Substantial challenges remain in developing fiber devices to achieve uniform and customizable photochromic lighting effects using lightweight hardware.A recent publication in Light Science&Application,spearheaded ...Substantial challenges remain in developing fiber devices to achieve uniform and customizable photochromic lighting effects using lightweight hardware.A recent publication in Light Science&Application,spearheaded by Prof.Yan-Qing Lu and Prof.Guangming Tao presents a methodical approach to surmount the limitations in photochromic fibers.They integrated controllable photochromic fibers into various wearable devices,providing a promising path for future exploration and advancement in the field of human–machine interaction.展开更多
The generation of multicolored sidebands with the spectrum from 377 to 970 nm in a 0.5-mm-thick N-WG280 Schott glass based on a cascaded four-wave mixing(CFWM) process is demonstrated. The experimental setup is compac...The generation of multicolored sidebands with the spectrum from 377 to 970 nm in a 0.5-mm-thick N-WG280 Schott glass based on a cascaded four-wave mixing(CFWM) process is demonstrated. The experimental setup is compact and economical. A pulse with a broadened spectrum from 670 to 900 nm is generated by utilizing two 0.18-mm-thick fused silica glass plates and is used to provide two input beams for the CFWM process.The new frequency components generated from the self-phase modulation effect in the two thin glass plates contribute to the broadening of the total spectral range of the generated multicolored sidebands.展开更多
For k given graphs H_(1),...,H_(k) with k≥2,the k-color Ramsey number R(H_(1),...,H_(k)) represents the minimum integer N with the following property:if the edges of the complete graph K_(N) are colored with k colors...For k given graphs H_(1),...,H_(k) with k≥2,the k-color Ramsey number R(H_(1),...,H_(k)) represents the minimum integer N with the following property:if the edges of the complete graph K_(N) are colored with k colors,then there exists some i with 1≤i≤k such that K_(N) has a subgraph in color i isomorphic to H_(i).Let C_(m) be a cycle of length m and K_(1,n) a star of order n+1.In this paper,we systematically introduce the latest research progress on star-quadrilateral Ramsey numbers and provide an overview of Ramsey numbers concerning quadrilaterals,including multicolor cases.展开更多
In this editorial,we comment on the article by Li et al.We specifically focus on the novel use of multicolor near-infrared fluorescence imaging(MCFI)with indocyanine green in laparoscopic cholecystectomy,which is an i...In this editorial,we comment on the article by Li et al.We specifically focus on the novel use of multicolor near-infrared fluorescence imaging(MCFI)with indocyanine green in laparoscopic cholecystectomy,which is an innovative approach for enhancing biliary visualization during laparoscopic cholecystectomy.This study also highlighted the limitations of conventional single-color fluorescence imaging(SCFI),which relies solely on a green fluorescence signal,leading to challenges such as visual fatigue and difficulty in distinguishing biliary structures from background hepatic tissue.Given the complex anatomy of the biliary system and the challenges of visual fatigue encountered with SCFI,MCFI addresses these issues by enabling the differentiation of biliary structures by mapping the fluorescence intensity across a unique blue-to-purple color spectrum,thus improving the clarity of anatomical structures and reducing the visual strain for surgeons.We also focus specifically on the complications and cautious usage of indocyanine green in this context,as well as the advantages and disadvantages of MCFI and SCFI.Overall,MCFI represents a significant advancement in fluorescence-guided surgery,with the potential to become a standard imaging modality for safer and more effective laparoscopic procedures.展开更多
Carbon quantum dots(CQDs)have re-ceived increasing interest owing to their excellent optical and chemical characteristics,and high biocompatibil-ity.Herein,turmeric was employed as a carbon source to fabricate green C...Carbon quantum dots(CQDs)have re-ceived increasing interest owing to their excellent optical and chemical characteristics,and high biocompatibil-ity.Herein,turmeric was employed as a carbon source to fabricate green CQDs(named WT-JHCQDs)by hydrother-mal technique.The fluorescence of WT-JHCQDs is particularly stable at differ-ent pH and high concentrations of NaCl.Moreover,WT-JHCQDs exhibit low cytotoxicity,good antioxidant properties,and outstanding biocompatibility.The WT-JHCQDs possess protruding ability of cell imaging and bacteria imaging.This work provides a promising strat-egy for designing excellent fluorescent probes for bioimaging.展开更多
