期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
MODIFIED OPTIMIZATION LAYER BY LAYER ALGORITHM FOR LEARNING MULTILAYER PERCEPTRONS 被引量:1
1
作者 刘德刚 章祥荪 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2000年第1期59-69,共11页
Learning of the feedforward multilayer perceptron (MLP) networks is to adapt all synaptic weights in such a way that the discrepancy between the actual output signals and the desired signals, averaged over all learnin... Learning of the feedforward multilayer perceptron (MLP) networks is to adapt all synaptic weights in such a way that the discrepancy between the actual output signals and the desired signals, averaged over all learning examples (training patterns), is as small as possible. The backpropagation, or variations thereof, is a standard method applied to adjust the synaptic weights in the network in order to minimize a given cost function. However as a steepest descent approach, BP algorithm is too slow for many applications. Since late 1980s lots of efforts have been reported in the literature aimed at improving the efficiency of the algorithm. Among them a recently proposed learning strategy based on linearization of the nonlinear activation functions and optimization of the multilayer perceptron layer by layer (OLL) seems promising. In this paper a modified learning procedure is presented which tries to find a weight change vector at each trial iteration in the OLL algorithm more efficiently. The proposed learning procedure can save expensive computation efforts and yield better convergence rate as compared to the original OLL learning algorithms especially for large scale networks. The improved OLL learning algorithm is applied to the time series prediction problems presented by the OLL authors, and demonstrates a faster learning capability. 展开更多
关键词 multilayer perceptron faster learning algorithms
全文增补中
Precipitation forecasting by large-scale climate indices and machine learning techniques 被引量:3
2
作者 Mehdi GHOLAMI ROSTAM Seyyed Javad SADATINEJAD Arash MALEKIAN 《Journal of Arid Land》 SCIE CSCD 2020年第5期854-864,共11页
Global warming is one of the most complicated challenges of our time causing considerable tension on our societies and on the environment.The impacts of global warming are felt unprecedentedly in a wide variety of way... Global warming is one of the most complicated challenges of our time causing considerable tension on our societies and on the environment.The impacts of global warming are felt unprecedentedly in a wide variety of ways from shifting weather patterns that threatens food production,to rising sea levels that deteriorates the risk of catastrophic flooding.Among all aspects related to global warming,there is a growing concern on water resource management.This field is targeted at preventing future water crisis threatening human beings.The very first stage in such management is to recognize the prospective climate parameters influencing the future water resource conditions.Numerous prediction models,methods and tools,in this case,have been developed and applied so far.In line with trend,the current study intends to compare three optimization algorithms on the platform of a multilayer perceptron(MLP)network to explore any meaningful connection between large-scale climate indices(LSCIs)and precipitation in the capital of Iran,a country