With expanding gene data and advancements in pre-trained models,this approach promises significant impacts on vaccine development and public health.
文摘Sentence classification is the process of categorizing a sentence based on the context of the sentence.Sentence categorization requires more semantic highlights than other tasks,such as dependence parsing,which requires more syntactic elements.Most existing strategies focus on the general semantics of a conversation without involving the context of the sentence,recognizing the progress and comparing impacts.An ensemble pre-trained language model was taken up here to classify the conversation sentences from the conversation corpus.The conversational sentences are classified into four categories:information,question,directive,and commission.These classification label sequences are for analyzing the conversation progress and predicting the pecking order of the conversation.Ensemble of Bidirectional Encoder for Representation of Transformer(BERT),Robustly Optimized BERT pretraining Approach(RoBERTa),Generative Pre-Trained Transformer(GPT),DistilBERT and Generalized Autoregressive Pretraining for Language Understanding(XLNet)models are trained on conversation corpus with hyperparameters.Hyperparameter tuning approach is carried out for better performance on sentence classification.This Ensemble of Pre-trained Language Models with a Hyperparameter Tuning(EPLM-HT)system is trained on an annotated conversation dataset.The proposed approach outperformed compared to the base BERT,GPT,DistilBERT and XLNet transformer models.The proposed ensemble model with the fine-tuned parameters achieved an F1_score of 0.88.
文摘We present an approach to classify medical text at a sentence level automatically.Given the inherent complexity of medical text classification,we employ adapters based on pre-trained language models to extract information from medical text,facilitating more accurate classification while minimizing the number of trainable parameters.Extensive experiments conducted on various datasets demonstrate the effectiveness of our approach.
基金This project is supported by National Natural Science Foundation of China(NSFC)(Nos.61902158,61806087)Graduate student innovation program for academic degrees in general university in Jiangsu Province(No.KYZZ16-0337).
文摘The Coronavirus Disease 2019(COVID-19)is wreaking havoc around the world,bring out that the enormous pressure on national health and medical staff systems.One of the most effective and critical steps in the fight against COVID-19,is to examine the patient’s lungs based on the Chest X-ray and CT generated by radiation imaging.In this paper,five keras-related deep learning models:ResNet50,InceptionResNetV2,Xception,transfer learning and pre-trained VGGNet16 is applied to formulate an classification-detection approaches of COVID-19.Two benchmark methods SVM(Support Vector Machine),CNN(Conventional Neural Networks)are provided to compare with the classification-detection approaches based on the performance indicators,i.e.,precision,recall,F1 scores,confusion matrix,classification accuracy and three types of AUC(Area Under Curve).The highest classification accuracy derived by classification-detection based on 5857 Chest X-rays and 767 Chest CTs are respectively 84%and 75%,which shows that the keras-related deep learning approaches facilitate accurate and effective COVID-19-assisted detection.
基金financially supported by the Natural Science Foundation of China(Grant No.42301492)the National Key R&D Program of China(Grant Nos.2022YFF0711600,2022YFF0801201,2022YFF0801200)+3 种基金the Major Special Project of Xinjiang(Grant No.2022A03009-3)the Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation,Ministry of Natural Resources(Grant No.KF-2022-07014)the Opening Fund of the Key Laboratory of the Geological Survey and Evaluation of the Ministry of Education(Grant No.GLAB 2023ZR01)the Fundamental Research Funds for the Central Universities。
文摘As important geological data,a geological report contains rich expert and geological knowledge,but the challenge facing current research into geological knowledge extraction and mining is how to render accurate understanding of geological reports guided by domain knowledge.While generic named entity recognition models/tools can be utilized for the processing of geoscience reports/documents,their effectiveness is hampered by a dearth of domain-specific knowledge,which in turn leads to a pronounced decline in recognition accuracy.This study summarizes six types of typical geological entities,with reference to the ontological system of geological domains and builds a high quality corpus for the task of geological named entity recognition(GNER).In addition,Geo Wo BERT-adv BGP(Geological Word-base BERTadversarial training Bi-directional Long Short-Term Memory Global Pointer)is proposed to address the issues of ambiguity,diversity and nested entities for the geological entities.The model first uses the fine-tuned word granularitybased pre-training model Geo Wo BERT(Geological Word-base BERT)and combines the text features that are extracted using the Bi LSTM(Bi-directional Long Short-Term Memory),followed by an adversarial training algorithm to improve the robustness of the model and enhance its resistance to interference,the decoding finally being performed using a global association pointer algorithm.The experimental results show that the proposed model for the constructed dataset achieves high performance and is capable of mining the rich geological information.
