In nearly all chemical and petrochemical systems, separation of products generally accounts for more than 50% of the capital cost and the greatest part of the energy consumption. It is generally believed that membrane...In nearly all chemical and petrochemical systems, separation of products generally accounts for more than 50% of the capital cost and the greatest part of the energy consumption. It is generally believed that membrane systems can offer benefits in both reducing the energy consumption of the separation stages and lowering the capital expenditure (CAPEX). Microporous ceramic membranes have the potential to overcome the limitation in polymer membranes operation, which has been the subject of a large amount of research worldwide in the last two decades. And most of the research has aimed at the production of the asymmetric multilayered membrane based on amorphous oxides by sol-gel techniques. The paper is to give an overview of publications on ceramic membranes, including less common materials of titania, zirconia, which can be used for pervaporation in corrosive media. Commercially available microporous membranes based on these membrane materials and the membrane economics are also summarized.展开更多
The adsorption amount of poly(styrene sulfonate) and poly(dimethyldiallyl ammonium chloride) (PSS/PDDA) self-assembled multilayer membranes in designed dipping solvents were measured by UV-Vis-spectroscopy and quartz ...The adsorption amount of poly(styrene sulfonate) and poly(dimethyldiallyl ammonium chloride) (PSS/PDDA) self-assembled multilayer membranes in designed dipping solvents were measured by UV-Vis-spectroscopy and quartz crystal microbalance (QCM). Intrinsic viscosities of PSS and PDDA in corresponding dipping solvents were determined by an Ubbelohde viscometer. It is found that the adsorption amount of PSS/PDDA self-assembled multilayer membranes built up in different dipping solutions, added salt concentration, pH of solution and solvent quality, respectively changed oppositely with the corresponding intrinsic viscosity of PSS and PDDA in dipping solvents. A negative relation between the adsorption amount and intrinsic viscosity was revealed, and explained in term of the concept of excluded volume of polymer molecule in dilute solutions.展开更多
AIM:To evaluate the surgical outcomes of the perfluorocarbon liquid(PFCL)-assisted inverted multilayer internal limiting membrane(ILM)flaps covering technique in macular hole retinal detachment(MHRD)in high myopia wit...AIM:To evaluate the surgical outcomes of the perfluorocarbon liquid(PFCL)-assisted inverted multilayer internal limiting membrane(ILM)flaps covering technique in macular hole retinal detachment(MHRD)in high myopia with axial length(AL)≥30 mm.METHODS:In this retrospective,interventional,consecutive comparative study,44 MHRD eyes were divided into two groups:the PFCL-assisted inverted multilayer ILM flaps covering technique group(Group 1,21 eyes)and the ILM peeling group(Group 2,23 eyes).The follow-up period was>12mo.Postoperative outcomes,including retinal reattachment,macular hole(MH)closure,and bestcorrected visual acuity(BCVA),were assessed.Statistical analysis using the Mann–Whitney U test and Fisher’s exact test was conducted to compare differences between groups.RESULTS:There were no statistically significant differences in baseline preoperative clinical characteristics,including age,sex,AL,diopters,duration of symptom,lens status,posterior staphyloma presence and extent of RD.Retinal reattachment rates were higher in Group 1(90.5%)than in Group 2(82.6%),without statistical significance(P=0.667).MH closure rates were significantly higher in Group 1(85.7%)than in Group 2(17.4%;P<0.001).The Group-1 BCVA(logMAR)improved significantly from 2.13±0.91 preoperatively to 1.21±0.66 postoperatively(P=0.026).The Group 2 BCVA improved significantly from 1.91±0.53 preoperatively to 1.19±0.41 postoperatively(P=0.032).However,there were no significant differences in visual-acuity improvement between groups(P=0.460).CONCLUSION:This technique offers a more effective approach for improving MH closure rates and postoperative visual function in MHRD with AL≥30 mm in high myopia.展开更多
In this paper, poly(amide-6-β-ethylene oxide) (PEBA1657) copolymer was used to prepare multilayer polyetherimide (PEI)/polydimethylsiloxane (PDMS)/PEBA1657/PDMS composite membranes by dip-coating method. Permeation b...In this paper, poly(amide-6-β-ethylene oxide) (PEBA1657) copolymer was used to prepare multilayer polyetherimide (PEI)/polydimethylsiloxane (PDMS)/PEBA1657/PDMS composite membranes by dip-coating method. Permeation behaviors of ethylene, ethane, propylene, propane, n-butane, methane and nitrogen through the multilayer composite membranes were investigated over a range of operating temperature and pressure. The permeances of light hydrocarbons through PEI/PDMS/PEBA1657/PDMS composite membranes increase with their increasing condensability, and the olefins are more permeable than their corresponding paraffins. For light hydrocarbons, the gas permeances increase significantly as temperature increasing. When the transmembrane pressure difference increases, the gas permeance increases moderately due to plasticization effect, while their apparent activation energies for permeation decrease.展开更多
