Inherent complexity of plant metabolites necessitates the use of multi-dimensional information to accomplish comprehensive profiling and confirmative identification.A dimension-enhanced strategy,by offline two-dimensi...Inherent complexity of plant metabolites necessitates the use of multi-dimensional information to accomplish comprehensive profiling and confirmative identification.A dimension-enhanced strategy,by offline two-dimensional liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry(2 D-LC/IM-QTOF-MS)enabling four-dimensional separations(2 D-LC,IM,and MS),is proposed.In combination with in-house database-driven automated peak annotation,this strategy was utilized to characterize ginsenosides simultaneously from white ginseng(WG)and red ginseng(RG).An offline 2 DLC system configuring an Xbridge Amide column and an HSS T3 column showed orthogonality 0.76 in the resolution of ginsenosides.Ginsenoside analysis was performed by data-independent high-definition MSE(HDMSE)in the negative ESI mode on a Vion?IMS-QTOF hybrid high-resolution mass spectrometer,which could better resolve ginsenosides than MSEand directly give the CCS information.An in-house ginsenoside database recording 504 known ginsenosides and 58 reference compounds,was established to assist the identification of ginsenosides.Streamlined workflows,by applying UNIFI?to automatedly annotate the HDMSEdata,were proposed.We could separate and characterize 323 ginsenosides(including 286 from WG and 306 from RG),and 125 thereof may have not been isolated from the Panax genus.The established 2 D-LC/IM-QTOF-HDMSEapproach could also act as a magnifier to probe differentiated components between WG and RG.Compared with conventional approaches,this dimensionenhanced strategy could better resolve coeluting herbal components and more efficiently,more reliably identify the multicomponents,which,we believe,offers more possibilities for the systematic exposure and confirmative identification of plant metabolites.展开更多
Novel hydrogen storage materials have propelled progress in hydrogen storage technologies.Magnesium hydride(MgH_(2))is a highly promising candidate.Nevertheless,several drawbacks,including the need for elevated therma...Novel hydrogen storage materials have propelled progress in hydrogen storage technologies.Magnesium hydride(MgH_(2))is a highly promising candidate.Nevertheless,several drawbacks,including the need for elevated thermal conditions,sluggish dehydrogena-tion kinetics,and high thermodynamic stability,limit its practical application.One effective method of addressing these challenges is cata-lyst doping,which effectively boosts the hydrogen storage capability of Mg-based materials.Herein,we review recent advancements in catalyst-doped MgH_(2) composites,with particular focus on multicomponent and high-entropy catalysts.Structure-property relationships and catalytic mechanisms in these doping strategies are also summarized.Finally,based on existing challenges,we discuss future research directions for the development of Mg-based hydrogen storage systems.展开更多
Multicomponent Gd_(1−x)Sm_(x)Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)double perovskites are optimized for application in terms of chemical composi-tion and morphology for the use as oxygen electrodes in solid oxide cells.Structur...Multicomponent Gd_(1−x)Sm_(x)Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)double perovskites are optimized for application in terms of chemical composi-tion and morphology for the use as oxygen electrodes in solid oxide cells.Structural studies of other physicochemical properties are con-ducted on a series of materials obtained by the sol-gel method with different ratios of Gd and Sm cations.It is documented that changing the x value,and the resulting adjustment of the average ionic radius,have a significant impact on the crystal structure,stability,as well as on the total conductivity and thermomechanical properties of the materials,with the best results obtained for the Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)composition.Oxygen electrodes are prepared using the selected compound,allowing to obtain low polarization resistance values,such as 0.086Ω·cm^(2)at 800℃.Systematic studies of electrocatalytic activity are conducted using La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(_(0.2))O_(3−δ)as the electrolyte for all electrodes,and Ce_(0.8)Gd_(0.2)O_(2−δ)electrolyte for the best performing Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)electrodes.The electrochemical data are analyzed using the distribution of relaxation times method.Also,the influence of the preparation method of the electrode material is in-ve`stigated using the electrospinning technique.Finally,the performance of the Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)electrodes is tested in a Ni-YSZ(yttria-stabilized zirconia)anode-supported cell with a Ce_(0.8)Gd_(0.2)O_(2−δ)buffer layer,in the fuel cell and electrolyzer operating modes.With the electrospun electrode,a power density of 462 mW·cm^(−2)is obtained at 700℃,with a current density of ca.0.2 A·cm^(−2)at 1.3 V for the electrolysis at the same temperature,indicating better performance compared to the sol-gel-based electrode.展开更多
Multicomponent(Hf-Zr-Ta)B_(2)potentially provides improved ablation resistance compared with silicon-based ceramics.Here we deposited(Hf_(0.5-x/2)Zr_(0.5-x/2)Ta_(x))B_(2)(x=0,0.1,and 0.2)coatings onto C/C com-posites,...Multicomponent(Hf-Zr-Ta)B_(2)potentially provides improved ablation resistance compared with silicon-based ceramics.Here we deposited(Hf_(0.5-x/2)Zr_(0.5-x/2)Ta_(x))B_(2)(x=0,0.1,and 0.2)coatings onto C/C com-posites,and investigated their ablation behaviors under an oxyacetylene torch with a heat flux of 2.4 MW m^(-2).It was observed that the x=0.1 oxide scale bulged but was denser,and the x=0.2 oxide scale was blown away due to the formation of excessive liquid.Based on these findings,we further de-veloped a duplex(Hf-Zr-Ta)B_(2)coating that showed a linear recession rate close to zero(0.11μm s^(-1))after two 120-s ablation cycles.It is identified that the resulting oxide scale is mainly composed of(Hf,Zr)_(6)Ta_(2)O_(17)and(Hf,Zr,Ta)O_(2)by performing aberration-corrected(scanning)transmission electron microscopy.The protective mechanism is related to the peritectic transformation of orthorhombic-(Hf,Zr)_(6)Ta_(2)O_(17)to tetragonal-(Hf,Zr,Ta)O_(2)plus Ta-dominated liquid.This study contributes to the develop-ment of Ta-containing multicomponent UHTC bulk and coatings for ultra-high temperature applications.展开更多
A series of CeO_(2)@MnO_(2)composites was prepared by deposition-precipitation methods.These materials were used to activate sodium persulfate(PDS)for the oxidation of tetracycline.It is found that the composites,espe...A series of CeO_(2)@MnO_(2)composites was prepared by deposition-precipitation methods.These materials were used to activate sodium persulfate(PDS)for the oxidation of tetracycline.It is found that the composites,especially the CeO_(2)@MnO_(2)-1:4 composites,exhibit better tetracycline removal rates than the pure components.X-ray diffraction(XRD),Raman and scanning electron microscopy(SEM)analyses all indicate that the composite has been successfully prepared with high purity and high crystalline.The XPS analysis shows that the strong interaction between the components promotes the electron transfer.Additionally,the kinetic rate constants of CeO_(2)@MnO_(2)-1:4 after 60 min are 3.8 and 12.7 times higher than pure CeO_(2)and MnO_(2),respectively.CeO_(2)@MnO_(2-)1:4 composite also exhibits excellent catalytic activity for individual and hybrid pollutants.The effects of wastewater matrix,pH,circulation and ion stre ngth on the degradation of tetracycline were investigated.It is found that CeO_(2)@MnO_(2)-1:4 composite has good practical application prospects.CeO_(2)@MnO_(2)composites with synergistic adsorption catalysis can activate PDS and peroxymo no sulfate(PMS)for efficient organic catalytic oxidation.This paper provides the theoretical basis and data support for the practical application of the CeO_(2)@MnO_(2)composite materials.展开更多