A set of co-doped(Tb^(3+)/Dy^(3+))lithium zinc borate(LZB)glasses were developed by melt quenching.The structural evaluation was performed for synthesized glassy matrices.The Dy^(3+)and Tb^(3+)individually doped glass...A set of co-doped(Tb^(3+)/Dy^(3+))lithium zinc borate(LZB)glasses were developed by melt quenching.The structural evaluation was performed for synthesized glassy matrices.The Dy^(3+)and Tb^(3+)individually doped glasses exhibit intense yellow and green luminescence bands at 575 nm(^(4)F_(9/2)→^(6)H_(13/2))and543 nm(^(5)D_(4)→^(7)F_(5)),respectively.The sensitization effect of Dy^(3+)on Tb^(3+)was analyzed by increasing the Tb^(3+)content with respect to the optimum Dy^(3+)content(0.5 mol%)in Dy^(3+)/Tb^(3+).The spectral overlay of Dy^(3+)luminescence and Tb^(3+)absorption profiles,Dy^(3+)/Tb^(3+)PL spectra under different excitations 352,362,376,and 385 nm,shortening decay lifetimes of Dy^(3+)in Dy^(3+)/Tb^(3+)co-activated glasses,energy transfer(ET)parameters,chromaticity coordinates and their corresponding correlated temperatures all help to explain ET from Dy^(3+)to Tb^(3+).At 385 nm of Dy^(3+)excitation,the optimized co-activated(0.5Dy^(3+)+1.0Tb^(3+)):LZB glass displays cool white light emission.The non-radiative ET from Dy^(3+)to Tb^(3+)is dominated by electric dipole-dipole interaction and its ET efficiency was calculated to be 63%.At the same time,reverse ET from Tb^(3+)to Dy^(3+)was also analyzed.The shift in color coordinates from dominant yellow to greenish-yellow,green and white light emission suggests that Dy^(3+)/Tb^(3+)coactivated LZB glasses can be a potential candidate for UV converted multicolor and white light emitting devices.展开更多
Mechanochromophores based on bichromic molecular switches,such as bis-naphthopyanes,allow multimodal mechanochromic behavior beyond the typical binary response from single chromophores,which is important for distingui...Mechanochromophores based on bichromic molecular switches,such as bis-naphthopyanes,allow multimodal mechanochromic behavior beyond the typical binary response from single chromophores,which is important for distinguishing between multiple stress states through discrete changes in color.Spontaneously generated persistent and distinguishable multi-colors from activated bis-naphthopyanes remain challenging.And the versatility of bis-mechanophore design for advanced optical molecular systems and the fundamental insights into the corresponding mechano-reactivity are not enough.Here,we identify a dihydroanthracene bridged bis-naphthopyrans as a multimodal mechanochromophore in polymers.Bridging two pyrans with the sterically constrained dihydroanthracene is helpful to control the steric effect for the favorable formation of a distinctly appreciable bis-merocyanine(bis-MC)product.By varying the length of the polymer chains,the force delivered to the mechanophore is modulated,resulting in a gradient change in the relative distribution of two distinctly colored MC products and a multicolor mechanochromism.Mechanical activation of this bis-naphthopyanes proceeds via a mechanistically distinct pathway compared to the photochemical process.In addition,the bulk films can also achieve pronounced color changes when subjected to mechanical force.This study thus further expands the molecular diversity of mechanochromophores and tune the multimodal switch properties of bis-naphthopyrans based polymers.展开更多
Photochromic materials with multicolor upconversion reversible modulations are attractive in optical switching devices.Herein,the fabricated YNbO_(4):Er^(3+)/Tm^(3+)/Yb^(3+) materials exhibit excellent photochromism a...Photochromic materials with multicolor upconversion reversible modulations are attractive in optical switching devices.Herein,the fabricated YNbO_(4):Er^(3+)/Tm^(3+)/Yb^(3+) materials exhibit excellent photochromism and multicolor upconversion properties from green,red to near infrared(NIR) emissions with increasing Yb concentrations.Reversible multiband upconversion modulations are achieved by alternating light(365 and 405 nm) or thermal stimuli.After 365 nm irradiation,the luminescence color changes from yellow to red,the luminescent photoswitching contrast reaches up to 86.21%(green),82.12%(red) and 77.38%(NIR) in the Y_(0.83)Er_(0.01)Tm_(0.01)NbO_(4):0.15 Yb sample.Besides,the upconversion emission intensity before and after photochromic reaction shows remarkable change in a wide temperature range of 298-718 K.These results indicate that the Er^(3+)/Tm^(3+)/Yb^(3+) tri-doped YNbO_(4) materials can be a good candidate in optical switching and data storage applications.展开更多
