Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes...Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.展开更多
The use of electronic currency for transactions,denoting a cashless paradigm,has become increasingly common.However,this financial innovation is not prevalent in all countries.This study aims to explain the discrepanc...The use of electronic currency for transactions,denoting a cashless paradigm,has become increasingly common.However,this financial innovation is not prevalent in all countries.This study aims to explain the discrepancies across countries,including individual and country factors.It may be superficially posited that this lag in development stems from individual or microlevel usage challenges.However,the application of the Technology Acceptance Model highlights the presence of overarching characteristics conducive to extensive adoption.Thus,an additional stratum,the multilevel perspective,needs to be examined.This analytical framework incorporates not only individual attributes but also the sociotechnical framework or mesolevel factors in which they operate.A multilevel econometric model is used.The results of these analyses show that the impact on the adoption of cashless payments extends beyond individual factors(attitude to technology use,perceived usefulness,and perceived ease of use).Our primary contribution,conceptually and empirically,is to broaden the analysis vision.A comprehensive multilevel analysis revealed that broader contextual elements,such as infrastructure and national skills,exert a significant influence on the adoption of cashless transactions.Consequently,the widespread acceptance of cashless payment methods is not only contingent on individual choices but is also a collective phenomenon in which the surrounding environment plays a crucial role as a catalyst for the end users in the cashless economy.展开更多
Hydrogen production coupled with small molecule oxidation derived by renewable energy power has been widely studied as an effective method to reduce energy consumption and prepare added value production.Here,the coppe...Hydrogen production coupled with small molecule oxidation derived by renewable energy power has been widely studied as an effective method to reduce energy consumption and prepare added value production.Here,the copper-cobalt phosphide with a multilevel structure has been designed based on the hard and soft acids and bases theory.The nanocone composed of lamellas presented a sharp tip,which a positive effect on the mass transfer enhanced by a local electric field,and the nanolamellas contain CoP/Cu_(3)P interface provide the highly selective active site for the gluconic acid(GNA)synthesis and hydrogen evolution.The catalyst can drive hydrogen evolution at 5 A·cm^(-2)up to 437 h without active decay,and the electrocatalytic glucose oxidation at anode presents high efficiency due to Cu(I)introduction and the synergetic effect between interfaces.Density functional theory(DFT)calculation shows that water splitting more readily occurs at the CoP,which provides adsorbed H and-OH for hydrogen evolution and glucose oxidation,respectively,and glucose adsorption more readily occurs at the Cu_(3)P,which presents lower conversion energy for high value-added GNA.Efficient hydrogen evolution and glucose conversion indicate its high intrinsic activity and synergetic effect.This work provides a special interface construction strategy for the catalytic conversion of hydrogen and small molecules.展开更多
In this study,we used an extensive sampling network established in central Romania to develop tree height and crown length models.Our analysis included more than 18,000 tree measurements from five different species.In...In this study,we used an extensive sampling network established in central Romania to develop tree height and crown length models.Our analysis included more than 18,000 tree measurements from five different species.Instead of building univariate models for each response variable,we employed a multivariate approach using seemingly unrelated mixed-effects models.These models incorporated variables related to species mixture,tree and stand size,competition,and stand structure.With the inclusion of additional variables in the multivariate seemingly unrelated mixed-effects models,the accuracy of the height prediction models improved by over 10% for all species,whereas the improvement in the crown length models was considerably smaller.Our findings indicate that trees in mixed stands tend to have shorter heights but longer crowns than those in pure stands.We also observed that trees in homogeneous stand structures have shorter crown lengths than those in heterogeneous stands.By employing a multivariate mixed-effects modelling framework,we were able to perform cross-model random-effect predictions,leading to a significant increase in accuracy when both responses were used to calibrate the model.In contrast,the improvement in accuracy was marginal when only height was used for calibration.We demonstrate how multivariate mixed-effects models can be effectively used to develop multi-response allometric models that can be easily calibrated with a limited number of observations while simultaneously achieving better-aligned projections.展开更多