Despite their attractive features of high energy density,low cost,and safety,polysulfide/iodide flow batteries(SIFBs)are hampered by the sluggish kinetics of the iodide redox couple,which restricts overall performance...Despite their attractive features of high energy density,low cost,and safety,polysulfide/iodide flow batteries(SIFBs)are hampered by the sluggish kinetics of the iodide redox couple,which restricts overall performance.Multicomponent sulfides are demonstrated as promising catalysts for accelerating I^(-)/I_(3)^(-) redox reactions.Concurrently,the enhanced configurational entropy arising from multinary compositions drives synergistic effects among constituent elements,establishing a viable pathway to optimize catalytic performance.Building on these foundations,this work introduces a targeted orbital hybridization-optimized electron density strategy to enhance the catalytic activity.Implementing this concept,we developed an in-situ solvothermal synthesis process for an entropy-enhanced AgCuZnSnS_(4) loaded graphite felt(ACZTS/GF)electrode.The engineered electrode demonstrates exceptional electrocatalytic performance with improved bulk conductivity and interfacial charge transfer kinetics within a SIFB.The cell achieves a high energy efficiency of 88.5%at 20 mA·cm^(−2) with 10%state-of-charge.Furthermore,the battery delivers a maximum power density of 119.8 mW·cm^(−2) and exhibits excellent long-term cycling stability.These significant results stem from orbital hybridization-driven electronic state optimization and entropy effect-induced synergistic catalysis.展开更多
The article concluded that network pharmacology provides new ideas and insights into the molecular mechanism of traditional Chinese medicine(TCM)treatment of cancer.TCM is a new choice and hot spot in the field of can...The article concluded that network pharmacology provides new ideas and insights into the molecular mechanism of traditional Chinese medicine(TCM)treatment of cancer.TCM is a new choice and hot spot in the field of cancer treatment.We have also previously published studies on TCM and network pharmacology.In this letter,we summarize the new paradigm of network pharmacology in cancer treatment mechanisms.展开更多
Objectives:To assess the effects of a wearable-sensorassisted multicomponent exercise program on physical fitness,cognition and quality of life in a practical setting involving frail older adults.Methods:Frail older a...Objectives:To assess the effects of a wearable-sensorassisted multicomponent exercise program on physical fitness,cognition and quality of life in a practical setting involving frail older adults.Methods:Frail older adults(n=130)were randomly divided into a control(CG,n=68)group and an exercise group(EG,n=62)in a 12-week intervention,which included stride gait training with wearable sensors;aerobic exercise;and resistance,flexibility,balance,and cognitive training.Primary outcomes(physical fitness)were evaluated via the SPPB and SFT.Secondary outcomes(cognitive ability,quality of life and frailty)were evaluated via the MoCA-BC,SF-36 and Fried frailty criteria,respectively.Results:After the 12-week intervention,the EG demonstrated significant improvements(p<0.05)vs.the CG in gait speed(β_(3)=0.424,coefficient of interaction effect between group and time from the generalized linear mixed model),chair stand(β_(3)=0.501)and total score(β_(3)=65.466)of SPPB and all SFT components including 6MWT(walked distance,β_(3)=1.098;walking speed,β_(3)=0.105;stride length,β_(3)=0.041),back scratch(β_(3)=4.926),chair sit and reach(β_(3)=3.762),30s arm curl(β_(3)=6.124),30s sit-to-stand(β_(3)=3.04),and TUG(β_(3)=−6.712).The MoCA-BC total,verbal fluency and delayed recall scores;the physical function,general health,vitality,and mental health scores of the SF-36;and the frailty phenotype in the EG were significantly improved compared with those of the CG.Conclusions:The progressive wearable-sensor-assisted multicomponent exercise program designed in this study enhanced physical fitness,cognitive ability and quality of life and slowed down the progression of frailty in frail older adults,supporting its potential as a feasible communitybased health intervention.展开更多
Functional hyperbranched polymers,as an important class of materials,are widely applied in diverse areas.Therefore,the development of simple and efficient reactions to prepare hyperbranched polymers is of great signif...Functional hyperbranched polymers,as an important class of materials,are widely applied in diverse areas.Therefore,the development of simple and efficient reactions to prepare hyperbranched polymers is of great significance.In this work,trialdehydes,diamines,and trimethylsilyl cyanide could easily undergo multicomponent polymerization under mild conditions,producing hyperbranched poly(α-aminonitrile)s with high molecular weights(M_(w) up to 4.87×10^(4))in good yields(up to 85%).The hyperbranched poly(α-aminonitrile)s have good solubility in commonly used organic solvents,high thermal stability as well as morphological stability.Furthermore,due to the numerous aldehyde groups in their branched chains,these hb-poly(α-aminonitrile)s can undergo one-pot,two-step,four-component post-polymerization with high efficiency.This work not only confirms the efficiency of our established catalyst-free multicomponent polymerization of aldehydes,amines and trimethylsilyl cyanide,but also provides a versatile and powerful platform for the preparation of functional hyperbranched polymeric materials.展开更多
This study reports the response of helium(He)ion irradiation on binary-phase structured alloy V_(34)Ti_(25)Cr_(10)Ni_(30)Pd1.The alloy consists of a VCr matrix with nano-sized TiNi precipitates and a B2 TiNi matrix wi...This study reports the response of helium(He)ion irradiation on binary-phase structured alloy V_(34)Ti_(25)Cr_(10)Ni_(30)Pd1.The alloy consists of a VCr matrix with nano-sized TiNi precipitates and a B2 TiNi matrix with nano-sized VCr precipitates.VCr is chemical-disordered and TiNi has a B2-ordered structure.The alloy was subjected to 400 keV He ion irradiation with a fluence of 1×10^(17)ions cm^(−2)at 450℃.The results show He bubbles within the chemical-disordered VCr matrix exhibit a near-spherical shape with a smaller size and higher density compared to that in chemical-ordered TiNi phase with a larger size,lower density,and faceted shape.This indicates the chemical-disordered VCr phase effectively suppresses He accumulation compared to the B2-ordered TiNi phase,emphasizing the dominance of chemical struc-tures in He bubble formation.The calculation of density functional theory(DFT)shows that Ti and Ni have lower vacancy formation energy than that of V and Cr,respectively,which results in the increased vacancy production in TiNi.Consequently,He bubbles in TiNi have a larger bubble size consistent with experimental observations of radiation-induced Ni segregation.These findings elucidate the roles of or-dered and disordered chemical structures in He bubble evolution,offering insights for the development of gas ion irradiation-resistant materials.展开更多