Using simple and eco-friendly ethanol solvothermal treatment,dual-emission biomass carbon quantum dots(D-BCQDs)were synthesized from biomass viburnum awabuki leaves.Under excitation with 413 nm wavelength light two em...Using simple and eco-friendly ethanol solvothermal treatment,dual-emission biomass carbon quantum dots(D-BCQDs)were synthesized from biomass viburnum awabuki leaves.Under excitation with 413 nm wavelength light two emission peaks appeared at 490 and 675 nm and the dots could be tuned to emit crimson,red,purplish red,purple and blue-gray fluorescence by changing the solvothermal temperature from 140℃ to 160,180,200 and 240℃,respectively.XPS and FTIR characterization in-dicated that the fluorescence color was mainly determined by surface oxidation defects,elemental nitrogen and sp^(2)-C/sp^(3)-C hybrid-ized structural domains.The D-BCQDs could not only detect Fe^(3+)or Cu^(2+),but also quantify the concentration ratio of Fe^(3+)to Cu^(2+)in a solution containing both,demonstrating their potential applications in the simultaneous detection of Fe^(3+)and Cu^(2+)ions.展开更多
Dynamic assembly on time scale is common in biological systems but rare for artificial materials,especially for smart luminescent materials.Programming molecular assembly in a spatio-temporal manner and resulting in w...Dynamic assembly on time scale is common in biological systems but rare for artificial materials,especially for smart luminescent materials.Programming molecular assembly in a spatio-temporal manner and resulting in white-light-including multicolor fluorescence with time-dynamic features remains challenging.Herein,controlling molecular assembly on time scale is achieved by integrating a pH-responsive motif to a transient alkaline solution which is fabricated by activators(NaOH)and deactivators(esters),leading to automatic assembly on time scale and time-dependent multicolor fluorescence changing from blue to white and yellow.The kinetics of the assembly process is dependent on the ester hydrolysis process,which can be controlled by varying ester concentrations,temperature,initial pH,stirring rate and ester structures.This dynamic fluorescent system can be further developed for intelligent fluorescent materials such as fluorescent ink,three-dimension(3D)codes and even four-dimension(4D)codes,exhibiting a promising potential for information encryption.展开更多
Achieving versatile room temperature phosphorescence(RTP)materials,especially with tunable mechanical properties and shape memory is attractive and essential but rarely reported.Here,a strategy was reported to realize...Achieving versatile room temperature phosphorescence(RTP)materials,especially with tunable mechanical properties and shape memory is attractive and essential but rarely reported.Here,a strategy was reported to realize multi-functional RTP films with multicolor fluorescence,ultralong afterglow,adjustable mechanical properties,and shape memory through the synergistic dynamic interaction of lanthanide(Ln~Ⅲ)-terpyridine coordination,borate ester bonds,and hydrogen bondings in a poly(vinyl alcohol)(PVA)matrix.By varying the amount of borax,the mechanical properties of the films could be finely controlled due to the change of crosslinking degree of dynamic borate ester bonds in PVA.The assembly and disassembly of borate ester bonds upon the trigger of borax and acid were applied as reversible linkage to achieve programmable shape memory behavior.In addition,the films displayed both fascinating multicolor fluorescence and ultralong afterglow characteristics due to the presence of Ln III doping and confinement of terpyridine in PVA.This study provides a new avenue to impart modulable mechanical strength and shape memory to RTP materials.展开更多
Aflatoxin B_(1)(AFB_(1))is one of the most toxic,mutagenic and carcinogenic mycotoxin,widely exists in contaminated food,grains and feedstuff products.In this study,a novel magnetic beads multicolor colorimetric immun...Aflatoxin B_(1)(AFB_(1))is one of the most toxic,mutagenic and carcinogenic mycotoxin,widely exists in contaminated food,grains and feedstuff products.In this study,a novel magnetic beads multicolor colorimetric immunoassay(MBMCIA)based on Au@Ag nanorods(Au@Ag NRs)is proposed to visual detect ultralow concentration of AFB_(1)with high-resolution by the naked-eye.To design the MBMCIA system,AFB_(1)-BSA conjugates were first coated on the surface of magnetic beads(MBs),then alkaline phosphatase(ALP)as a bridge between immunoassay a nd color reaction was used for catalytic hydrolysis of ascorbic