期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于MB-LBP算子和Multilinear PCA算法的人脸识别 被引量:12
1
作者 杨海燕 刘国栋 《计算机应用研究》 CSCD 北大核心 2012年第12期4733-4735,4739,共4页
针对运用MB-LBP算法提取的人脸特征维数较高、而直接用MB-LBP算法提取的特征进行人脸识别时计算量较大的问题,提出一种融合MB-LBP和Multilinear PCA算法的新的人脸识别方法。首先利用MB-LBP算法提取人脸图像的特征;然后用Multilinear PC... 针对运用MB-LBP算法提取的人脸特征维数较高、而直接用MB-LBP算法提取的特征进行人脸识别时计算量较大的问题,提出一种融合MB-LBP和Multilinear PCA算法的新的人脸识别方法。首先利用MB-LBP算法提取人脸图像的特征;然后用Multilinear PCA算法对提取的人脸特征进行降维;最后用最近邻分类器进行人脸识别。在FERET人脸库上进行验证,实验结果表明,该方法的识别率高于传统PCA、分块PCA、LBP和PCA相结合的方法。 展开更多
关键词 MB-LBP算法 multilinear pca算法 特征提取 人脸识别
在线阅读 下载PDF
分块多线性主成分分析及其在人脸识别中的应用研究 被引量:14
2
作者 谢佩 吴小俊 《计算机科学》 CSCD 北大核心 2015年第3期274-279,共6页
主成分分析(Principal Component Analysis,PCA)是人脸识别中一个经典的算法,但PCA方法在特征提取时考虑的是图像的整体信息,并没有考虑图像的局部信息,而分块PCA(Modular Principal Component Analysis,Modular PCA)则可以有效地提取... 主成分分析(Principal Component Analysis,PCA)是人脸识别中一个经典的算法,但PCA方法在特征提取时考虑的是图像的整体信息,并没有考虑图像的局部信息,而分块PCA(Modular Principal Component Analysis,Modular PCA)则可以有效地提取图像中重要的局部信息,所以在人脸识别实验中获得了比传统PCA更好的识别效果。但PCA和Modular PCA都要进行图像的矢量化,这会破坏原始数据的空间结构,也有可能会导致"维数灾难"。多线性主成分分析(Multilinear Principal Component Analysis,Multilinear PCA)作为PCA在高维数据上的扩展,直接使用矩阵或者高阶的张量来获得有效特征,既可以避免"维数灾难",又可以体现直接将张量数据作为处理对象时保留原始数据较好基本结构信息的优点。在研究Modular PCA和Multilinear PCA的基础上,提出了分块多线性主成分分析(Modular Multilinear Principal Component Analysis,M2PCA)算法,用于识别人脸。在Yale、XM2VTS和JAFFE人脸数据库上进行了人脸识别实验,结果表明,在同等的分块条件下,所提出的方法的识别效果要优于Modular PCA的方法。 展开更多
关键词 人脸识别 特征提取 multilinear pca MODULAR pca
在线阅读 下载PDF
基于多线性独立成分分析的掌纹识别 被引量:5
3
作者 郭金玉 谷丽华 +1 位作者 李元 曾静 《计算机工程》 CAS CSCD 北大核心 2011年第12期13-15,18,共4页
为快速有效地在掌纹识别中学习多种因素的高阶统计独立成分,利用多线性独立成分分析方法对掌纹张量进行降维,得到低维的模式矩阵,将掌纹图像向模式矩阵上投影以提取核心张量,通过计算核心张量间的余弦距离实现掌纹匹配。基于PolyU掌纹... 为快速有效地在掌纹识别中学习多种因素的高阶统计独立成分,利用多线性独立成分分析方法对掌纹张量进行降维,得到低维的模式矩阵,将掌纹图像向模式矩阵上投影以提取核心张量,通过计算核心张量间的余弦距离实现掌纹匹配。基于PolyU掌纹图像库的实验结果表明,与主成分分析(PCA)、二维PCA、独立成分分析和多线性PCA相比,该方法的识别率最高,且满足系统实时性要求。 展开更多
关键词 掌纹识别 主成分分析 二维主成分分析 多线性主成分分析 独立成分分析 多线性独立成分分析
在线阅读 下载PDF
基于多线性核主成分分析的掌纹识别 被引量:13
4
作者 郭金玉 孔晓光 +1 位作者 李元 曾静 《光电子.激光》 EI CAS CSCD 北大核心 2011年第2期288-291,共4页
提出运用多线性核主成分分析(MKPCA)的一种新方法进行掌纹识别。首先MKPCA通过非线性变换,将输入样本图像向高维特征空间F上投影,运用多线性主成分分析(MPCA)直接对掌纹张量进行降维,得到低维的投影张量;然后掌纹图像向张量子空间上投... 提出运用多线性核主成分分析(MKPCA)的一种新方法进行掌纹识别。首先MKPCA通过非线性变换,将输入样本图像向高维特征空间F上投影,运用多线性主成分分析(MPCA)直接对掌纹张量进行降维,得到低维的投影张量;然后掌纹图像向张量子空间上投影提取特征向量;最后计算特征向量间的余弦距离进行掌纹匹配。运用PolyU掌纹图像库,对本文算法进行测试。实验结果表明,与传统算法相比,本文算法的识别率(RR)最高为99%,特征提取和匹配总时间为1.832 s,满足实时系统的要求。 展开更多
关键词 图像处理 掌纹识别 主成分分析(pca) 多线性主成分分析(Mpca) 多线性独立成分分析(MICA)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部