In the quest for high-efficiency and cost-effective catalysts for the oxygen evolution reaction(OER),a novel biomass-driven strategy is developed to fabricate a unique one-dimensional rod-arrays@two-dimensional interl...In the quest for high-efficiency and cost-effective catalysts for the oxygen evolution reaction(OER),a novel biomass-driven strategy is developed to fabricate a unique one-dimensional rod-arrays@two-dimensional interlaced-sheets(C_(1D@2D))network.A groundbreaking chemical fermentation(CF)pore-generation mechanism,proposed for the first time for creating nanopores within carbon structures,is based on the optimal balance between gasification and solidification.This mechanism not only results in a distinctive C_(1D@2D) multilevel network with nanoscale,intersecting and freely flowing channels but also introduces a novel concept for in situ,extensive and hierarchical pore formation.The unique architecture,combined with the homogeneous dispersion of Ni-Fe nanoparticles,facilitates easy electrolyte penetration and provides abundant active sites for the anchoring and dispersion of reactive molecules or ions.Consequently,the Ni-Fe@C_(1D@2D) porous network demonstrates an exceptional OER electrocatalytic performance,achieving a record-low overpotential of 165 mV at 10 mA cm^(−2)and maintaining long-term stability for over 90 h.Theoretical calculations reveal that the porous structure markedly strengthens the interaction between alloy nanoparticles and the carbon matrix,thereby significantly boosting their electrocatalytic activity and stability.These findings unequivocally validate the CF pore-generation mechanism as a powerful and innovative strategy for designing highly efficient functional nanostructures.展开更多
To segment defects from the quad flat non-lead QFN package surface a multilevel Otsu thresholding method based on the firefly algorithm with opposition-learning is proposed. First the Otsu thresholding algorithm is ex...To segment defects from the quad flat non-lead QFN package surface a multilevel Otsu thresholding method based on the firefly algorithm with opposition-learning is proposed. First the Otsu thresholding algorithm is expanded to a multilevel Otsu thresholding algorithm. Secondly a firefly algorithm with opposition-learning OFA is proposed.In the OFA opposite fireflies are generated to increase the diversity of the fireflies and improve the global search ability. Thirdly the OFA is applied to searching multilevel thresholds for image segmentation. Finally the proposed method is implemented to segment the QFN images with defects and the results are compared with three methods i.e. the exhaustive search method the multilevel Otsu thresholding method based on particle swarm optimization and the multilevel Otsu thresholding method based on the firefly algorithm. Experimental results show that the proposed method can segment QFN surface defects images more efficiently and at a greater speed than that of the other three methods.展开更多
In the multilevel thresholding segmentation of the image, the classification number is always given by the supervisor. To solve this problem, a fast multilevel thresholding algorithm considering both the threshold val...In the multilevel thresholding segmentation of the image, the classification number is always given by the supervisor. To solve this problem, a fast multilevel thresholding algorithm considering both the threshold value and the classification number is proposed based on the maximum entropy, and the self-adaptive criterion of the classification number is given. The algorithm can obtain thresholds and automatically decide the classification number. Experimental results show that the algorithm is effective.展开更多
[Objective] The study was to explore the major factors affecting diary cattle brucellosis risk assessment,as well as their strong-to-weak sequence,so as to provide theoretical basis for assessing diary cattle brucello...[Objective] The study was to explore the major factors affecting diary cattle brucellosis risk assessment,as well as their strong-to-weak sequence,so as to provide theoretical basis for assessing diary cattle brucellosis risk level in different regions.[Method] From 4 dimensions of feeding and importing,breeding,housing and polyculture situation,an evaluation index system was set up,and diary cattle brucellosis risk survey was conducted in 3 typical regions.Finally,systematic multilevel grey relation entropy method was applied to perform data analysis.[Result] The strong-to-weak sequence of Level 1 impact factor of diary cattle brucellosis was as follows:feeding and importinghousingpolyculture situationbreeding;the sequence of Level 2 impact factor was U32〉U12〉U11〉U31〉U21〉U42〉U43〉U23〉U22〉U41;the risk level sequence of 3 typical regions was Province A(County A1,A2,A3)Province B(County B1,B2,B3)Province C(County C1,C2,C3).[Conclusion] According to the weight of Level 1 index strata,administrative departments at all levels and dairy cattle farmers should lay emphasis on the aspects of feeding,importing and housing;viewed from the perspective of Level 2 index strata,dairy cattle farmers should value the siting of cattle field,the brucellosis surveillance before importing and milking modes most.According to the diary cattle brucellosis risk level of 3 typical regions,if administrative departments at all levels strengthen peoples' awareness of their personal health and increase investment in this area,with new healthy cultured atmosphere built,the risk level of diary cattle brucellosis will surly decline.展开更多