Premature adiabatic shear localization caused by strain softening is a roadblock for the application of body-centered cubic(BCC)structured high-entropy alloy(HEAs)in the impact field.A micron-scale orthorhombic-phase(...Premature adiabatic shear localization caused by strain softening is a roadblock for the application of body-centered cubic(BCC)structured high-entropy alloy(HEAs)in the impact field.A micron-scale orthorhombic-phase(O-phase)strengthened TiZrVNbAl alloy was developed to delay adiabatic shear failure and enhance dynamic ductility.The O-phase can not only reduce the slip length,but also promote the pinning and tangling of the dislocations near the phase boundaries.The introduction of the O-phase transformed the strain hardening rate from negative to positive,resulting in a significantly improved dynamic shear resistance.Meanwhile,slip transfer across the O-phase via dislocation cutting mechanisms and a reduction of slip band spacing guaranteed dynamic deformation uniformity.Benefiting from the introduction of the O-phase,the alloy exhibits an excellent stored energy density(∼446 J/cm^(3),surpass the reported BCC-HEAs and typical titanium alloys),a large dynamic fracture strain(∼42%)and a considerable dynamic specific yield strength(∼241 MPa cm^(3)g^(-1)).The present study presents an effective approach for developing BCC-HEAs with excellent dynamic shear resistance and plasticity.展开更多
Exploration of new green polymerization strategies for the construction of conjugated polymers is important but challengeable.In this work,a multicomponent polymerization of acetylarenes,alkynones and ammonium acetate...Exploration of new green polymerization strategies for the construction of conjugated polymers is important but challengeable.In this work,a multicomponent polymerization of acetylarenes,alkynones and ammonium acetate for in situ construction of conjugated poly(triarylpyridine)s was developed.The polymerization reactions of diacetylarenes,aromatic dialkynones and NH_(4)OAc were performed in dimethylsulfoxide(DMSO)under heating in the presence of potassium tert-butoxide(t-BuOK),affording four conjugated poly(2,4,6-triarylpyridine)s(PTAPs)in satisfactory yields.The resulting PTAPs have good solubility in common organic solvents and high thermal stability with 5%weight loss temperatures reaching up to 460℃.They are also electrochemically active.The PTAPs incorporating tetraphenylethene units manifest aggregation-induced emission features.Moreover,through simply being doped into poly(vinyl alcohol)(PVA)matrix,the polymer and model compound containing triphenylamine moieties exhibit room-temperature phosphorescence properties with ultralong lifetimes up to 696.2 ms and high quantum yields up to 28.7%.This work not only provides a facile green synthetic route for conjugated polymers but also offers new insights into the design of advanced materials with unique photophysical properties.展开更多
Using SiC nanowires(SiCNWs)as the substrate,reflux-annealing and electrodeposition-carbonization were sequentially applied to integrate SiC nanowires with magnetic Fe_(3)O_(4) nanoparticles and amorphous nitrogen-dope...Using SiC nanowires(SiCNWs)as the substrate,reflux-annealing and electrodeposition-carbonization were sequentially applied to integrate SiC nanowires with magnetic Fe_(3)O_(4) nanoparticles and amorphous nitrogen-doped carbon(NC)for the fabrication of SiCNWs@Fe_(3)O_(4)@NC nanocomposite.Comprehensive testing and characterization of this product provided valuable insights into the im-pact of structural and composition changes on its electromagnetic wave absorption performances.The optimized SiCNWs@Fe_(3)O_(4)@NC nanocomposite,which has 30wt%filler content and a corresponding thickness of 2.03 mm,demonstrates exceptional performance with the minimum reflection loss(RL_(min))of-53.69 dB at 11.04 GHz and effective absorption bandwidth(EAB)of 4.4 GHz.The synergistic effects of the enhanced nanocomposite on electromagnetic wave absorption were thoroughly elucidated using the theories of multiple scattering,polarization relaxation,hysteresis loss,and eddy current loss.Furthermore,a multicomponent electromagnetic wave attenu-ation model was established,providing valuable insight into the design of novel absorbing materials and the enhancement of their absorp-tion performances.This research demonstrated the significant potential of the SiCNWs@Fe_(3)O_(4)@NC nanocomposite as a highly efficient electromagnetic wave-absorbing material with potential applications in various fields,such as stealth technology and microwave absorption.展开更多
Formation of multicomponent ceramics is one of the most promising strategies for enhancing the ablation resistance of ultra-high-temperature carbide ceramics(UHTCCs),while the effects of the elements are the foundatio...Formation of multicomponent ceramics is one of the most promising strategies for enhancing the ablation resistance of ultra-high-temperature carbide ceramics(UHTCCs),while the effects of the elements are the foundation.Here,we reported an elemental synergistic effect by investigating the ablation behavior of three components,including Zr_(1/2)Hf_(1/3)Ti_(1/6)C(ZHTi),Zr_(1/2)Hf_(1/3)Ta_(1/6)C(ZHTa),and Zr_(1/2)Hf_(1/3)Ti_(1/12)Ta_(1/12)C(ZHTT).Results indicate that the Ti-Ta synergistic effect enables ZHTT to exhibit a low recession rate(3.33μm/s)and linear expansion rate(2.00μm/s)of its oxide layer,attributable to enhanced self-healing capability and durable protection.During ablation,outward diffusion of Ti can heal the oxide layer,but results in severe consumption of UHTCCs.Although the low-volatility oxide formed by Ta can reduce the loss rate of the matrix,the negligible outward diffusion of Ta leads to the formation of a porous outer oxide layer.The co-addition of Ti and Ta simultaneously provides effective self-healing and low matrix recession,enabling enhanced ablation resistance of ZHTT.展开更多
Bubbles are prevalent defects on the oxidized surfaces of ultra-high temperature carbides,compromis-ing structural stability and oxidation resistance.Despite their significance,the formation mechanisms and microstruct...Bubbles are prevalent defects on the oxidized surfaces of ultra-high temperature carbides,compromis-ing structural stability and oxidation resistance.Despite their significance,the formation mechanisms and microstructural evolution of bubbles during ultra-high temperature oxidation remain inadequately understood.To address this gap,the bubble behaviors of multicomponent carbides,including(Hf,Ti)C,(Hf,Zr,Ti)C,(Hf,Zr,Ti,Ta)C,and(Hf,Zr,Ti,Nb)C,were investigated under oxidation conditions at 2500℃.The roles of various elements were elucidated through first-principles calculations.Results show that the for-mation of a dense composite oxide layer is essential for bubble generation,with the release of gaseous products serving as the primary driving force.The microstructure of the bubbles is influenced by the ma-trix composition.The addition of Ti,Ta,and Nb significantly lowers the surface energy of the shell oxides,providing preferential nucleation sites for bubbles.The progressive oxidation of Ti leads to the formation of a“TiO_(2)-TiO-HfO_(2)”multilayerstructureat thebubbletop,which evolvesintoadendriticstructurewith prolonged oxidation.Ta and Nb further modulate the size and number of bubbles by altering the compo-sition and surface energy of the shell oxides.展开更多
A novel photocatalytic energy transfer-driven radical relay strategy has been introduced for the chemoand regioselective 1,4-difunctionalization of carbon-sulfur double bonds.This represents the first instance of radi...A novel photocatalytic energy transfer-driven radical relay strategy has been introduced for the chemoand regioselective 1,4-difunctionalization of carbon-sulfur double bonds.This represents the first instance of radical-mediated dual-functionalization of X-Y type unsaturated bonds,enabling the synthesis of complex linear molecules with C–O,C–N,and C-S bonds in a single operation.The method surpasses traditional approaches by avoiding the need for thiourea intermediates and the harsh conditions typically associated with them.The developed strategy exemplifies versatility,being applicable to 1,4-oxyamination,1,4-diamination,and 1,4-sulfonamination reactions,and has demonstrated compatibility with over 60 different substrates.The research also elucidates the role of electronic complementarity between radicals and receptors in achieving high selectivity in 1,4-difunctionalization reactions.This study significantly advances the field of bifunctionalization and remote difunctionalization reactions,with profound implications for the development of pharmaceuticals and materials science.展开更多