which is located in an arid and semi-arid region and suffers from severe water scarcity caused by mismanagement over years and intensified by global warming.This situation has propelled a great deal of population to immigrate towards more developed cities within the country especially towards Tehran.Therefore,the current and future environmental conditions of this city especially its water supply conditions are of great importance.To tackle this complication an outlook for the future precipitation should be provided and appropriate forecasting trajectories compatible with this region's characteristics should be developed.To this end,the present study investigates three training methods namely backpropagation(BP),genetic algorithms(GAs),and particle swarm optimization(PSO)algorithms on a MLP platform.Two frameworks distinguished by their input compositions are denoted in this study:Concurrent Model Framework(CMF)and Integrated Model Framework(IMF).Through these two frameworks,13 cases are generated:12 cases within CMF,each of which contains all selected LSCIs in the same lead-times,and one case within IMF that is constituted from the combination of the most correlated LSCIs with Tehran precipitation in each lead-time.Following the evaluation of all model performances through related statistical tests,Taylor diagram is implemented to make comparison among the final selected models in all three optimization algorithms,the best of which is found to be MLP-PSO in IMF. 展开更多
关键词 backpropagation genetic algorithms machine learning multilayer perceptron particle swarm optimization Taylor diagram
在线阅读 下载PDF
Adaptive Error Curve Learning Ensemble Model for Improving Energy Consumption Forecasting 被引量:1
3
作者 Prince Waqas Khan Yung-Cheol Byun 《Computers, Materials & Continua》 SCIE EI 2021年第11期1893-1913,共21页
Despite the advancement within the last decades in the field of smart grids,energy consumption forecasting utilizing the metrological features is still challenging.This paper proposes a genetic algorithm-based adaptiv... Despite the advancement within the last decades in the field of smart grids,energy consumption forecasting utilizing the metrological features is still challenging.This paper proposes a genetic algorithm-based adaptive error curve learning ensemble(GA-ECLE)model.The proposed technique copes with the stochastic variations of improving energy consumption forecasting using a machine learning-based ensembled approach.A modified ensemble model based on a utilizing error of model as a feature is used to improve the forecast accuracy.This approach combines three models,namely CatBoost(CB),Gradient Boost(GB),and Multilayer Perceptron(MLP).The ensembled CB-GB-MLP model’s inner mechanism consists of generating a meta-data from Gradient Boosting and CatBoost models to compute the final predictions using the Multilayer Perceptron network.A genetic algorithm is used to obtain the optimal features to be used for the model.To prove the proposed model’s effectiveness,we have used a four-phase technique using Jeju island’s real energy consumption data.In the first phase,we have obtained the results by applying the CB-GB-MLP model.In the second phase,we have utilized a GA-ensembled model with optimal features.The third phase is for the comparison of the energy forecasting result with the proposed ECL-based model.The fourth stage is the final stage,where we have applied the GA-ECLE model.We obtained a mean absolute error of 3.05,and a root mean square error of 5.05.Extensive experimental results are provided,demonstrating the superiority of the proposed GA-ECLE model over traditional ensemble models. 展开更多