To develop an efficient and robust aerodynamic analysis method for numerical optimization designs of wing and complex configuration, a combination of matrix preconditioning and multigrid method is presented and invest...To develop an efficient and robust aerodynamic analysis method for numerical optimization designs of wing and complex configuration, a combination of matrix preconditioning and multigrid method is presented and investigated. The time derivatives of three-dimensional Navier-Stokes equations are preconditioned by Choi-Merkle preconditioning matrix that is originally designed for two-dimensional low Mach number viscous flows. An extension to three-dimensional viscous flow is implemented, and a method improving the convergence for transonic flow is proposed. The space discretizaition is performed by employing a finite-volume cell-centered scheme and using a central difference. The time marching is based on an explicit Rtmge-Kutta scheme proposed by Jameson. An efficient FAS multigrid method is used to accelerate the convergence to steady-state solutions. Viscous flows over ONERA M6 wing and M100 wing are numerically simulated with Mach numbers ranging from 0.010 to 0.839. The inviscid flow over the DLR-F4 wing-body configuration is also calculated to preliminarily examine the performance of the presented method for complex configuration. The computed results are compared with the experimental data and good agreement is achieved. It is shown that the presented method is efficient and robust for both compressible and incompressible flows and is very attractive for aerodynamic optimization designs of wing and complex configuration.展开更多
A hybrid grid generation technique and a multigrid/parallel algorithm are presented in this paper for turbulence flow simulations over three-dimensional (3D) complex geometries. The hybrid grid generation technique ...A hybrid grid generation technique and a multigrid/parallel algorithm are presented in this paper for turbulence flow simulations over three-dimensional (3D) complex geometries. The hybrid grid generation technique is based on an agglomeration method of anisotropic tetrahedrons. Firstly, the complex computational domain is covered by pure tetrahedral grids, in which anisotropic tetrahedrons are adopted to discrete the boundary layer and isotropic tetrahedrons in the outer field. Then, the anisotropic tetrahedrons in the boundary layer are agglomerated to generate prismatic grids. The agglomeration method can improve the grid quality in boundary layer and reduce the grid quantity to enhance the numerical accuracy and efficiency. In order to accelerate the convergence history, a multigrid/parallel algorithm is developed also based on anisotropic agglomeration approach. The numerical results demonstrate the excellent accelerating capability of this multigrid method.展开更多
Land degradation causes serious environmental problems in many regions of the world, and although it can be effectively assessed and monitored using a time series of rainfall and a normalized difference vegetation ind...Land degradation causes serious environmental problems in many regions of the world, and although it can be effectively assessed and monitored using a time series of rainfall and a normalized difference vegetation index (NDVI) from remotely-sensed imagery, dividing human-induced land degradation from vegetation dynamics due to climate change is not a trivial task. This paper presented a multilevel statistical modeling of the NDVI-rainfall relationship to detect human-induced land degradation at local and landscape scales in the Ordos Plateau of Inner Mongolia, China, and recognized that anthropogenic activities result in either positive (land restoration and re-vegetation) or negative (degradation) trends. Linear regressions were used to assess the accuracy of the multi- level statistical model. The results show that: (1) land restoration was the dominant process in the Ordos Plateau between 1998 and 2012; (2) the effect of the statistical removal of precipitation revealed areas of human-induced land degradation and improvement, the latter reflecting successful restoration projects and changes in land man- agement in many parts of the Ordos; (3) compared to a simple linear regression, multilevel statistical modeling could be used to analyze the relationship between the NDVI and rainfall and improve the accuracy of detecting the effect of human activities. Additional factors should be included when analyzing the NDVI-rainfall relationship and detecting human-induced loss of vegetation cover in drylands to improve the accuracy of the approach and elimi- nate some observed non-significant residual trends.展开更多