acid-phosphate to generate reductive ascorbic acid.Finally,the yielded ascorbic acid could reduce silver ions to grow a silver coating on the surface of gold nanorods to generate Au@Ag NRs,which leads to the bule-shifted longitudinal absorption peak of Au NRs,accompanying with a series of perceptible color change.Under the optimal conditions,the proposed MBMCIA exhibited go od sensitivity and specificity for the detection of AFB_(1)with the detection limit as low as 5.7 pg/mL Meanwhile,the MBMCIA was also applied for the analysis of AFB_(1)in spiked wheat samples,the obtained recoveries range from 99.1%to 104.3%with relative standard deviation(RSD)less than 7.05%were acceptable.The proposed MBMCIA integrates separated,enriched,anti-interfe rence and signal read-out into one,which opens up a new avenue for an on-site visual food safety inspection or environmental monitoring.展开更多
Chromosome aberrations are distinctive features of human malignant tumors. Analysis of chromosomal changes can illuminate the molecular mechanisms underlying the development and progression of cancer. To establish the...Chromosome aberrations are distinctive features of human malignant tumors. Analysis of chromosomal changes can illuminate the molecular mechanisms underlying the development and progression of cancer. To establish the technique of multicolor fluorescence in situ hybridization (M-FISH) for identifying chromosome aberrations in esophageal carcinoma cell line KYSE 410-4, four pools of 6-color whole-chromosome painting probes have been designed and hybridized on the same metaphase spread by four rounds of repetitive FISH. Repetitive 6-color M-FISH was successfully established and the cytogenetic abnormalities in KYSE 410-4 cells were characterized. Chromosome gains occurred at 2q, 3, 8, 17p, and X. An isochromosome 3q was visualized in the cell line, which might be one intermediate mechanism leading to 3p losses and/or 3q gains. Furthermore, 16 structural arrangements were detected, including four derivative chromosomes. The rearrangement of the centromeric regions accounted for approximately 44% of all rearrangements. The results added a more complete and accurate information of the genetic alterations to the classical cytogenetic description of KYSE 410-4 and provided a detailed cytogenetic background data for appropriate use of the cell line. The established 6-color M-FISH was useful for analyzing chromosomes in the whole genome of human tumors.展开更多
yD3+/Tm3+ co-doped and yD3+/Ho3+/Tm3+ tri-doped tellurite glasses were synthesized by fusing the mixture of TeO2, PbF2, AIF3, BaF2, Yb2O3, Tm203 and H0203 in a cortmdum crucible at 850 ℃ for 20 min. The synthesi...yD3+/Tm3+ co-doped and yD3+/Ho3+/Tm3+ tri-doped tellurite glasses were synthesized by fusing the mixture of TeO2, PbF2, AIF3, BaF2, Yb2O3, Tm203 and H0203 in a cortmdum crucible at 850 ℃ for 20 min. The synthesized glasses were characterized by upconversion emission spectra under the excitation of 980 nm laser, and the emission colors were investigated according to the CIE-1931 standards. The results indicated that yD3+/Tm3+ co-doped tellurite glass exhibited blue upconversion emission with favor- able color coordinates of (0.20, 0.07). Yb3+, HO3+ and Tm3+ tri-doped tellurite glasses presented white upconversion luminescence under a single 980 nm laser excitation. Moreover, a very wide range of emission colors could be tuned by altering Ho3+ concentration. Combining the contribution of adjusting Ho3+ concentration and pump power, near equal energy white light was obtained.展开更多
Lanthanide coordinated multicolor fluorescent polymeric hydrogels(MFPHs)are quite promising for various applications because of their sharp fluorescence bands and high color purity.However,few attempts have been carri...Lanthanide coordinated multicolor fluorescent polymeric hydrogels(MFPHs)are quite promising for various applications because of their sharp fluorescence bands and high color purity.However,few attempts have been carried out to locally regulate their fluorescence switching or shape deforming behaviors,but such studies are very useful for patterned materials with disparate functions.Herein,the picolinate moieties that can sensitize Tb^(3+)/Eu^(3+)luminescence via antenna effect were chemically introduced into interpenetrating double networks to produce a robust kind of lanthanide coordinated MFPHs.Upon varying the doping ratio of Tb^(3+)/Eu^(3+),fluorescence colors of the obtained hydrogels were continuously regulated from green to orange and then red.Importantly,spatial fluorescence color control within the hydrogel matrix could be facilely realized by controlled diffusion of Tb^(3+)/Eu^(3+)ions,producing a number of 2D hydrogel objects with local multicolor fluorescent patterns.Furthermore,the differential swelling capacities between the fluorescent patterned and non-fluorescent parts led to interesting 2D-to-3D shape deformation to give well-defined multicolor fluorescent 3D hydrogel configurations.Based on these results,bio-inspired synergistic color/shape changeable actuators were demonstrated.The present study provided a promising strategy to achieve the local fluorescence and shape control within lanthanide coordinated hydrogels,and is expected to be expanded for fabricating useful patterned materials with disparate functions.展开更多
