期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Aerodynamic optimization of supersonic airfoils using bijective cycle generative adversarial networks
1
作者 Chenfei Zhao Yuting Dai +2 位作者 XueWang Chao Yang Guangjing Huang 《Theoretical & Applied Mechanics Letters》 2025年第4期339-350,共12页
An efficient,diversified,and low-dimensional airfoil parameterization method is critical to airfoil aerodynamic optimization design.This paper proposes a supersonic airfoil parameterization method based on a bijective... An efficient,diversified,and low-dimensional airfoil parameterization method is critical to airfoil aerodynamic optimization design.This paper proposes a supersonic airfoil parameterization method based on a bijective cycle generative adversarial network(Bicycle-GAN),whose performance is compared with that of the conditional variational autoencoder(cVAE)based parameterization method in terms of parsimony,flawlessness,intuitiveness,and physicality.In all four aspects,the Bicycle-GAN-based parameterization method is superior to the cVAEbased parameterization method.Combined with multifidelity Gaussian process regression(MFGPR)surrogate model and a Bayesian optimization algorithm,a Bicycle-GAN-based optimization framework is established for the aerodynamic performance optimization of airfoils immersed in supersonic flow,which is compared with the cVAE-based optimization method in terms of optimized efficiency and effectiveness.The MFGPR surrogate model is established using low-fidelity aerodynamic data obtained from supersonic thin-airfoil theory and high-fidelity aerodynamic data obtained from steady CFD simulation.For both supersonic conditions,the CFD simulation costs are reduced by>20%compared with those of the cVAE-based optimization,and better optimization results are obtained through the Bicycle-GAN model.The optimization results for this supersonic flow point to a sharper leading edge,a smaller camber and thickness with a flatter lower surface,and a maximum thickness at 50%chord length.The advantages of the Bicycle-GAN and MFGPR models are comprehensively demonstrated in terms of airfoil generation characteristics,surrogate model prediction accuracy and optimization efficiency. 展开更多
关键词 Aerodynamic optimization design Deep learning Generative adversarial network Variational autoencoder multifidelity gaussian process regression
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部