In order to solve the so-called "bull-eye" problem caused by using a simple bilinear interpolation as an observational mapping operator in the cost function in the multigrid three-dimensional variational (3DVAR) d...In order to solve the so-called "bull-eye" problem caused by using a simple bilinear interpolation as an observational mapping operator in the cost function in the multigrid three-dimensional variational (3DVAR) data assimilation scheme, a smoothing term, equivalent to a penalty term, is introduced into the cost function to serve as a means of troubleshooting. A theoretical analysis is first performed to figure out what on earth results in the issue of "bull-eye", and then the meaning of such smoothing term is elucidated and the uniqueness of solution of the multigrid 3DVAR with the smoothing term added is discussed through the theoretical deduction for one-dimensional (1D) case, and two idealized data assimilation experiments (one- and two-dimensional (2D) cases). By exploring the relationship between the smoothing term and the recursive filter theoretically and practically, it is revealed why satisfied analysis results can be achieved by using such proposed solution for the issue of the multigrid 3DVAR.展开更多
The multilayered structure of the European airport network(EAN),composed of connections and flights between European cities,is analyzed through the k-core decomposition of the connections network.This decomposition ...The multilayered structure of the European airport network(EAN),composed of connections and flights between European cities,is analyzed through the k-core decomposition of the connections network.This decomposition allows to identify the core,bridge and periphery layers of the EAN.The core layer includes the best-connected cities,which include important business air traffic destinations.The periphery layer includes cities with lesser connections,which serve low populated areas where air travel is an economic alternative.The remaining cities form the bridge of the EAN,including important leisure travel origins and destinations.The multilayered structure of the EAN affects network robustness,as the EAN is more robust to isolation of nodes of the core,than to the isolation of a combination of core and bridge nodes.展开更多
The method of establishing data structures plays an important role in the efficiency of parallel multilevel fast multipole algorithm(PMLFMA).Considering the main complements of multilevel fast multipole algorithm(M...The method of establishing data structures plays an important role in the efficiency of parallel multilevel fast multipole algorithm(PMLFMA).Considering the main complements of multilevel fast multipole algorithm(MLFMA) memory,a new parallelization strategy and a modified data octree construction scheme are proposed to further reduce communication in order to improve parallel efficiency.For far interaction,a new scheme called dynamic memory allocation is developed.To analyze the workload balancing performance of a parallel implementation,the original concept of workload balancing factor is introduced and verified by numerical examples.Numerical results show that the above measures improve the parallel efficiency and are suitable for the analysis of electrical large-scale scattering objects.展开更多
基金supported by grants from the Natural Science Foundation of Tianjin(General Program),Nos.23JCYBJC01390(to RL),22JCYBJC00220(to XC),and 22JCYBJC00210(to QL).
文摘Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.
基金Euskal Herriko Unibertsitatea(UPV/EHU)ECRI Ethics in Finance&Social Value GIU22/003Fundacion Emilio Soldevilla para la Investigacion y el Desarrollo en Economia de la Empresa(FESIDE)BOPV2020.
文摘The use of electronic currency for transactions,denoting a cashless paradigm,has become increasingly common.However,this financial innovation is not prevalent in all countries.This study aims to explain the discrepancies across countries,including individual and country factors.It may be superficially posited that this lag in development stems from individual or microlevel usage challenges.However,the application of the Technology Acceptance Model highlights the presence of overarching characteristics conducive to extensive adoption.Thus,an additional stratum,the multilevel perspective,needs to be examined.This analytical framework incorporates not only individual attributes but also the sociotechnical framework or mesolevel factors in which they operate.A multilevel econometric model is used.The results of these analyses show that the impact on the adoption of cashless payments extends beyond individual factors(attitude to technology use,perceived usefulness,and perceived ease of use).Our primary contribution,conceptually and empirically,is to broaden the analysis vision.A comprehensive multilevel analysis revealed that broader contextual elements,such as infrastructure and national skills,exert a significant influence on the adoption of cashless transactions.Consequently,the widespread acceptance of cashless payment methods is not only contingent on individual choices but is also a collective phenomenon in which the surrounding environment plays a crucial role as a catalyst for the end users in the cashless economy.
基金supported by the National Nature Science Foundation of China(No.22269021)Tianshan Talent Project of Xinjiang Uygur Autonomous Region(No.2023TSYCQNTJ0039)the Open project of Key Laboratory in Xinjiang Uygur Autonomous Region of China(No.2023D04027).