基金supported by the Science and Technology Project of the State Grid Corporation“Research on Key Technologies of Power Artificial Intelligence Open Platform”(5700-202155260A-0-0-00).
文摘With the construction of new power systems,the power grid has become extremely large,with an increasing proportion of new energy and AC/DC hybrid connections.The dynamic characteristics and fault patterns of the power grid are complex;additionally,power grid control is difficult,operation risks are high,and the task of fault handling is arduous.Traditional power-grid fault handling relies primarily on human experience.The difference in and lack of knowledge reserve of control personnel restrict the accuracy and timeliness of fault handling.Therefore,this mode of operation is no longer suitable for the requirements of new systems.Based on the multi-source heterogeneous data of power grid dispatch,this paper proposes a joint entity–relationship extraction method for power-grid dispatch fault processing based on a pre-trained model,constructs a knowledge graph of power-grid dispatch fault processing and designs,and develops a fault-processing auxiliary decision-making system based on the knowledge graph.It was applied to study a provincial dispatch control center,and it effectively improved the accident processing ability and intelligent level of accident management and control of the power grid.
文摘Automatic speech recognition (ASR) is vital for very low-resource languages for mitigating the extinction trouble. Chaha is one of the low-resource languages, which suffers from the problem of resource insufficiency and some of its phonological, morphological, and orthographic features challenge the development and initiatives in the area of ASR. By considering these challenges, this study is the first endeavor, which analyzed the characteristics of the language, prepared speech corpus, and developed different ASR systems. A small 3-hour read speech corpus was prepared and transcribed. Different basic and rounded phone unit-based speech recognizers were explored using multilingual deep neural network (DNN) modeling methods. The experimental results demonstrated that all the basic phone and rounded phone unit-based multilingual models outperformed the corresponding unilingual models with the relative performance improvements of 5.47% to 19.87% and 5.74% to 16.77%, respectively. The rounded phone unit-based multilingual models outperformed the equivalent basic phone unit-based models with relative performance improvements of 0.95% to 4.98%. Overall, we discovered that multilingual DNN modeling methods are profoundly effective to develop Chaha speech recognizers. Both the basic and rounded phone acoustic units are convenient to build Chaha ASR system. However, the rounded phone unit-based models are superior in performance and faster in recognition speed over the corresponding basic phone unit-based models. Hence, the rounded phone units are the most suitable acoustic units to develop Chaha ASR systems.
基金supported by Science and Technology Research Project of Jiangxi Education Department.Project Grant No.GJJ2203306.
文摘Multimodal sentiment analysis is an essential area of research in artificial intelligence that combines multiple modes,such as text and image,to accurately assess sentiment.However,conventional approaches that rely on unimodal pre-trained models for feature extraction from each modality often overlook the intrinsic connections of semantic information between modalities.This limitation is attributed to their training on unimodal data,and necessitates the use of complex fusion mechanisms for sentiment analysis.In this study,we present a novel approach that combines a vision-language pre-trained model with a proposed multimodal contrastive learning method.Our approach harnesses the power of transfer learning by utilizing a vision-language pre-trained model to extract both visual and textual representations in a unified framework.We employ a Transformer architecture to integrate these representations,thereby enabling the capture of rich semantic infor-mation in image-text pairs.To further enhance the representation learning of these pairs,we introduce our proposed multimodal contrastive learning method,which leads to improved performance in sentiment analysis tasks.Our approach is evaluated through extensive experiments on two publicly accessible datasets,where we demonstrate its effectiveness.We achieve a significant improvement in sentiment analysis accuracy,indicating the supe-riority of our approach over existing techniques.These results highlight the potential of multimodal sentiment analysis and underscore the importance of considering the intrinsic semantic connections between modalities for accurate sentiment assessment.
基金Supported by the National Natural Science Foundation of China(52288101)National Key R&D Program of China(2024YFF1500600)。
文摘To improve the accuracy and generalization of well logging curve reconstruction,this paper proposes an artificial intelligence large language model“Gaia”and conducts model evaluation experiments.By fine-tuning the pre-trained large language model,the Gaia significantly improved its ability in extracting sequential patterns and spatial features from well-log curves.Leveraging the adapter method for fine-tuning,this model required training only about 1/70 of its original parameters,greatly improving training efficiency.Comparative experiments,ablation experiments,and generalization experiments were designed and conducted using well-log data from 250 wells.In the comparative experiment,the Gaia model was benchmarked against cutting-edge small deep learning models and conventional large language models,demonstrating that the Gaia model reduced the mean absolute error(MAE)by at least 20%.In the ablation experiments,the synergistic effect of the Gaia model's multiple components was validated,with its MAE being at least 30%lower than that of single-component models.In the generalization experiments,the superior performance of the Gaia model in blind-well predictions was further confirmed.Compared to traditional models,the Gaia model is significantly superior in accuracy and generalization for logging curve reconstruction,fully showcasing the potential of large language models in the field of well-logging.This provides a new approach for future intelligent logging data processing.