We hypothesize that a cylinder implant made of multilayer Poly-lactic-co-glycolic-acid (PLGA) membrane can be a method for controlled and extended drug release. We fashioned a multilayer cylindrical implant termed STI...We hypothesize that a cylinder implant made of multilayer Poly-lactic-co-glycolic-acid (PLGA) membrane can be a method for controlled and extended drug release. We fashioned a multilayer cylindrical implant termed STID100 that released doxorubicin for 3 weeks in an orthotopic 4T1 breast cancer model in Balb/C mice. This implant starts as a thin doxorubicin-embedded PLGA membrane, and is then rolled into a cylinder containing an air gap between the membrane layers. Its controlled sustained release delivered 2× the amount of the intravenous (IV) equivalent of doxorubicin, inhibited the primary tumor, and prevented lung metastasis. Importantly it did not cause weight loss, splenomegaly, or cardiac toxicity vs systemically administrated doxorubicin. This favorable safety profile is further substantiated by the finding of no detectable plasma doxorubicin in multiple time points during the 3-week period, and low tumor doxorubicin concentration. The implant system delivered to the specification of an ideal pharmacological paradigm might offer a better coverage of the local tumor, significantly preventing metastatic spread with less drug toxicity to many vital organs, compared to the traditional pharmacology of IV route. The profile of STID made it an attractive therapeutic alternative in metastatic tumor prevention, pain management and many other diverse clinical scenarios.展开更多
Silicon-based planar neuroprobes are composed of silicon substrate,conducting layer,and insulation layers of SiO 2 or SiN membrane.The insulation layer is very important because it affects many key parameters of neupr...Silicon-based planar neuroprobes are composed of silicon substrate,conducting layer,and insulation layers of SiO 2 or SiN membrane.The insulation layer is very important because it affects many key parameters of neuprobes,like impedance,SNR(signal noise ratio),reliability,etc.Monolayer membrane of SiO 2 or SiN are not good choices for insulation layer,since defects and residual stress in these layers can induce bad passivation.In this paper a composite insulation structure is studied,with thermal SiO 2 as the lower insulation layer and with multilayer membrane composed of PECVD SiO 2 and SiN as the upper insulation layer.This structure not only solves the problem of residual stress but also ensures a good probe passivation.So it's a good choice for insulation layer of neuroprobes.展开更多
基金The authors would like to thank the National Natural Science Foundation of China(No.20676149)the Scientific Research Foundation for the Returned 0verseas Chinese Scholars,State Education Ministrythe research foundation of the State Key Laboratory of Heavy 0il Processing,China University of Petroleum(Beijing),for financial support.
文摘In nearly all chemical and petrochemical systems, separation of products generally accounts for more than 50% of the capital cost and the greatest part of the energy consumption. It is generally believed that membrane systems can offer benefits in both reducing the energy consumption of the separation stages and lowering the capital expenditure (CAPEX). Microporous ceramic membranes have the potential to overcome the limitation in polymer membranes operation, which has been the subject of a large amount of research worldwide in the last two decades. And most of the research has aimed at the production of the asymmetric multilayered membrane based on amorphous oxides by sol-gel techniques. The paper is to give an overview of publications on ceramic membranes, including less common materials of titania, zirconia, which can be used for pervaporation in corrosive media. Commercially available microporous membranes based on these membrane materials and the membrane economics are also summarized.
基金supported by the NNSFC(Nos.20574059,50633030)the Major State Basic Research Program of China(No.9732003C8615700).
文摘The adsorption amount of poly(styrene sulfonate) and poly(dimethyldiallyl ammonium chloride) (PSS/PDDA) self-assembled multilayer membranes in designed dipping solvents were measured by UV-Vis-spectroscopy and quartz crystal microbalance (QCM). Intrinsic viscosities of PSS and PDDA in corresponding dipping solvents were determined by an Ubbelohde viscometer. It is found that the adsorption amount of PSS/PDDA self-assembled multilayer membranes built up in different dipping solutions, added salt concentration, pH of solution and solvent quality, respectively changed oppositely with the corresponding intrinsic viscosity of PSS and PDDA in dipping solvents. A negative relation between the adsorption amount and intrinsic viscosity was revealed, and explained in term of the concept of excluded volume of polymer molecule in dilute solutions.