文摘Hydrogen production coupled with small molecule oxidation derived by renewable energy power has been widely studied as an effective method to reduce energy consumption and prepare added value production.Here,the copper-cobalt phosphide with a multilevel structure has been designed based on the hard and soft acids and bases theory.The nanocone composed of lamellas presented a sharp tip,which a positive effect on the mass transfer enhanced by a local electric field,and the nanolamellas contain CoP/Cu_(3)P interface provide the highly selective active site for the gluconic acid(GNA)synthesis and hydrogen evolution.The catalyst can drive hydrogen evolution at 5 A·cm^(-2)up to 437 h without active decay,and the electrocatalytic glucose oxidation at anode presents high efficiency due to Cu(I)introduction and the synergetic effect between interfaces.Density functional theory(DFT)calculation shows that water splitting more readily occurs at the CoP,which provides adsorbed H and-OH for hydrogen evolution and glucose oxidation,respectively,and glucose adsorption more readily occurs at the Cu_(3)P,which presents lower conversion energy for high value-added GNA.Efficient hydrogen evolution and glucose conversion indicate its high intrinsic activity and synergetic effect.This work provides a special interface construction strategy for the catalytic conversion of hydrogen and small molecules.
基金supported by the European Union and the Romanian Government through the Competitiveness Operational Programme 2014–2020, under the project“Increasing the economic competitiveness of the forestry sector and the quality of life through knowledge transfer,technology and CDI skills”(CRESFORLIFE),ID P 40 380/105506, subsidiary contract no. 17/2020partially by the FORCLIMSOC Nucleu Programme (Contract 12N/2023)+2 种基金project PN 23090101CresPerfInst project (Contract 34PFE/December 30, 2021)“Increasing the institutional capacity and performance of INCDS ‘Marin Drǎcea’in RDI activities-CresPer”LM was financially supported by the Research Council of Finland's flagship ecosystem for Forest-Human-Machine Interplay–Building Resilience, Redefining Value Networks and Enabling Meaningful Experiences (UNITE)(decision number 357909)
文摘In this study,we used an extensive sampling network established in central Romania to develop tree height and crown length models.Our analysis included more than 18,000 tree measurements from five different species.Instead of building univariate models for each response variable,we employed a multivariate approach using seemingly unrelated mixed-effects models.These models incorporated variables related to species mixture,tree and stand size,competition,and stand structure.With the inclusion of additional variables in the multivariate seemingly unrelated mixed-effects models,the accuracy of the height prediction models improved by over 10% for all species,whereas the improvement in the crown length models was considerably smaller.Our findings indicate that trees in mixed stands tend to have shorter heights but longer crowns than those in pure stands.We also observed that trees in homogeneous stand structures have shorter crown lengths than those in heterogeneous stands.By employing a multivariate mixed-effects modelling framework,we were able to perform cross-model random-effect predictions,leading to a significant increase in accuracy when both responses were used to calibrate the model.In contrast,the improvement in accuracy was marginal when only height was used for calibration.We demonstrate how multivariate mixed-effects models can be effectively used to develop multi-response allometric models that can be easily calibrated with a limited number of observations while simultaneously achieving better-aligned projections.
基金supported by the National Natural Science Foundation of China(Grant No.22275082 and 22175084).
文摘In the quest for high-efficiency and cost-effective catalysts for the oxygen evolution reaction(OER),a novel biomass-driven strategy is developed to fabricate a unique one-dimensional rod-arrays@two-dimensional interlaced-sheets(C_(1D@2D))network.A groundbreaking chemical fermentation(CF)pore-generation mechanism,proposed for the first time for creating nanopores within carbon structures,is based on the optimal balance between gasification and solidification.This mechanism not only results in a distinctive C_(1D@2D) multilevel network with nanoscale,intersecting and freely flowing channels but also introduces a novel concept for in situ,extensive and hierarchical pore formation.The unique architecture,combined with the homogeneous dispersion of Ni-Fe nanoparticles,facilitates easy electrolyte penetration and provides abundant active sites for the anchoring and dispersion of reactive molecules or ions.Consequently,the Ni-Fe@C_(1D@2D) porous network demonstrates an exceptional OER electrocatalytic performance,achieving a record-low overpotential of 165 mV at 10 mA cm^(−2)and maintaining long-term stability for over 90 h.Theoretical calculations reveal that the porous structure markedly strengthens the interaction between alloy nanoparticles and the carbon matrix,thereby significantly boosting their electrocatalytic activity and stability.These findings unequivocally validate the CF pore-generation mechanism as a powerful and innovative strategy for designing highly efficient functional nanostructures.