基金funded by the Science and Technology Foundation of Chongqing EducationCommission(GrantNo.KJQN202301153)the ScientificResearch Foundation of Chongqing University of Technology(Grant No.2021ZDZ025)the Postgraduate Innovation Foundation of Chongqing University of Technology(Grant No.gzlcx20243524).
文摘In task-oriented dialogue systems, intent, emotion, and actions are crucial elements of user activity. Analyzing the relationships among these elements to control and manage task-oriented dialogue systems is a challenging task. However, previous work has primarily focused on the independent recognition of user intent and emotion, making it difficult to simultaneously track both aspects in the dialogue tracking module and to effectively utilize user emotions in subsequent dialogue strategies. We propose a Multi-Head Encoder Shared Model (MESM) that dynamically integrates features from emotion and intent encoders through a feature fusioner. Addressing the scarcity of datasets containing both emotion and intent labels, we designed a multi-dataset learning approach enabling the model to generate dialogue summaries encompassing both user intent and emotion. Experiments conducted on the MultiWoZ and MELD datasets demonstrate that our model effectively captures user intent and emotion, achieving extremely competitive results in dialogue state tracking tasks.
基金Supported by Jiangxi Higher Education and Teaching Reform Project(JXJG-20-24-2)Science and Technology Project of Jiangxi Education Department(GJJ212023)Jiangxi University of Technology Education and Teaching Reform Project(JY2104)
文摘Smart contracts,which automatically execute on decentralized platforms like Ethereum,require high security and low gas consumption.As a result,developers have a strong demand for semantic code search tools that utilize natural language queries to efficiently search for existing code snippets.However,existing code search models face a semantic gap between code and queries,which requires a large amount of training data.In this paper,we propose a fine-tuning approach to bridge the semantic gap in code search and improve the search accuracy.We collect 80723 different pairs of<comment,code snippet>from Etherscan.io and use these pairs to fine-tune,validate,and test the pre-trained CodeBERT model.Using the fine-tuned model,we develop a code search engine specifically for smart contracts.We evaluate the Recall@k and Mean Reciprocal Rank(MRR)of the fine-tuned CodeBERT model using different proportions of the finetuned data.It is encouraging that even a small amount of fine-tuned data can produce satisfactory results.In addition,we perform a comparative analysis between the fine-tuned CodeBERT model and the two state-of-the-art models.The experimental results show that the finetuned CodeBERT model has superior performance in terms of Recall@k and MRR.These findings highlight the effectiveness of our finetuning approach and its potential to significantly improve the code search accuracy.
基金supported by the National Nature Science Foundation of China(No.62106161)the Fundamental Research Funds for the Central Universities(No.1082204112364)+4 种基金the Sichuan University Luzhou Municipal Government Strategic Cooperation Project(No.2022CDLZ-8)the Key R&D Program of Sichuan Province(Nos.2022YFN0017 and 2023YFG0019)the Natural Science Foundation of Sichuan(No.2023NSFSC0474)the Tianfiu Yongxing Laboratory Organized Research Project Funding(No.2023CXXM14)the Digital Media Art,Key Laboratory of Sichuan Province,Sichuan Conservatory of Music(No.22DMAKL04).
文摘The pursuit of optimal neural network architectures is foundational to the progression of Neural Architecture Search (NAS). However, the existing NAS methods suffer from the following problem using traditional search strategies, i.e., when facing a large and complex search space, it is difficult to mine more effective architectures within a reasonable time, resulting in inferior search results. This research introduces the Generative Pre-trained Transformer NAS (GPT-NAS), an innovative approach designed to overcome the limitations which are inherent in traditional NAS strategies. This approach improves search efficiency and obtains better architectures by integrating GPT model into the search process. Specifically, we design a reconstruction strategy that utilizes the trained GPT to reorganize the architectures obtained from the search. In addition, to equip the GPT model with the design capabilities of neural architecture, we propose the use of the GPT model for training on a neural architecture dataset. For each architecture, the structural information of its previous layers is utilized to predict the next layer of structure, iteratively traversing the entire architecture. In this way, the GPT model can efficiently learn the key features required for neural architectures. Extensive experimental validation shows that our GPT-NAS approach beats both manually constructed neural architectures and automatically generated architectures by NAS. In addition, we validate the superiority of introducing the GPT model in several ways, and find that the accuracy of the neural architecture on the image dataset obtained from the search after introducing the GPT model is improved by up to about 9%.