关键词 Energy consumption meteorological features error curve learning ensemble model energy forecasting gradient boost catboost multilayer perceptron genetic algorithm
在线阅读 下载PDF
A Novel Approach to Heart Failure Prediction and Classification through Advanced Deep Learning Model
4
作者 Abdalla Mahgoub 《World Journal of Cardiovascular Diseases》 2023年第9期586-604,共19页
In this study, the author will investigate and utilize advanced machine learning models related to two different methodologies to determine the best and most effective way to predict individuals with heart failure and... In this study, the author will investigate and utilize advanced machine learning models related to two different methodologies to determine the best and most effective way to predict individuals with heart failure and cardiovascular diseases. The first methodology involves a list of classification machine learning algorithms, and the second methodology involves the use of a deep learning algorithm known as MLP or Multilayer Perceptrons. Globally, hospitals are dealing with cases related to cardiovascular diseases and heart failure as they are major causes of death, not only for overweight individuals but also for those who do not adopt a healthy diet and lifestyle. Often, heart failures and cardiovascular diseases can be caused by many factors, including cardiomyopathy, high blood pressure, coronary heart disease, and heart inflammation [1]. Other factors, such as irregular shocks or stress, can also contribute to heart failure or a heart attack. While these events cannot be predicted, continuous data from patients’ health can help doctors predict heart failure. Therefore, this data-driven research utilizes advanced machine learning and deep learning techniques to better analyze and manipulate the data, providing doctors with informative decision-making tools regarding a person’s likelihood of experiencing heart failure. In this paper, the author employed advanced data preprocessing and cleaning techniques. Additionally, the dataset underwent testing using two different methodologies to determine the most effective machine-learning technique for producing optimal predictions. The first methodology involved employing a list of supervised classification machine learning algorithms, including Naïve Bayes (NB), KNN, logistic regression, and the SVM algorithm. The second methodology utilized a deep learning (DL) algorithm known as Multilayer Perceptrons (MLPs). This algorithm provided the author with the flexibility to experiment with different layer sizes and activation functions, such as ReLU, logistic (sigmoid), and Tanh. Both methodologies produced optimal models with high-level accuracy rates. The first methodology involves a list of supervised machine learning algorithms, including KNN, SVM, Adaboost, Logistic Regression, Naive Bayes, and Decision Tree algorithms. They achieved accuracy rates of 86%, 89%, 89%, 81%, 79%, and 99%, respectively. The author clearly explained that Decision Tree algorithm is not suitable