基金Supported by Research Incubation Fund of Xi’an People’s Hospital(Xi’an Fourth Hospital)(No.FZ-58).
文摘AIM:To evaluate the surgical outcomes of the perfluorocarbon liquid(PFCL)-assisted inverted multilayer internal limiting membrane(ILM)flaps covering technique in macular hole retinal detachment(MHRD)in high myopia with axial length(AL)≥30 mm.METHODS:In this retrospective,interventional,consecutive comparative study,44 MHRD eyes were divided into two groups:the PFCL-assisted inverted multilayer ILM flaps covering technique group(Group 1,21 eyes)and the ILM peeling group(Group 2,23 eyes).The follow-up period was>12mo.Postoperative outcomes,including retinal reattachment,macular hole(MH)closure,and bestcorrected visual acuity(BCVA),were assessed.Statistical analysis using the Mann–Whitney U test and Fisher’s exact test was conducted to compare differences between groups.RESULTS:There were no statistically significant differences in baseline preoperative clinical characteristics,including age,sex,AL,diopters,duration of symptom,lens status,posterior staphyloma presence and extent of RD.Retinal reattachment rates were higher in Group 1(90.5%)than in Group 2(82.6%),without statistical significance(P=0.667).MH closure rates were significantly higher in Group 1(85.7%)than in Group 2(17.4%;P<0.001).The Group-1 BCVA(logMAR)improved significantly from 2.13±0.91 preoperatively to 1.21±0.66 postoperatively(P=0.026).The Group 2 BCVA improved significantly from 1.91±0.53 preoperatively to 1.19±0.41 postoperatively(P=0.032).However,there were no significant differences in visual-acuity improvement between groups(P=0.460).CONCLUSION:This technique offers a more effective approach for improving MH closure rates and postoperative visual function in MHRD with AL≥30 mm in high myopia.
基金Supported by Key Projects in the National Science & Technology Pillar Program (2011BAC08B00)
文摘In this paper, poly(amide-6-β-ethylene oxide) (PEBA1657) copolymer was used to prepare multilayer polyetherimide (PEI)/polydimethylsiloxane (PDMS)/PEBA1657/PDMS composite membranes by dip-coating method. Permeation behaviors of ethylene, ethane, propylene, propane, n-butane, methane and nitrogen through the multilayer composite membranes were investigated over a range of operating temperature and pressure. The permeances of light hydrocarbons through PEI/PDMS/PEBA1657/PDMS composite membranes increase with their increasing condensability, and the olefins are more permeable than their corresponding paraffins. For light hydrocarbons, the gas permeances increase significantly as temperature increasing. When the transmembrane pressure difference increases, the gas permeance increases moderately due to plasticization effect, while their apparent activation energies for permeation decrease.
文摘We hypothesize that a cylinder implant made of multilayer Poly-lactic-co-glycolic-acid (PLGA) membrane can be a method for controlled and extended drug release. We fashioned a multilayer cylindrical implant termed STID100 that released doxorubicin for 3 weeks in an orthotopic 4T1 breast cancer model in Balb/C mice. This implant starts as a thin doxorubicin-embedded PLGA membrane, and is then rolled into a cylinder containing an air gap between the membrane layers. Its controlled sustained release delivered 2× the amount of the intravenous (IV) equivalent of doxorubicin, inhibited the primary tumor, and prevented lung metastasis. Importantly it did not cause weight loss, splenomegaly, or cardiac toxicity vs systemically administrated doxorubicin. This favorable safety profile is further substantiated by the finding of no detectable plasma doxorubicin in multiple time points during the 3-week period, and low tumor doxorubicin concentration. The implant system delivered to the specification of an ideal pharmacological paradigm might offer a better coverage of the local tumor, significantly preventing metastatic spread with less drug toxicity to many vital organs, compared to the traditional pharmacology of IV route. The profile of STID made it an attractive therapeutic alternative in metastatic tumor prevention, pain management and many other diverse clinical scenarios.
文摘Silicon-based planar neuroprobes are composed of silicon substrate,conducting layer,and insulation layers of SiO 2 or SiN membrane.The insulation layer is very important because it affects many key parameters of neuprobes,like impedance,SNR(signal noise ratio),reliability,etc.Monolayer membrane of SiO 2 or SiN are not good choices for insulation layer,since defects and residual stress in these layers can induce bad passivation.In this paper a composite insulation structure is studied,with thermal SiO 2 as the lower insulation layer and with multilayer membrane composed of PECVD SiO 2 and SiN as the upper insulation layer.This structure not only solves the problem of residual stress but also ensures a good probe passivation.So it's a good choice for insulation layer of neuroprobes.