Electrochromic devices(ECDs)have exhibited promising applications in the fields of energy-saving intelligent buildings and next-generation displays because of their simple structure,low power consumption,and multicolo...Electrochromic devices(ECDs)have exhibited promising applications in the fields of energy-saving intelligent buildings and next-generation displays because of their simple structure,low power consumption,and multicolor displays.W_(18)O_(49)/polyaniline(PANI)hybrid films are prepared and assembled to ECDs.Compared with pure PANI and W_(18)O_(49) films,the hybrid film exhibits superior electrochemical and electrochromic performance,including high optical modulation(70.2%),large areal capacity(79.6 mF/cm^(2)),and good capacitance retention.The excellent electrochemical and electrochromic performance is ascribed to the formation of the donor(PANI)-acceptor(W_(18)O_(49))pair,the porous structure in the nanowires,and the large surface area,which enhance electron delocalization of the W_(18)O_(49)/PANI,improve the ion diffusion rate,and increase the charge storage sites.Furthermore,benefitting from the outstanding optical,electrical,and multifunctional properties,the W_(18)O_(49)/PANI hybrid film-based ECD platform is expected to play an important role in electrochromism and energy storage.展开更多
Room temperature phosphorescence(RTP)films have recently attracted increasing attention due to their excellent luminescent properties for information encryption,optoelectronic devices,and sensors.However,polyvinyl alc...Room temperature phosphorescence(RTP)films have recently attracted increasing attention due to their excellent luminescent properties for information encryption,optoelectronic devices,and sensors.However,polyvinyl alcohol(PVA)films with abundant hydrogen bonds to suppress triplet energy dissipation suffered from the humidity induced phosphorescence quenching under storage in the air for a long time.In this work,poly(acrylic acid)(PAA)was selected to crosslink PVA matrix through esterification reactions for preparing water resistant RTP films.The blue,cyan,and orange emissive RTP films were successfully obtained by incorporating three different organic compounds into PVA-PAA crosslinking films.Crosslinking strategy significantly improved the phosphorescence emissions of the doped films,and effectively blocked the absorption of water molecular,leading to the excellent photostability of the developed films.As a proof of concept,the white light phosphorescence film and anti-counterfeiting applications were successfully demonstrated.展开更多
The biocompatibility and biodegradability of peptide self-assembled materials makes them suitable for many biological applications,such as targeted drug delivery,bioimaging,and tracking of therapeutic agents.According...The biocompatibility and biodegradability of peptide self-assembled materials makes them suitable for many biological applications,such as targeted drug delivery,bioimaging,and tracking of therapeutic agents.According to our previous research,self-assembled fluorescent peptide nanoparticles can overcome the intrinsic optical properties of peptides.However,monochromatic fluorescent nanomaterials have many limitations as luminescent agents in biomedical applications.Therefore,combining different fluorescent species into one nanostructure to prepare fluorescent nanoparticles with multiple emission wavelengths has become a very attractive research area in the bioimaging field.In this study,the tetrapeptide Trp-Trp-Trp-Trp(WWWW)was self-assembled into multicolor fluorescent nanoparticles(TPNPs).The results have demonstrated that TPNPs have the blue,green,red and near infrared(NIR)fluorescence emission wavelength.Moreover,TPNPs have shown excellent performance in multicolor bioimaging,biocompatibility,and photostability.The facile preparation and multicolor fluorescence features make TPNPs potentially useful in multiplex bioanalysis and diagnostics.展开更多