for the dataset at hand due to overfitting issues. Therefore, it was discarded as an optimal model to be used. However, the latter methodology (Neural Network) demonstrated the most stable and optimal accuracy, achieving over 87% accuracy while adapting well to real-life situations and requiring low computing power overall. A performance assessment and evaluation were carried out based on a confusion matrix report to demonstrate feasibility and performance. The author concluded that the performance of the model in real-life situations can advance not only the medical field of science but also mathematical concepts. Additionally, the advanced preprocessing approach behind the model can provide value to the Data Science community. The model can be further developed by employing various optimization techniques to handle even larger datasets related to heart failures. Furthermore, different neural network algorithms can be tested to explore alternative approaches and yield different results. 展开更多
关键词 Heart Disease Prediction Cardiovascular Disease Machine learning algorithms Lazy Predict multilayer perceptrons (MLPs) Data Science Techniques and Analysis Deep learning Activation Functions
在线阅读 下载PDF
结合遗传算法和集成学习的信用卡财务欺诈交易检测
5
作者 薛明香 《贵阳学院学报(自然科学版)》 2025年第1期81-86,91,共7页
随着数字化和信息化技术的发展,线上金融交易已被广泛应用。随之而来的欺诈交易也为金融机构和企业的财产安全带来了巨大威胁,迫切需要有效的检测方法,特别是检测信用卡欺诈对于识别和防止未经授权的交易至关重要。为此,提出了集合遗传... 随着数字化和信息化技术的发展,线上金融交易已被广泛应用。随之而来的欺诈交易也为金融机构和企业的财产安全带来了巨大威胁,迫切需要有效的检测方法,特别是检测信用卡欺诈对于识别和防止未经授权的交易至关重要。为此,提出了集合遗传算法和学习的欺诈交易检测方法。首先,通过欠采样和合成少数过采样(SMOTE)技术,解决信用卡数据集的数据不平衡问题。其次,所提方法智能地结合了多种算法,包括随机森林(RF)、K最近邻(KNN)和多层感知器(MLP)分类器,并通过遗传算法(GA)进行适当的加权优化,以增强欺诈识别能力。在公开信用卡交易数据集上的实验结果表明,所提集成模型在精度、召回率和F1得分等指标上均取得了比已有机器学习方法和单个分类器更好的性能,证明了集成学习方法在欺诈交易检测中的有效性。 展开更多
关键词 欺诈交易检测 遗传算法 集成学习 合成过采样 支持向量机 K最近邻 多层感知器
在线阅读 下载PDF
一种新的基于粒群优化的BP网络学习算法 被引量:15
6
作者 宋乃华 邢清华 《计算机工程》 CAS CSCD 北大核心 2006年第14期181-183,共3页
标准BP学习算法是多层感知器的一种训练学习算法,是基于无约束极值问题的梯度法而设计的。针对标准算法存在的收敛速度慢、目标函数易陷入局部极小等缺点,该文提出了一种基于粒群优化的全新学习算法——粒群学习算法。该算法采用并行全... 标准BP学习算法是多层感知器的一种训练学习算法,是基于无约束极值问题的梯度法而设计的。针对标准算法存在的收敛速度慢、目标函数易陷入局部极小等缺点,该文提出了一种基于粒群优化的全新学习算法——粒群学习算法。该算法采用并行全局寻优策略,使网络以更快的速度收敛至全局最优解,且更易于编程实现。仿真实例证明,该算法是一种简洁高效的BP神经网络学习算法,有着极为广泛的应用前景。 展开更多
关键词 多层感知器 BP算法 粒群优化 粒群学习算法
在线阅读 下载PDF
Advance Artificial Intelligence Technique for Designing Double T-Shaped Monopole Antenna 被引量:11
7
作者 El-Sayed M.El-kenawy Hattan F.Abutarboush +1 位作者 Ali Wagdy Mohamed Abdelhameed Ibrahim 《Computers, Materials & Continua》 SCIE EI 2021年第12期2983-2995,共13页
Machine learning(ML)has taken the world by a tornado with its prevalent applications in automating ordinary tasks and using turbulent insights throughout scientific research and design strolls.ML is a massive area wit... Machine learning(ML)has taken the world by a tornado with its prevalent applications in automating ordinary tasks and using turbulent insights throughout scientific research and design strolls.ML is a massive area within artificial intelligence(AI)that focuses on obtaining valuable information out of data,explaining why ML has often been related to stats and data science.An advanced meta-heuristic optimization algorithm is proposed in this work for the optimization problem of antenna architecture design.The algorithm is designed,depending on the hybrid between the Sine Cosine Algorithm(SCA)and the Grey Wolf Optimizer(GWO),to train neural networkbased Multilayer Perceptron(MLP).The proposed optimization algorithm is a practical,versatile,and trustworthy platform to recognize the design parameters in an optimal way for an endorsement double T-shaped monopole antenna.The proposed algorithm likewise shows a comparative and statistical analysis by different curves in addition to the ANOVA and T-Test.It offers the superiority and validation stability evaluation of the predicted results to verify the procedures’accuracy. 展开更多