基金The National Natural Science Foundation of China(No.50805023)the Science and Technology Support Program of Jiangsu Province(No.BE2008081)+1 种基金the Transformation Program of Science and Technology Achievements of Jiangsu Province(No.BA2010093)the Program for Special Talent in Six Fields of Jiangsu Province(No.2008144)
文摘To segment defects from the quad flat non-lead QFN package surface a multilevel Otsu thresholding method based on the firefly algorithm with opposition-learning is proposed. First the Otsu thresholding algorithm is expanded to a multilevel Otsu thresholding algorithm. Secondly a firefly algorithm with opposition-learning OFA is proposed.In the OFA opposite fireflies are generated to increase the diversity of the fireflies and improve the global search ability. Thirdly the OFA is applied to searching multilevel thresholds for image segmentation. Finally the proposed method is implemented to segment the QFN images with defects and the results are compared with three methods i.e. the exhaustive search method the multilevel Otsu thresholding method based on particle swarm optimization and the multilevel Otsu thresholding method based on the firefly algorithm. Experimental results show that the proposed method can segment QFN surface defects images more efficiently and at a greater speed than that of the other three methods.
文摘In the multilevel thresholding segmentation of the image, the classification number is always given by the supervisor. To solve this problem, a fast multilevel thresholding algorithm considering both the threshold value and the classification number is proposed based on the maximum entropy, and the self-adaptive criterion of the classification number is given. The algorithm can obtain thresholds and automatically decide the classification number. Experimental results show that the algorithm is effective.
基金Supported by Special Research Fund for Public Sector(Agriculture)(200903055)~~
文摘[Objective] The study was to explore the major factors affecting diary cattle brucellosis risk assessment,as well as their strong-to-weak sequence,so as to provide theoretical basis for assessing diary cattle brucellosis risk level in different regions.[Method] From 4 dimensions of feeding and importing,breeding,housing and polyculture situation,an evaluation index system was set up,and diary cattle brucellosis risk survey was conducted in 3 typical regions.Finally,systematic multilevel grey relation entropy method was applied to perform data analysis.[Result] The strong-to-weak sequence of Level 1 impact factor of diary cattle brucellosis was as follows:feeding and importinghousingpolyculture situationbreeding;the sequence of Level 2 impact factor was U32〉U12〉U11〉U31〉U21〉U42〉U43〉U23〉U22〉U41;the risk level sequence of 3 typical regions was Province A(County A1,A2,A3)Province B(County B1,B2,B3)Province C(County C1,C2,C3).[Conclusion] According to the weight of Level 1 index strata,administrative departments at all levels and dairy cattle farmers should lay emphasis on the aspects of feeding,importing and housing;viewed from the perspective of Level 2 index strata,dairy cattle farmers should value the siting of cattle field,the brucellosis surveillance before importing and milking modes most.According to the diary cattle brucellosis risk level of 3 typical regions,if administrative departments at all levels strengthen peoples' awareness of their personal health and increase investment in this area,with new healthy cultured atmosphere built,the risk level of diary cattle brucellosis will surly decline.
文摘To develop an efficient and robust aerodynamic analysis method for numerical optimization designs of wing and complex configuration, a combination of matrix preconditioning and multigrid method is presented and investigated. The time derivatives of three-dimensional Navier-Stokes equations are preconditioned by Choi-Merkle preconditioning matrix that is originally designed for two-dimensional low Mach number viscous flows. An extension to three-dimensional viscous flow is implemented, and a method improving the convergence for transonic flow is proposed. The space discretizaition is performed by employing a finite-volume cell-centered scheme and using a central difference. The time marching is based on an explicit Rtmge-Kutta scheme proposed by Jameson. An efficient FAS multigrid method is used to accelerate the convergence to steady-state solutions. Viscous flows over ONERA M6 wing and M100 wing are numerically simulated with Mach numbers ranging from 0.010 to 0.839. The inviscid flow over the DLR-F4 wing-body configuration is also calculated to preliminarily examine the performance of the presented method for complex configuration. The computed results are compared with the experimental data and good agreement is achieved. It is shown that the presented method is efficient and robust for both compressible and incompressible flows and is very attractive for aerodynamic optimization designs of wing and complex configuration.