Carbon dots(CDs)with room-temperature phosphorescence(RTP)have attracted dramatically growing interest in optical functional materials.However,the photoluminescence mechanism of CDs is still a vital and challenging to...Carbon dots(CDs)with room-temperature phosphorescence(RTP)have attracted dramatically growing interest in optical functional materials.However,the photoluminescence mechanism of CDs is still a vital and challenging topic.In this work,we prepared CD-based RTP materials via melting boric acid with various lengths of alkyl amine compounds as precursors.The spatial effect on the structure and the RTP properties of CDs were systematically investigated.With the increase in carbon chain length,the interplanar spacing of the carbon core expands and crosslink-enhanced emission weakens,resulting in a decrease in the phosphorescence intensity and lifetimes.Meanwhile,based on triplet-to-singlet resonance energy transfer,we employed intense and long-lived phosphorescence CDs as the donor and short-lived fluorescent dyes as the acceptor to achieve long-lived multicolor afterglow.By the triplet-to-singlet resonance energy transfer,the afterglow color can change from green to orange.The afterglow lifetimes are more than 0.9 s.Thanks to the outstanding afterglow properties,the composites were used for timeresolved and multiple-color advanced anticounterfeiting.This work will promote the design of multicolor and long-lived afterglow materials and expand their applications.展开更多
As one of the most promising fluorescent nanomaterials, carbon dots(CDs) have been extensively studied for their fluorescent properties in solution. However, research on the synthesis of multicolor solid-state fluores...As one of the most promising fluorescent nanomaterials, carbon dots(CDs) have been extensively studied for their fluorescent properties in solution. However, research on the synthesis of multicolor solid-state fluorescence(SSF) CDs(from blue to red) is rarely reported. Herein, we used o-phenylenediamine, mphenylenediamine and p-phenylenediamine with dithiosalicylic acid(DTSA) in the solvothermal reaction using acetic acid as a solvent to obtain aggregation-induced emissive(AIE) CDs of red(620 nm), green(520 nm), and blue(478 nm), respectively. XPS spectra and TEM image show that with the red-shift of luminescence, the particle size and content of C=O of the CDs gradually increases. Finally, based on the non-matrix solid-state multicolor luminescence characteristics of CDs, the application of white light LED devices is realized. Besides, based on the fat-soluble properties of CDs, fingerprint detection applications are realized.展开更多
文摘Substantial challenges remain in developing fiber devices to achieve uniform and customizable photochromic lighting effects using lightweight hardware.A recent publication in Light Science&Application,spearheaded by Prof.Yan-Qing Lu and Prof.Guangming Tao presents a methodical approach to surmount the limitations in photochromic fibers.They integrated controllable photochromic fibers into various wearable devices,providing a promising path for future exploration and advancement in the field of human–machine interaction.
基金supported by the National Natural Science Foundation of China (NSFC) (grants 61178006, 11274327and 61221064)the Recruitment Program of Global Youth Experts
文摘The generation of multicolored sidebands with the spectrum from 377 to 970 nm in a 0.5-mm-thick N-WG280 Schott glass based on a cascaded four-wave mixing(CFWM) process is demonstrated. The experimental setup is compact and economical. A pulse with a broadened spectrum from 670 to 900 nm is generated by utilizing two 0.18-mm-thick fused silica glass plates and is used to provide two input beams for the CFWM process.The new frequency components generated from the self-phase modulation effect in the two thin glass plates contribute to the broadening of the total spectral range of the generated multicolored sidebands.
基金supported by NSFC(Nos.12161141003,11931006)supported by NSFC(Nos.11801520,12171436,12271489)supported by NSFC(No.11601527)。
文摘For k given graphs H_(1),...,H_(k) with k≥2,the k-color Ramsey number R(H_(1),...,H_(k)) represents the minimum integer N with the following property:if the edges of the complete graph K_(N) are colored with k colors,then there exists some i with 1≤i≤k such that K_(N) has a subgraph in color i isomorphic to H_(i).Let C_(m) be a cycle of length m and K_(1,n) a star of order n+1.In this paper,we systematically introduce the latest research progress on star-quadrilateral Ramsey numbers and provide an overview of Ramsey numbers concerning quadrilaterals,including multicolor cases.