关键词 Antenna optimization machine learning artificial intelligence multilayer perceptron sine cosine algorithm grey wolf optimizer
在线阅读 下载PDF
多层前馈感知器的高阶序贯非线性Kalman滤波学习算法 被引量:4
8
作者 邓志东 孙增圻 《控制理论与应用》 EI CAS CSCD 北大核心 1994年第3期381-384,共4页
本文提出了高阶序贯非线性增广Kalman滤波(SEKF),并将其应用于多层前馈感知器(MLPs)的学习问题.文中给出了MLPs的SEKF算法,得到了与BP算法类似的正向与反向传播过程,并且详细地推导了核心的量测Jac... 本文提出了高阶序贯非线性增广Kalman滤波(SEKF),并将其应用于多层前馈感知器(MLPs)的学习问题.文中给出了MLPs的SEKF算法,得到了与BP算法类似的正向与反向传播过程,并且详细地推导了核心的量测Jacobian矩阵.结合一非线性正弦函数,DEKF和SEKF的仿真结果被进一步给出. 展开更多
关键词 前馈感知器 学习算法 非线性
在线阅读 下载PDF
基于注意力机制与改进TF-IDF的推荐算法 被引量:7
9
作者 李昆仑 于志波 +1 位作者 翟利娜 赵佳耀 《计算机工程》 CAS CSCD 北大核心 2021年第8期69-77,共9页
针对传统推荐系统主要依赖用户对物品的评分数据而无法学习到用户和项目的深层次特征的问题,提出基于注意力机制与改进TF-IDF的推荐算法(AMITI)。通过将双层注意力机制引入并行的神经网络推荐模型,提高模型对重要特征的挖掘能力。基于... 针对传统推荐系统主要依赖用户对物品的评分数据而无法学习到用户和项目的深层次特征的问题,提出基于注意力机制与改进TF-IDF的推荐算法(AMITI)。通过将双层注意力机制引入并行的神经网络推荐模型,提高模型对重要特征的挖掘能力。基于用户评分及项目类别改进TF-IDF,依据项目类别权重将推荐结果分类以构建不同类型的项目组并完成推荐。实验结果表明,AMITI算法能提高对文本中重要内容的关注度以及项目分配的注意力权重,有效提升推荐精度并在实现项目组推荐后改善推荐效果。 展开更多
关键词 多层感知机 注意力机制 卷积神经网络 推荐算法 深度学习
在线阅读 下载PDF
基于Stacking集成学习的岩性识别研究 被引量:5
10
作者 曹茂俊 巩维嘉 高志勇 《计算机技术与发展》 2022年第7期161-166,172,共7页
针对传统集成学习模型利用测井资料进行地层岩性识别效果不佳的问题,提出了一种改进的集成学习模型。该模型使用CART决策树、K近邻算法(KNN)、支持向量机(SVM)和多层感知机(MLP)为基模型,逻辑回归(LR)为元模型,使用PCA算法计算每个基模... 针对传统集成学习模型利用测井资料进行地层岩性识别效果不佳的问题,提出了一种改进的集成学习模型。该模型使用CART决策树、K近邻算法(KNN)、支持向量机(SVM)和多层感知机(MLP)为基模型,逻辑回归(LR)为元模型,使用PCA算法计算每个基模型的权重,并且将权重融入到第二层元模型的训练数据集中,从而给元模型提供了更多质量较高的训练数据,以此构建出一个精准的多层集成学习模型。并且通过准确率、F1-Score两个指标对该模型进行了评估。最后将改进后的集成分类模型应用在实际的井区数据中,实验表明改进后的模型相较于传统的Stacking集成模型准确率提升了1.85个百分点,F1-Score提升了2个百分点,与实际结果相比有较高的一致性,充分证明了改进后的集成分类模型的有效性。 展开更多
关键词 岩性识别 K近邻算法 决策树 支持向量机 多层感知机 改进集成学习
在线阅读 下载PDF
Improving the accuracy of heart disease diagnosis with an augmented back propagation algorithm
11
作者 颜红梅 《Journal of Chongqing University》 CAS 2003年第1期31-34,共4页
A multilayer perceptron neural network system is established to support the diagnosis for five most common heart diseases (coronary heart disease, rheumatic valvular heart disease, hypertension, chronic cor pulmonale ... A multilayer perceptron neural network system is established to support the diagnosis for five most common heart diseases (coronary heart disease, rheumatic valvular heart disease, hypertension, chronic cor pulmonale and congenital heart disease). Momentum term, adaptive learning rate, the forgetting mechanics, and conjugate gradients method are introduced to improve the basic BP algorithm aiming to speed up the convergence of the BP algorithm and enhance the accuracy for diagnosis. A heart disease database consisting of 352 samples is applied to the training and testing courses of the system. The performance of the system is assessed by cross-validation method. It is found that as the basic BP algorithm is improved step by step, the convergence speed and the classification accuracy of the network are enhanced, and the system has great application prospect in supporting heart diseases diagnosis. 展开更多