基金Supported by the National Natural Science Foundation of China(72088101,42372175)PetroChina Science and Technology Innovation Fund Program(2021DQ02-0904)。
文摘This article elucidates the concept of large model technology,summarizes the research status of large model technology both domestically and internationally,provides an overview of the application status of large models in vertical industries,outlines the challenges and issues confronted in applying large models in the oil and gas sector,and offers prospects for the application of large models in the oil and gas industry.The existing large models can be briefly divided into three categories:large language models,visual large models,and multimodal large models.The application of large models in the oil and gas industry is still in its infancy.Based on open-source large language models,some oil and gas enterprises have released large language model products using methods like fine-tuning and retrieval augmented generation.Scholars have attempted to develop scenario-specific models for oil and gas operations by using visual/multimodal foundation models.A few researchers have constructed pre-trained foundation models for seismic data processing and interpretation,as well as core analysis.The application of large models in the oil and gas industry faces challenges such as current data quantity and quality being difficult to support the training of large models,high research and development costs,and poor algorithm autonomy and control.The application of large models should be guided by the needs of oil and gas business,taking the application of large models as an opportunity to improve data lifecycle management,enhance data governance capabilities,promote the construction of computing power,strengthen the construction of“artificial intelligence+energy”composite teams,and boost the autonomy and control of large model technology.
文摘This letter evaluates the article by Gravina et al on ChatGPT’s potential in providing medical information for inflammatory bowel disease patients.While promising,it highlights the need for advanced techniques like reasoning+action and retrieval-augmented generation to improve accuracy and reliability.Emphasizing that simple question and answer testing is insufficient,it calls for more nuanced evaluation methods to truly gauge large language models’capabilities in clinical applications.
基金Science and Technology Project of State Grid Ningxia Electric Power Co.,Ltd Research on Distributed Photovoltaic Fine Power Prediction Technology for Day-Ahead Scheduling,5229NX230007.
文摘The accurate prediction of photovoltaic(PV)power generation is an important basis for hybrid grid scheduling.With the expansion of the scale of PV power plants and the popularization of distributed PV,this study proposes a multilayer PV power generation prediction model based on transfer learning to solve the problems of the lack of data on new PV bases and the low accuracy of PV power generation prediction.The proposed model,called DRAM,concatenates a dilated convolutional neural network(DCNN)module with a bidirectional long short-term memory(BiLSTM)module,and integrates an attention mechanism.First,the processed data are input into the DCNN layer,and the dilation convolution mechanism captures the spatial features of the wide sensory field of the input data.Subsequently,the temporal characteristics between the features are extracted in the BiLSTM layer.Finally,an attention mechanism is used to strengthen the key features by assigning weights to efficiently construct the relationship between the features and output variables.In addition,the power prediction accuracy of the new PV sites was improved by transferring the pre-trained model parameters to the new PV site prediction model.In this study,the pre-training of models using data from different source domains and the correlations between these pre-trained models and the target domain were analyzed.
基金Supported by the National Talent Fund of the Ministry of Science and Technology of China(20230240011)China University of Geosciences(Wuhan)Research Fund(162301192687)。
文摘A large language model(LLM)is constructed to address the sophisticated demands of data retrieval and analysis,detailed well profiling,computation of key technical indicators,and the solutions to complex problems in reservoir performance analysis(RPA).The LLM is constructed for RPA scenarios with incremental pre-training,fine-tuning,and functional subsystems coupling.Functional subsystem and efficient coupling methods are proposed based on named entity recognition(NER),tool invocation,and Text-to-SQL construction,all aimed at resolving pivotal challenges in developing the specific application of LLMs for RDA.This study conducted a detailed accuracy test on feature extraction models,tool classification models,data retrieval models and analysis recommendation models.The results indicate that these models have demonstrated good performance in various key aspects of reservoir dynamic analysis.The research takes some injection and production well groups in the PK3 Block of the Daqing Oilfield as an example for testing.Testing results show that our model has significant potential and practical value in assisting reservoir engineers with RDA.The research results provide a powerful support to the application of LLM in reservoir performance analysis.