文摘In this editorial,we comment on the article by Li et al.We specifically focus on the novel use of multicolor near-infrared fluorescence imaging(MCFI)with indocyanine green in laparoscopic cholecystectomy,which is an innovative approach for enhancing biliary visualization during laparoscopic cholecystectomy.This study also highlighted the limitations of conventional single-color fluorescence imaging(SCFI),which relies solely on a green fluorescence signal,leading to challenges such as visual fatigue and difficulty in distinguishing biliary structures from background hepatic tissue.Given the complex anatomy of the biliary system and the challenges of visual fatigue encountered with SCFI,MCFI addresses these issues by enabling the differentiation of biliary structures by mapping the fluorescence intensity across a unique blue-to-purple color spectrum,thus improving the clarity of anatomical structures and reducing the visual strain for surgeons.We also focus specifically on the complications and cautious usage of indocyanine green in this context,as well as the advantages and disadvantages of MCFI and SCFI.Overall,MCFI represents a significant advancement in fluorescence-guided surgery,with the potential to become a standard imaging modality for safer and more effective laparoscopic procedures.
基金supported by the Central Guidance on Local Science and Technology Development Fund of Guangxi Province(Gui Ke ZY22096010)Guangxi Nat-ural Science Fundation(2023GXNSFAA026181)BAGUI Scholar Program of Guangxi Province of Chi-na,and Middle-aged and Young Teachers’Basic Abili-ty Promotion Project of Guangxi(2022KY0376).
文摘Carbon quantum dots(CQDs)have re-ceived increasing interest owing to their excellent optical and chemical characteristics,and high biocompatibil-ity.Herein,turmeric was employed as a carbon source to fabricate green CQDs(named WT-JHCQDs)by hydrother-mal technique.The fluorescence of WT-JHCQDs is particularly stable at differ-ent pH and high concentrations of NaCl.Moreover,WT-JHCQDs exhibit low cytotoxicity,good antioxidant properties,and outstanding biocompatibility.The WT-JHCQDs possess protruding ability of cell imaging and bacteria imaging.This work provides a promising strat-egy for designing excellent fluorescent probes for bioimaging.
基金Project supported by the National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIT)(2020R1C1C1014787)。
文摘A set of co-doped(Tb^(3+)/Dy^(3+))lithium zinc borate(LZB)glasses were developed by melt quenching.The structural evaluation was performed for synthesized glassy matrices.The Dy^(3+)and Tb^(3+)individually doped glasses exhibit intense yellow and green luminescence bands at 575 nm(^(4)F_(9/2)→^(6)H_(13/2))and543 nm(^(5)D_(4)→^(7)F_(5)),respectively.The sensitization effect of Dy^(3+)on Tb^(3+)was analyzed by increasing the Tb^(3+)content with respect to the optimum Dy^(3+)content(0.5 mol%)in Dy^(3+)/Tb^(3+).The spectral overlay of Dy^(3+)luminescence and Tb^(3+)absorption profiles,Dy^(3+)/Tb^(3+)PL spectra under different excitations 352,362,376,and 385 nm,shortening decay lifetimes of Dy^(3+)in Dy^(3+)/Tb^(3+)co-activated glasses,energy transfer(ET)parameters,chromaticity coordinates and their corresponding correlated temperatures all help to explain ET from Dy^(3+)to Tb^(3+).At 385 nm of Dy^(3+)excitation,the optimized co-activated(0.5Dy^(3+)+1.0Tb^(3+)):LZB glass displays cool white light emission.The non-radiative ET from Dy^(3+)to Tb^(3+)is dominated by electric dipole-dipole interaction and its ET efficiency was calculated to be 63%.At the same time,reverse ET from Tb^(3+)to Dy^(3+)was also analyzed.The shift in color coordinates from dominant yellow to greenish-yellow,green and white light emission suggests that Dy^(3+)/Tb^(3+)coactivated LZB glasses can be a potential candidate for UV converted multicolor and white light emitting devices.
基金financially supported by the National Natural Science Foundation of China(Nos.22275068 and 21975178)the Fundamental Research Funds for the Central Universitiesthe Open Project of the State Key Laboratory of Supramolecular Structure and Materials.