Foreword It is our great privilege,as vip Editors of the International Journal of Minerals,Metallurgy and Materials(IJMMM),to present this special issue on“High-Entropy and Multicomponent-Doped Materials for Energy...Foreword It is our great privilege,as vip Editors of the International Journal of Minerals,Metallurgy and Materials(IJMMM),to present this special issue on“High-Entropy and Multicomponent-Doped Materials for Energy Applications:Innovations in Energy Conversion and Storage.”This collection highlights the latest research developments in the preparation,optimizing properties,and exploring potential applications of high-entropy materials(HEMs)and other com-pounds with increased configurational entropy.展开更多
With the evolution of nickel-based single crystal superalloys,there is an increase in heavy elements such as Re and Ru.This has made solutal convection more pronounced during the directional solidification process,lea...With the evolution of nickel-based single crystal superalloys,there is an increase in heavy elements such as Re and Ru.This has made solutal convection more pronounced during the directional solidification process,leading to solute redistribution and increasing the risk of casting defects such as low-angle grain boundaries.To avoid casting defects,downward directional solidification(DWS)method is adopted to eliminate solutal convection and change solute redistribution.However,there is currently no in-situ characterization or quantitative simulation studying the solute redistribution during DWS and upward directional solidification(UWS)processes.A multicomponent phase field simulation coupled with lattice Boltzmann method was employed to quantitatively investigate changes in dendrite morphology,solutal convection and deviation of dendrite tips from the perspective of solute redistribution during UWS and DWS processes.The simulation of microstructure agrees well with the experimental results.The mechanism that explains how solutal convection affects side branching behavior is depicted.A novel approach is introduced to characterize dendrite deviation,elucidating the reasons why defects are prone to occur under the influence of natural convection and solute redistribution.展开更多
Dimethyl sulfoxide(DMSO)possessing strong solvency and high boiling point is a very important aprotic polar solvent in organic and polymer synthesis.Notably,it is also a useful synthon in organic chemistry.However,the...Dimethyl sulfoxide(DMSO)possessing strong solvency and high boiling point is a very important aprotic polar solvent in organic and polymer synthesis.Notably,it is also a useful synthon in organic chemistry.However,the direct incorporation of DMSO in polymer synthesis remains challenging.In this work,DMSO was successfully converted to nitrogen-containing heterocyclic polymers as a monomer via multicomponent polymerizations(MCPs)with dialdehydes and diamines in the presence of K_(2)S_(2)O_(8)/t-BuOK at 120℃in 6 h.A series of poly(phenylquinoline)s with high M_(w)values(up to 5.11×10^(4))were obtained in satisfactory yields(up to 82%),performing good solubility,good thermal and morphological stability as well as excellent film-forming ability.The thin films of poly(phenylquinoline)s exhibit high refractive index value in a wide wavelength range of 400–1700 nm.Thus,this work not only enriches the family of MCPs but also provides an efficient strategy for the conversion of DMSO into functional polymeric materials that are potentially applicable in diverse areas.展开更多
Face-centered cubic(FCC)-structured multicomponent alloys typically exhibit good ductility but low strength.To simultaneously improve strength and ductility,a multicomponent alloy,Ni_(43.9)Co_(22.4)Fe_(8.8)Al_(10.7)Ti...Face-centered cubic(FCC)-structured multicomponent alloys typically exhibit good ductility but low strength.To simultaneously improve strength and ductility,a multicomponent alloy,Ni_(43.9)Co_(22.4)Fe_(8.8)Al_(10.7)Ti_(11.7)B_(2.5)(at%)with a unique microstructure was developed in this work.The microstructure,which includes 17.8%nanosized L12 precipitates and 26.6%micron-sized annealing twins distributed within~8μm fine FCC grains,was achieved through cryogenic rolling and subsequent annealing.The alloy exhibits a yield strength(YS)of 1063 MPa,ultimate tensile strength(UTS)of 1696 MPa,and excellent elongation of~26%.The L1_(2) precipitates and high-density grain boundaries act as a barrier to the dislocation movement,resulting in a substantial strengthening effect.In addition,the dislocations can cut through the L1_(2) precipitates that are coherent with the FCC matrix,whereas the twin boundaries can effectively absorb and store dislocations,leading to a high work-hardening rate.Furthermore,the stacking faults,Lomer-Cottrell locks,and 9-layer rhombohedral stacking sequence(9R)structures formed during tensile deformation significantly enhance strain hardening by blocking dislocation movement and accumulating dislocations,resulting in excellent comprehensive tensile properties.Theoretical calculations reveal that the grain boundaries,L1_(2)precipitates,and twin boundaries contribute the strengths of 263.8,412.6,and 68.7 MPa,respectively,accounting for 71.9%of the YS.This study introduces a promising strategy for developing multicomponent alloys with significant strength-ductility synergies.展开更多
基金the National Natural Science Foundation of China(Grant No.81872996)the State Key Research and Development Project(Grant No.2017YFC1702104)+1 种基金the State Key Project for the Creation of Major New Drugs(2018ZX09711001-009-010)the Tianjin Municipal Education Commission Research Project(Grant No.2017ZD07)。
文摘Inherent complexity of plant metabolites necessitates the use of multi-dimensional information to accomplish comprehensive profiling and confirmative identification.A dimension-enhanced strategy,by offline two-dimensional liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry(2 D-LC/IM-QTOF-MS)enabling four-dimensional separations(2 D-LC,IM,and MS),is proposed.In combination with in-house database-driven automated peak annotation,this strategy was utilized to characterize ginsenosides simultaneously from white ginseng(WG)and red ginseng(RG).An offline 2 DLC system configuring an Xbridge Amide column and an HSS T3 column showed orthogonality 0.76 in the resolution of ginsenosides.Ginsenoside analysis was performed by data-independent high-definition MSE(HDMSE)in the negative ESI mode on a Vion?IMS-QTOF hybrid high-resolution mass spectrometer,which could better resolve ginsenosides than MSEand directly give the CCS information.An in-house ginsenoside database recording 504 known ginsenosides and 58 reference compounds,was established to assist the identification of ginsenosides.Streamlined workflows,by applying UNIFI?to automatedly annotate the HDMSEdata,were proposed.We could separate and characterize 323 ginsenosides(including 286 from WG and 306 from RG),and 125 thereof may have not been isolated from the Panax genus.The established 2 D-LC/IM-QTOF-HDMSEapproach could also act as a magnifier to probe differentiated components between WG and RG.Compared with conventional approaches,this dimensionenhanced strategy could better resolve coeluting herbal components and more efficiently,more reliably identify the multicomponents,which,we believe,offers more possibilities for the systematic exposure and confirmative identification of plant metabolites.