关键词 multilayer perceptron back propagation algorithm heart disease momentum term adaptive learning rate the forgetting mechanics conjugate gradients method
暂未订购
一种基于U-D分解卡尔曼滤波多层感知器学习算法
12
作者 马晓敏 《信号处理》 CSCD 北大核心 1995年第4期276-282,共7页
在研究多层感知器结构后,提出一种利用U-D分解卡尔曼滤波训练多层网的新算法.仿真结果表明:与BP算法比较,此算法有着学习速度快、数值稳定性好、对学习参数不敏感、能避免局部极小点等特点。
关键词 神经网络 多层感知器 学习算法 卡尔曼滤波
在线阅读 下载PDF
关于深度学习的综述与讨论 被引量:178
13
作者 胡越 罗东阳 +2 位作者 花奎 路海明 张学工 《智能系统学报》 CSCD 北大核心 2019年第1期1-19,共19页
机器学习是通过计算模型和算法从数据中学习规律的一门学问,在各种需要从复杂数据中挖掘规律的领域中有很多应用,已成为当今广义的人工智能领域最核心的技术之一。近年来,多种深度神经网络在大量机器学习问题上取得了令人瞩目的成果,形... 机器学习是通过计算模型和算法从数据中学习规律的一门学问,在各种需要从复杂数据中挖掘规律的领域中有很多应用,已成为当今广义的人工智能领域最核心的技术之一。近年来,多种深度神经网络在大量机器学习问题上取得了令人瞩目的成果,形成了机器学习领域最亮眼的一个新分支——深度学习,也掀起了机器学习理论、方法和应用研究的一个新高潮。对深度学习代表性方法的核心原理和典型优化算法进行了综述,回顾与讨论了深度学习与以往机器学习方法之间的联系与区别,并对深度学习中一些需要进一步研究的问题进行了初步讨论。 展开更多
关键词 深度学习 机器学习 卷积神经网络 递归神经网络 多层感知器 自编码机 学习算法 机器学习理论
在线阅读 下载PDF
一种基于MLP-ELM的GaN HEMT小信号特性的建模方法 被引量:4
14
作者 程旭瀚 王军 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第4期128-136,共9页
本文提出了一种基于MLP-ELM的GaN HEMT小信号特性的建模方法,首先基于GWO建立了一种混合参数提取法,解决20元等效电路参数提取不精确的问题;然后利用等效电路模型获得的S参数结合MLP-ELM建立了一种精确的经验模型,有效解决等效电路模型... 本文提出了一种基于MLP-ELM的GaN HEMT小信号特性的建模方法,首先基于GWO建立了一种混合参数提取法,解决20元等效电路参数提取不精确的问题;然后利用等效电路模型获得的S参数结合MLP-ELM建立了一种精确的经验模型,有效解决等效电路模型无法在多偏置范围内表征小信号特性的问题;最后利用MLP-ELM建立了一种基于经验的小信号模型.经过仿真分析得出,本文所建模型精度高,在整个偏置范围内有效且具备等效电路模型不具有的泛化能力. 展开更多
关键词 等效电路模型 灰狼优化算法 S参数 多层感知器 极限学习机
在线阅读 下载PDF
结合时间特征的协同过滤深度推荐算法 被引量:2
15
作者 魏紫钰 朱小栋 徐怡 《计算机工程与应用》 CSCD 北大核心 2022年第23期67-73,共7页
针对推荐算法中的数据稀疏性和冷启动问题,提出了基于卷积神经网络的结合时间特征的协同过滤深度推荐算法(CNN-deep recommend algorithm with time,C-DRAWT)与基于多层感知机的结合时间特征的协同过滤深度推荐算法(MLP-deep recommend ... 针对推荐算法中的数据稀疏性和冷启动问题,提出了基于卷积神经网络的结合时间特征的协同过滤深度推荐算法(CNN-deep recommend algorithm with time,C-DRAWT)与基于多层感知机的结合时间特征的协同过滤深度推荐算法(MLP-deep recommend algorithm with time,M-DRAWT)。算法进行数据预处理,利用二进制来编码用户与项目的信息,缓解了one-hot编码的书籍稀疏性问题。提取出用户与项目的隐藏特征,将用户和项目的特征融合时间戳特征,分别输入到优化后的卷积神经网络和多层感知机进行,得到最新时刻的推荐项目。两个算法经过基于MovieLens-1M数据集的对比实验验证,得到的F1-Score值平均提高了0.78%,RMSE值平均提高了2.7%。结果表明,该方法能够缓解数据稀疏性和冷启动问题,相比较于之前的模型具有较好的推荐效果。 展开更多
关键词 推荐算法 时间特征 深度学习 卷积神经网络 多层感知机
在线阅读 下载PDF
一种用于模式分类的多层感知机模型和学习算法 被引量:1
16
作者 姜文彬 《淮北煤师院学报(自然科学版)》 1997年第2期20-24,共5页
将Kalman滤波算法与BP算法相结合,提出一种用于模式分类的多层感知机模型和学习算法,并对计算实例进行了计算机模拟实验.实验结果表明,这种算法适用于非线性模式分类,且具有较快的收敛速度.
关键词 多层感知机 神经网络 学习算法 模式分类
在线阅读 下载PDF
增强非线性特征提取的时间间隔感知序列推荐 被引量:1
17
作者 宁昱霖 《现代信息科技》 2022年第7期85-87,90,共4页
针对基于时间间隔的序列推荐模型存在的非线性特征提取不充分问题,提出了增强非线性特征提取的时间间隔感知序列推荐模型,改进了已有的推荐模型。用多层线性层代替传统的基于时间间隔的序列推荐模型中的前馈神经网络,增强模型对于深层... 针对基于时间间隔的序列推荐模型存在的非线性特征提取不充分问题,提出了增强非线性特征提取的时间间隔感知序列推荐模型,改进了已有的推荐模型。用多层线性层代替传统的基于时间间隔的序列推荐模型中的前馈神经网络,增强模型对于深层次项目交互信息的捕捉能力。在三个公开数据集上验证了所提出模型的有效性。评估指标平均提高1.9%,最高提升5.2%。 展开更多
关键词 深度学习 推荐算法 序列推荐 时间序列 多层感知机
在线阅读 下载PDF
基于深度学习的图书资源借阅推荐算法研究
18
作者 王德才 蒋业政 冯雪萍 《信息与电脑》 2024年第4期132-134,共3页
图书馆借阅系统的升级与创新是提升图书馆服务质量和读者体验的关键,也是智慧图书馆建设的重要工作。本研究通过采集图书馆的借阅信息、读者信息和图书信息等数据,采用基于Transformer的双向编码(Bidirectional Encoder Representations... 图书馆借阅系统的升级与创新是提升图书馆服务质量和读者体验的关键,也是智慧图书馆建设的重要工作。本研究通过采集图书馆的借阅信息、读者信息和图书信息等数据,采用基于Transformer的双向编码(Bidirectional Encoder Representations from Transformers,BERT)模型提取图书特征,应用多层感知机(Multilayer Perceptron,MLP)深度学习方法,对读者的历史借阅记录信息进行全面的数据挖掘,分析读者的借阅偏好。结果表明,BERT-MLP模型的性能明显优于基础神经网络模型,且可以更有效地找到图书推荐数据的重要特征。本研究可为提高图书馆个性化服务水平提供理论依据。 展开更多
关键词 深度学习 多层感知机(MLP) 基于Transformer的双向编码(BERT) 推荐算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部