基金supported partially by National Basic Research Program of China (Grant No. 2009CB723800)National Natural Science Foundation of China (Grant Nos: 91016001 and 10872023)
文摘A hybrid grid generation technique and a multigrid/parallel algorithm are presented in this paper for turbulence flow simulations over three-dimensional (3D) complex geometries. The hybrid grid generation technique is based on an agglomeration method of anisotropic tetrahedrons. Firstly, the complex computational domain is covered by pure tetrahedral grids, in which anisotropic tetrahedrons are adopted to discrete the boundary layer and isotropic tetrahedrons in the outer field. Then, the anisotropic tetrahedrons in the boundary layer are agglomerated to generate prismatic grids. The agglomeration method can improve the grid quality in boundary layer and reduce the grid quantity to enhance the numerical accuracy and efficiency. In order to accelerate the convergence history, a multigrid/parallel algorithm is developed also based on anisotropic agglomeration approach. The numerical results demonstrate the excellent accelerating capability of this multigrid method.
基金National Basic Research Program of China (2012CB722201)National Natural Science Foundation of China (30970504, 31060320)National Science and Technology Support Program (2011BAC07B01)
文摘Land degradation causes serious environmental problems in many regions of the world, and although it can be effectively assessed and monitored using a time series of rainfall and a normalized difference vegetation index (NDVI) from remotely-sensed imagery, dividing human-induced land degradation from vegetation dynamics due to climate change is not a trivial task. This paper presented a multilevel statistical modeling of the NDVI-rainfall relationship to detect human-induced land degradation at local and landscape scales in the Ordos Plateau of Inner Mongolia, China, and recognized that anthropogenic activities result in either positive (land restoration and re-vegetation) or negative (degradation) trends. Linear regressions were used to assess the accuracy of the multi- level statistical model. The results show that: (1) land restoration was the dominant process in the Ordos Plateau between 1998 and 2012; (2) the effect of the statistical removal of precipitation revealed areas of human-induced land degradation and improvement, the latter reflecting successful restoration projects and changes in land man- agement in many parts of the Ordos; (3) compared to a simple linear regression, multilevel statistical modeling could be used to analyze the relationship between the NDVI and rainfall and improve the accuracy of detecting the effect of human activities. Additional factors should be included when analyzing the NDVI-rainfall relationship and detecting human-induced loss of vegetation cover in drylands to improve the accuracy of the approach and elimi- nate some observed non-significant residual trends.
基金The National Basic Research Program of China under contract No. 2013CB430304the National High-Tech R&D Program of China under contract No. 2013AA09A505the National Natural Science Foundation of China under contract Nos 41030854,40906015,40906016,41106005 and 41176003
文摘In order to solve the so-called "bull-eye" problem caused by using a simple bilinear interpolation as an observational mapping operator in the cost function in the multigrid three-dimensional variational (3DVAR) data assimilation scheme, a smoothing term, equivalent to a penalty term, is introduced into the cost function to serve as a means of troubleshooting. A theoretical analysis is first performed to figure out what on earth results in the issue of "bull-eye", and then the meaning of such smoothing term is elucidated and the uniqueness of solution of the multigrid 3DVAR with the smoothing term added is discussed through the theoretical deduction for one-dimensional (1D) case, and two idealized data assimilation experiments (one- and two-dimensional (2D) cases). By exploring the relationship between the smoothing term and the recursive filter theoretically and practically, it is revealed why satisfied analysis results can be achieved by using such proposed solution for the issue of the multigrid 3DVAR.
文摘The multilayered structure of the European airport network(EAN),composed of connections and flights between European cities,is analyzed through the k-core decomposition of the connections network.This decomposition allows to identify the core,bridge and periphery layers of the EAN.The core layer includes the best-connected cities,which include important business air traffic destinations.The periphery layer includes cities with lesser connections,which serve low populated areas where air travel is an economic alternative.The remaining cities form the bridge of the EAN,including important leisure travel origins and destinations.The multilayered structure of the EAN affects network robustness,as the EAN is more robust to isolation of nodes of the core,than to the isolation of a combination of core and bridge nodes.
基金supported by the National Basic Research Program of China (973 Program) (61320)
文摘The method of establishing data structures plays an important role in the efficiency of parallel multilevel fast multipole algorithm(PMLFMA).Considering the main complements of multilevel fast multipole algorithm(MLFMA) memory,a new parallelization strategy and a modified data octree construction scheme are proposed to further reduce communication in order to improve parallel efficiency.For far interaction,a new scheme called dynamic memory allocation is developed.To analyze the workload balancing performance of a parallel implementation,the original concept of workload balancing factor is introduced and verified by numerical examples.Numerical results show that the above measures improve the parallel efficiency and are suitable for the analysis of electrical large-scale scattering objects.