基金financially supported by the National Key Research and Development Program of China (No. 2021YFB4000604)the National Natural Science Foundation of China (No. 52271220)+2 种基金the 111 Project (No. B12015)the Fundamental Research Funds for the Central UniversitiesHaihe Laboratory of Sustainable Chemical Transformations, Guangxi Collaborative Innovation Centre of Structure and Property for New Energy and Materials, Science Research and Technology Development Project of Guilin (No. 20210102-4)
文摘Novel hydrogen storage materials have propelled progress in hydrogen storage technologies.Magnesium hydride(MgH_(2))is a highly promising candidate.Nevertheless,several drawbacks,including the need for elevated thermal conditions,sluggish dehydrogena-tion kinetics,and high thermodynamic stability,limit its practical application.One effective method of addressing these challenges is cata-lyst doping,which effectively boosts the hydrogen storage capability of Mg-based materials.Herein,we review recent advancements in catalyst-doped MgH_(2) composites,with particular focus on multicomponent and high-entropy catalysts.Structure-property relationships and catalytic mechanisms in these doping strategies are also summarized.Finally,based on existing challenges,we discuss future research directions for the development of Mg-based hydrogen storage systems.
基金funded by the National Science Centre,Poland,on the basis of the decision number UMO-2020/37/B/ST8/02097supported by the program“Excellence Initiative-Research University”for the AGH University of Krakow(IDUB AGH,No.501.696.7996,Action 4,ID 9880).
文摘Multicomponent Gd_(1−x)Sm_(x)Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)double perovskites are optimized for application in terms of chemical composi-tion and morphology for the use as oxygen electrodes in solid oxide cells.Structural studies of other physicochemical properties are con-ducted on a series of materials obtained by the sol-gel method with different ratios of Gd and Sm cations.It is documented that changing the x value,and the resulting adjustment of the average ionic radius,have a significant impact on the crystal structure,stability,as well as on the total conductivity and thermomechanical properties of the materials,with the best results obtained for the Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)composition.Oxygen electrodes are prepared using the selected compound,allowing to obtain low polarization resistance values,such as 0.086Ω·cm^(2)at 800℃.Systematic studies of electrocatalytic activity are conducted using La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(_(0.2))O_(3−δ)as the electrolyte for all electrodes,and Ce_(0.8)Gd_(0.2)O_(2−δ)electrolyte for the best performing Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)electrodes.The electrochemical data are analyzed using the distribution of relaxation times method.Also,the influence of the preparation method of the electrode material is in-ve`stigated using the electrospinning technique.Finally,the performance of the Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)electrodes is tested in a Ni-YSZ(yttria-stabilized zirconia)anode-supported cell with a Ce_(0.8)Gd_(0.2)O_(2−δ)buffer layer,in the fuel cell and electrolyzer operating modes.With the electrospun electrode,a power density of 462 mW·cm^(−2)is obtained at 700℃,with a current density of ca.0.2 A·cm^(−2)at 1.3 V for the electrolysis at the same temperature,indicating better performance compared to the sol-gel-based electrode.
基金supported by the National Key R&D Pro-gram of China(Grant No.2021YFA0715803)the National Natural Science Foundation of China(Grant Nos.52293373,52130205,and 52302091)+1 种基金the Joint Fund of Henan Province Science and Technol-ogy R&D Program(No.225200810002)the ND Basic Research Funds of Northwestern Polytechnical University(No.G2022WD).
文摘Multicomponent(Hf-Zr-Ta)B_(2)potentially provides improved ablation resistance compared with silicon-based ceramics.Here we deposited(Hf_(0.5-x/2)Zr_(0.5-x/2)Ta_(x))B_(2)(x=0,0.1,and 0.2)coatings onto C/C com-posites,and investigated their ablation behaviors under an oxyacetylene torch with a heat flux of 2.4 MW m^(-2).It was observed that the x=0.1 oxide scale bulged but was denser,and the x=0.2 oxide scale was blown away due to the formation of excessive liquid.Based on these findings,we further de-veloped a duplex(Hf-Zr-Ta)B_(2)coating that showed a linear recession rate close to zero(0.11μm s^(-1))after two 120-s ablation cycles.It is identified that the resulting oxide scale is mainly composed of(Hf,Zr)_(6)Ta_(2)O_(17)and(Hf,Zr,Ta)O_(2)by performing aberration-corrected(scanning)transmission electron microscopy.The protective mechanism is related to the peritectic transformation of orthorhombic-(Hf,Zr)_(6)Ta_(2)O_(17)to tetragonal-(Hf,Zr,Ta)O_(2)plus Ta-dominated liquid.This study contributes to the develop-ment of Ta-containing multicomponent UHTC bulk and coatings for ultra-high temperature applications.
基金Project supported by the Science and Technology Project of Henan Province(242102321048,242102321045,232102320211)National Natural Science Foundation of China(22206080)+2 种基金Natural Science Foundation of Jiangsu(SBK2022041070)International Science and Technology Cooperation Projects of Henan Province(232102521009)Natural Science Youth Foundation of Henan Province(232300420336)。
文摘A series of CeO_(2)@MnO_(2)composites was prepared by deposition-precipitation methods.These materials were used to activate sodium persulfate(PDS)for the oxidation of tetracycline.It is found that the composites,especially the CeO_(2)@MnO_(2)-1:4 composites,exhibit better tetracycline removal rates than the pure components.X-ray diffraction(XRD),Raman and scanning electron microscopy(SEM)analyses all indicate that the composite has been successfully prepared with high purity and high crystalline.The XPS analysis shows that the strong interaction between the components promotes the electron transfer.Additionally,the kinetic rate constants of CeO_(2)@MnO_(2)-1:4 after 60 min are 3.8 and 12.7 times higher than pure CeO_(2)and MnO_(2),respectively.CeO_(2)@MnO_(2-)1:4 composite also exhibits excellent catalytic activity for individual and hybrid pollutants.The effects of wastewater matrix,pH,circulation and ion stre ngth on the degradation of tetracycline were investigated.It is found that CeO_(2)@MnO_(2)-1:4 composite has good practical application prospects.CeO_(2)@MnO_(2)composites with synergistic adsorption catalysis can activate PDS and peroxymo no sulfate(PMS)for efficient organic catalytic oxidation.This paper provides the theoretical basis and data support for the practical application of the CeO_(2)@MnO_(2)composite materials.
基金supported by the National Natural Science Foundation of China(Nos.22171180,22461142137,and 22478242)the Shanghai Municipal Science and Technology Major Project,China.
文摘Despite their attractive features of high energy density,low cost,and safety,polysulfide/iodide flow batteries(SIFBs)are hampered by the sluggish kinetics of the iodide redox couple,which restricts overall performance.Multicomponent sulfides are demonstrated as promising catalysts for accelerating I^(-)/I_(3)^(-) redox reactions.Concurrently,the enhanced configurational entropy arising from multinary compositions drives synergistic effects among constituent elements,establishing a viable pathway to optimize catalytic performance.Building on these foundations,this work introduces a targeted orbital hybridization-optimized electron density strategy to enhance the catalytic activity.Implementing this concept,we developed an in-situ solvothermal synthesis process for an entropy-enhanced AgCuZnSnS_(4) loaded graphite felt(ACZTS/GF)electrode.The engineered electrode demonstrates exceptional electrocatalytic performance with improved bulk conductivity and interfacial charge transfer kinetics within a SIFB.The cell achieves a high energy efficiency of 88.5%at 20 mA·cm^(−2) with 10%state-of-charge.Furthermore,the battery delivers a maximum power density of 119.8 mW·cm^(−2) and exhibits excellent long-term cycling stability.These significant results stem from orbital hybridization-driven electronic state optimization and entropy effect-induced synergistic catalysis.
文摘The article concluded that network pharmacology provides new ideas and insights into the molecular mechanism of traditional Chinese medicine(TCM)treatment of cancer.TCM is a new choice and hot spot in the field of cancer treatment.We have also previously published studies on TCM and network pharmacology.In this letter,we summarize the new paradigm of network pharmacology in cancer treatment mechanisms.
基金supported by the project of Guangzhou Sports Science and Technology Collaborative Innovation Center(No.SL2022B04J00034)National Key Research and Development Program of China(No.2020YFC2002900)。
文摘Objectives:To assess the effects of a wearable-sensorassisted multicomponent exercise program on physical fitness,cognition and quality of life in a practical setting involving frail older adults.Methods:Frail older adults(n=130)were randomly divided into a control(CG,n=68)group and an exercise group(EG,n=62)in a 12-week intervention,which included stride gait training with wearable sensors;aerobic exercise;and resistance,flexibility,balance,and cognitive training.Primary outcomes(physical fitness)were evaluated via the SPPB and SFT.Secondary outcomes(cognitive ability,quality of life and frailty)were evaluated via the MoCA-BC,SF-36 and Fried frailty criteria,respectively.Results:After the 12-week intervention,the EG demonstrated significant improvements(p<0.05)vs.the CG in gait speed(β_(3)=0.424,coefficient of interaction effect between group and time from the generalized linear mixed model),chair stand(β_(3)=0.501)and total score(β_(3)=65.466)of SPPB and all SFT components including 6MWT(walked distance,β_(3)=1.098;walking speed,β_(3)=0.105;stride length,β_(3)=0.041),back scratch(β_(3)=4.926),chair sit and reach(β_(3)=3.762),30s arm curl(β_(3)=6.124),30s sit-to-stand(β_(3)=3.04),and TUG(β_(3)=−6.712).The MoCA-BC total,verbal fluency and delayed recall scores;the physical function,general health,vitality,and mental health scores of the SF-36;and the frailty phenotype in the EG were significantly improved compared with those of the CG.Conclusions:The progressive wearable-sensor-assisted multicomponent exercise program designed in this study enhanced physical fitness,cognitive ability and quality of life and slowed down the progression of frailty in frail older adults,supporting its potential as a feasible communitybased health intervention.
基金financially supported by the Scientific Research Start-up Fund Project of Anhui Polytechnic University for Introducing Talents(No.2022YQQ081)Natural Science Research Project of Anhui Educational Committee(No.2024AH050133)the National Natural Science Foundation of China(No.22001078).
文摘Functional hyperbranched polymers,as an important class of materials,are widely applied in diverse areas.Therefore,the development of simple and efficient reactions to prepare hyperbranched polymers is of great significance.In this work,trialdehydes,diamines,and trimethylsilyl cyanide could easily undergo multicomponent polymerization under mild conditions,producing hyperbranched poly(α-aminonitrile)s with high molecular weights(M_(w) up to 4.87×10^(4))in good yields(up to 85%).The hyperbranched poly(α-aminonitrile)s have good solubility in commonly used organic solvents,high thermal stability as well as morphological stability.Furthermore,due to the numerous aldehyde groups in their branched chains,these hb-poly(α-aminonitrile)s can undergo one-pot,two-step,four-component post-polymerization with high efficiency.This work not only confirms the efficiency of our established catalyst-free multicomponent polymerization of aldehydes,amines and trimethylsilyl cyanide,but also provides a versatile and powerful platform for the preparation of functional hyperbranched polymeric materials.
基金supported by the National Magnetic Con-finement Fusion Energy Research Project from the Ministry of Science and Technology of China(No.2022YFE03030004 and 2019YFE03120003)the National Natural Science Foundation of China(No.12275010,12275176,12275001,12335017,11921006,U21B2082,U22B2064 and U20B2025)+3 种基金the Beijing Municipal Natural Science Foundation(No.1222023)the Shenzhen Science and Technology Program(No.RCYX20210609103904028)Engang Fu acknowledges the support from the Science Fund or Creative Research Groups of NSFC,the Ion Beam Materials Laboratory(IBML)and Electron Microscopy Laboratory(EML)the High-performance Computing Platform(HPC)at Peking University.Xing Liu acknowledges the discussion with Prof.Ning Gao and Dr.Yifan Zhang.
文摘This study reports the response of helium(He)ion irradiation on binary-phase structured alloy V_(34)Ti_(25)Cr_(10)Ni_(30)Pd1.The alloy consists of a VCr matrix with nano-sized TiNi precipitates and a B2 TiNi matrix with nano-sized VCr precipitates.VCr is chemical-disordered and TiNi has a B2-ordered structure.The alloy was subjected to 400 keV He ion irradiation with a fluence of 1×10^(17)ions cm^(−2)at 450℃.The results show He bubbles within the chemical-disordered VCr matrix exhibit a near-spherical shape with a smaller size and higher density compared to that in chemical-ordered TiNi phase with a larger size,lower density,and faceted shape.This indicates the chemical-disordered VCr phase effectively suppresses He accumulation compared to the B2-ordered TiNi phase,emphasizing the dominance of chemical struc-tures in He bubble formation.The calculation of density functional theory(DFT)shows that Ti and Ni have lower vacancy formation energy than that of V and Cr,respectively,which results in the increased vacancy production in TiNi.Consequently,He bubbles in TiNi have a larger bubble size consistent with experimental observations of radiation-induced Ni segregation.These findings elucidate the roles of or-dered and disordered chemical structures in He bubble evolution,offering insights for the development of gas ion irradiation-resistant materials.
基金supported by the YEQISUN Joint Funds of the National Natural Science Foundation of China(Grant No.U2241234)the National Natural Science Foundation of China(Grant No.52301127).
文摘Premature adiabatic shear localization caused by strain softening is a roadblock for the application of body-centered cubic(BCC)structured high-entropy alloy(HEAs)in the impact field.A micron-scale orthorhombic-phase(O-phase)strengthened TiZrVNbAl alloy was developed to delay adiabatic shear failure and enhance dynamic ductility.The O-phase can not only reduce the slip length,but also promote the pinning and tangling of the dislocations near the phase boundaries.The introduction of the O-phase transformed the strain hardening rate from negative to positive,resulting in a significantly improved dynamic shear resistance.Meanwhile,slip transfer across the O-phase via dislocation cutting mechanisms and a reduction of slip band spacing guaranteed dynamic deformation uniformity.Benefiting from the introduction of the O-phase,the alloy exhibits an excellent stored energy density(∼446 J/cm^(3),surpass the reported BCC-HEAs and typical titanium alloys),a large dynamic fracture strain(∼42%)and a considerable dynamic specific yield strength(∼241 MPa cm^(3)g^(-1)).The present study presents an effective approach for developing BCC-HEAs with excellent dynamic shear resistance and plasticity.
基金supported by the National Natural Science Foundation of China(No.22071166)the Priority Academic Program Development of Jiangsu High Education Institutions(PAPD).
文摘Exploration of new green polymerization strategies for the construction of conjugated polymers is important but challengeable.In this work,a multicomponent polymerization of acetylarenes,alkynones and ammonium acetate for in situ construction of conjugated poly(triarylpyridine)s was developed.The polymerization reactions of diacetylarenes,aromatic dialkynones and NH_(4)OAc were performed in dimethylsulfoxide(DMSO)under heating in the presence of potassium tert-butoxide(t-BuOK),affording four conjugated poly(2,4,6-triarylpyridine)s(PTAPs)in satisfactory yields.The resulting PTAPs have good solubility in common organic solvents and high thermal stability with 5%weight loss temperatures reaching up to 460℃.They are also electrochemically active.The PTAPs incorporating tetraphenylethene units manifest aggregation-induced emission features.Moreover,through simply being doped into poly(vinyl alcohol)(PVA)matrix,the polymer and model compound containing triphenylamine moieties exhibit room-temperature phosphorescence properties with ultralong lifetimes up to 696.2 ms and high quantum yields up to 28.7%.This work not only provides a facile green synthetic route for conjugated polymers but also offers new insights into the design of advanced materials with unique photophysical properties.
基金supported by the National Natural Science Foundation of China(Nos. 52072196, 52002200, 52102106,52202262, 22379081, and 22379080)Major Basic Research Program of Natural Science Foundation of Shandong Province,China(No. ZR2020ZD09)+2 种基金Natural Science Foundation of Shandong Province,China(Nos. ZR2020QE063, ZR2022ME090, and ZR2023QE059)supported by the Visiting Scholar Fellowship Funding for Teachers in Shandong Province’s General Undergraduate Institutionsthe Visiting Research Fund for Teachers of Ordinary Undergraduate Universities of Shand ong Province
文摘Using SiC nanowires(SiCNWs)as the substrate,reflux-annealing and electrodeposition-carbonization were sequentially applied to integrate SiC nanowires with magnetic Fe_(3)O_(4) nanoparticles and amorphous nitrogen-doped carbon(NC)for the fabrication of SiCNWs@Fe_(3)O_(4)@NC nanocomposite.Comprehensive testing and characterization of this product provided valuable insights into the im-pact of structural and composition changes on its electromagnetic wave absorption performances.The optimized SiCNWs@Fe_(3)O_(4)@NC nanocomposite,which has 30wt%filler content and a corresponding thickness of 2.03 mm,demonstrates exceptional performance with the minimum reflection loss(RL_(min))of-53.69 dB at 11.04 GHz and effective absorption bandwidth(EAB)of 4.4 GHz.The synergistic effects of the enhanced nanocomposite on electromagnetic wave absorption were thoroughly elucidated using the theories of multiple scattering,polarization relaxation,hysteresis loss,and eddy current loss.Furthermore,a multicomponent electromagnetic wave attenu-ation model was established,providing valuable insight into the design of novel absorbing materials and the enhancement of their absorp-tion performances.This research demonstrated the significant potential of the SiCNWs@Fe_(3)O_(4)@NC nanocomposite as a highly efficient electromagnetic wave-absorbing material with potential applications in various fields,such as stealth technology and microwave absorption.
基金supported by the National Natural Science Foundation of China grant numbers[52072410].
文摘Formation of multicomponent ceramics is one of the most promising strategies for enhancing the ablation resistance of ultra-high-temperature carbide ceramics(UHTCCs),while the effects of the elements are the foundation.Here,we reported an elemental synergistic effect by investigating the ablation behavior of three components,including Zr_(1/2)Hf_(1/3)Ti_(1/6)C(ZHTi),Zr_(1/2)Hf_(1/3)Ta_(1/6)C(ZHTa),and Zr_(1/2)Hf_(1/3)Ti_(1/12)Ta_(1/12)C(ZHTT).Results indicate that the Ti-Ta synergistic effect enables ZHTT to exhibit a low recession rate(3.33μm/s)and linear expansion rate(2.00μm/s)of its oxide layer,attributable to enhanced self-healing capability and durable protection.During ablation,outward diffusion of Ti can heal the oxide layer,but results in severe consumption of UHTCCs.Although the low-volatility oxide formed by Ta can reduce the loss rate of the matrix,the negligible outward diffusion of Ta leads to the formation of a porous outer oxide layer.The co-addition of Ti and Ta simultaneously provides effective self-healing and low matrix recession,enabling enhanced ablation resistance of ZHTT.
基金financially supported by National Natural Science Foundation of China(No.52072410).
文摘Bubbles are prevalent defects on the oxidized surfaces of ultra-high temperature carbides,compromis-ing structural stability and oxidation resistance.Despite their significance,the formation mechanisms and microstructural evolution of bubbles during ultra-high temperature oxidation remain inadequately understood.To address this gap,the bubble behaviors of multicomponent carbides,including(Hf,Ti)C,(Hf,Zr,Ti)C,(Hf,Zr,Ti,Ta)C,and(Hf,Zr,Ti,Nb)C,were investigated under oxidation conditions at 2500℃.The roles of various elements were elucidated through first-principles calculations.Results show that the for-mation of a dense composite oxide layer is essential for bubble generation,with the release of gaseous products serving as the primary driving force.The microstructure of the bubbles is influenced by the ma-trix composition.The addition of Ti,Ta,and Nb significantly lowers the surface energy of the shell oxides,providing preferential nucleation sites for bubbles.The progressive oxidation of Ti leads to the formation of a“TiO_(2)-TiO-HfO_(2)”multilayerstructureat thebubbletop,which evolvesintoadendriticstructurewith prolonged oxidation.Ta and Nb further modulate the size and number of bubbles by altering the compo-sition and surface energy of the shell oxides.
基金the National Natural Science Foundation of China(No.22101059)the financial support from Guangxi Science and Technology Program of China(No.2023GXNSFBA026275)Guangxi Normal University。
文摘A novel photocatalytic energy transfer-driven radical relay strategy has been introduced for the chemoand regioselective 1,4-difunctionalization of carbon-sulfur double bonds.This represents the first instance of radical-mediated dual-functionalization of X-Y type unsaturated bonds,enabling the synthesis of complex linear molecules with C–O,C–N,and C-S bonds in a single operation.The method surpasses traditional approaches by avoiding the need for thiourea intermediates and the harsh conditions typically associated with them.The developed strategy exemplifies versatility,being applicable to 1,4-oxyamination,1,4-diamination,and 1,4-sulfonamination reactions,and has demonstrated compatibility with over 60 different substrates.The research also elucidates the role of electronic complementarity between radicals and receptors in achieving high selectivity in 1,4-difunctionalization reactions.This study significantly advances the field of bifunctionalization and remote difunctionalization reactions,with profound implications for the development of pharmaceuticals and materials science.
文摘Foreword It is our great privilege,as vip Editors of the International Journal of Minerals,Metallurgy and Materials(IJMMM),to present this special issue on“High-Entropy and Multicomponent-Doped Materials for Energy Applications:Innovations in Energy Conversion and Storage.”This collection highlights the latest research developments in the preparation,optimizing properties,and exploring potential applications of high-entropy materials(HEMs)and other com-pounds with increased configurational entropy.
基金supported by the stable support project and the Major National Science and Technology Project(2017-VII-0008-0101).
文摘With the evolution of nickel-based single crystal superalloys,there is an increase in heavy elements such as Re and Ru.This has made solutal convection more pronounced during the directional solidification process,leading to solute redistribution and increasing the risk of casting defects such as low-angle grain boundaries.To avoid casting defects,downward directional solidification(DWS)method is adopted to eliminate solutal convection and change solute redistribution.However,there is currently no in-situ characterization or quantitative simulation studying the solute redistribution during DWS and upward directional solidification(UWS)processes.A multicomponent phase field simulation coupled with lattice Boltzmann method was employed to quantitatively investigate changes in dendrite morphology,solutal convection and deviation of dendrite tips from the perspective of solute redistribution during UWS and DWS processes.The simulation of microstructure agrees well with the experimental results.The mechanism that explains how solutal convection affects side branching behavior is depicted.A novel approach is introduced to characterize dendrite deviation,elucidating the reasons why defects are prone to occur under the influence of natural convection and solute redistribution.
基金supported by the Scientific Research Start-up Fund Project of Anhui Polytechnic University for Introducing Talents(No.2022YQQ081)Natural Science Research Project of the Anhui Educational Committee(No.2024AH050133)the National Natural Science Foundation of China(No.22101088)。
文摘Dimethyl sulfoxide(DMSO)possessing strong solvency and high boiling point is a very important aprotic polar solvent in organic and polymer synthesis.Notably,it is also a useful synthon in organic chemistry.However,the direct incorporation of DMSO in polymer synthesis remains challenging.In this work,DMSO was successfully converted to nitrogen-containing heterocyclic polymers as a monomer via multicomponent polymerizations(MCPs)with dialdehydes and diamines in the presence of K_(2)S_(2)O_(8)/t-BuOK at 120℃in 6 h.A series of poly(phenylquinoline)s with high M_(w)values(up to 5.11×10^(4))were obtained in satisfactory yields(up to 82%),performing good solubility,good thermal and morphological stability as well as excellent film-forming ability.The thin films of poly(phenylquinoline)s exhibit high refractive index value in a wide wavelength range of 400–1700 nm.Thus,this work not only enriches the family of MCPs but also provides an efficient strategy for the conversion of DMSO into functional polymeric materials that are potentially applicable in diverse areas.
基金supported by the Major Science and Technology Project of Gansu Province(Nos.23ZDGA010 and 22ZD6GA008)the National Natural Science Foundation of China(No.51564035).
文摘Face-centered cubic(FCC)-structured multicomponent alloys typically exhibit good ductility but low strength.To simultaneously improve strength and ductility,a multicomponent alloy,Ni_(43.9)Co_(22.4)Fe_(8.8)Al_(10.7)Ti_(11.7)B_(2.5)(at%)with a unique microstructure was developed in this work.The microstructure,which includes 17.8%nanosized L12 precipitates and 26.6%micron-sized annealing twins distributed within~8μm fine FCC grains,was achieved through cryogenic rolling and subsequent annealing.The alloy exhibits a yield strength(YS)of 1063 MPa,ultimate tensile strength(UTS)of 1696 MPa,and excellent elongation of~26%.The L1_(2) precipitates and high-density grain boundaries act as a barrier to the dislocation movement,resulting in a substantial strengthening effect.In addition,the dislocations can cut through the L1_(2) precipitates that are coherent with the FCC matrix,whereas the twin boundaries can effectively absorb and store dislocations,leading to a high work-hardening rate.Furthermore,the stacking faults,Lomer-Cottrell locks,and 9-layer rhombohedral stacking sequence(9R)structures formed during tensile deformation significantly enhance strain hardening by blocking dislocation movement and accumulating dislocations,resulting in excellent comprehensive tensile properties.Theoretical calculations reveal that the grain boundaries,L1_(2)precipitates,and twin boundaries contribute the strengths of 263.8,412.6,and 68.7 MPa,respectively,accounting for 71.9%of the YS.This study introduces a promising strategy for developing multicomponent alloys with significant strength-ductility synergies.