文摘Mechanochromophores based on bichromic molecular switches,such as bis-naphthopyanes,allow multimodal mechanochromic behavior beyond the typical binary response from single chromophores,which is important for distinguishing between multiple stress states through discrete changes in color.Spontaneously generated persistent and distinguishable multi-colors from activated bis-naphthopyanes remain challenging.And the versatility of bis-mechanophore design for advanced optical molecular systems and the fundamental insights into the corresponding mechano-reactivity are not enough.Here,we identify a dihydroanthracene bridged bis-naphthopyrans as a multimodal mechanochromophore in polymers.Bridging two pyrans with the sterically constrained dihydroanthracene is helpful to control the steric effect for the favorable formation of a distinctly appreciable bis-merocyanine(bis-MC)product.By varying the length of the polymer chains,the force delivered to the mechanophore is modulated,resulting in a gradient change in the relative distribution of two distinctly colored MC products and a multicolor mechanochromism.Mechanical activation of this bis-naphthopyanes proceeds via a mechanistically distinct pathway compared to the photochemical process.In addition,the bulk films can also achieve pronounced color changes when subjected to mechanical force.This study thus further expands the molecular diversity of mechanochromophores and tune the multimodal switch properties of bis-naphthopyrans based polymers.
基金Project supported by the National Natural Science Foundation of China(52062042,51802164)the Natural Science Foundation of Inner Mongolia(2020MS05044)。
文摘Photochromic materials with multicolor upconversion reversible modulations are attractive in optical switching devices.Herein,the fabricated YNbO_(4):Er^(3+)/Tm^(3+)/Yb^(3+) materials exhibit excellent photochromism and multicolor upconversion properties from green,red to near infrared(NIR) emissions with increasing Yb concentrations.Reversible multiband upconversion modulations are achieved by alternating light(365 and 405 nm) or thermal stimuli.After 365 nm irradiation,the luminescence color changes from yellow to red,the luminescent photoswitching contrast reaches up to 86.21%(green),82.12%(red) and 77.38%(NIR) in the Y_(0.83)Er_(0.01)Tm_(0.01)NbO_(4):0.15 Yb sample.Besides,the upconversion emission intensity before and after photochromic reaction shows remarkable change in a wide temperature range of 298-718 K.These results indicate that the Er^(3+)/Tm^(3+)/Yb^(3+) tri-doped YNbO_(4) materials can be a good candidate in optical switching and data storage applications.
文摘Using simple and eco-friendly ethanol solvothermal treatment,dual-emission biomass carbon quantum dots(D-BCQDs)were synthesized from biomass viburnum awabuki leaves.Under excitation with 413 nm wavelength light two emission peaks appeared at 490 and 675 nm and the dots could be tuned to emit crimson,red,purplish red,purple and blue-gray fluorescence by changing the solvothermal temperature from 140℃ to 160,180,200 and 240℃,respectively.XPS and FTIR characterization in-dicated that the fluorescence color was mainly determined by surface oxidation defects,elemental nitrogen and sp^(2)-C/sp^(3)-C hybrid-ized structural domains.The D-BCQDs could not only detect Fe^(3+)or Cu^(2+),but also quantify the concentration ratio of Fe^(3+)to Cu^(2+)in a solution containing both,demonstrating their potential applications in the simultaneous detection of Fe^(3+)and Cu^(2+)ions.
基金supported by the National Natural Science Foundation of China(Nos.22220102004,22025503)Shanghai Municipal Science and Technology Major Project(No.2018SHZDZX03)+4 种基金the Innovation Program of Shanghai Municipal Education Commission(No.2023ZKZD40)the Fundamental Research Funds for the Central Universitiesthe Programme of Introducing Talents of Discipline to Universities(No.B16017)Science and Technology Commission of Shanghai Municipality(No.21JC1401700)the Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study(No.SN-ZJU-SIAS-006)。
文摘Dynamic assembly on time scale is common in biological systems but rare for artificial materials,especially for smart luminescent materials.Programming molecular assembly in a spatio-temporal manner and resulting in white-light-including multicolor fluorescence with time-dynamic features remains challenging.Herein,controlling molecular assembly on time scale is achieved by integrating a pH-responsive motif to a transient alkaline solution which is fabricated by activators(NaOH)and deactivators(esters),leading to automatic assembly on time scale and time-dependent multicolor fluorescence changing from blue to white and yellow.The kinetics of the assembly process is dependent on the ester hydrolysis process,which can be controlled by varying ester concentrations,temperature,initial pH,stirring rate and ester structures.This dynamic fluorescent system can be further developed for intelligent fluorescent materials such as fluorescent ink,three-dimension(3D)codes and even four-dimension(4D)codes,exhibiting a promising potential for information encryption.
基金supported by the National Natural Science Foundation of China(No.22205249)the Sino-German Mobility Program(No.M-0424)Ningbo International Cooperation Project(No.2023H019)。
文摘Achieving versatile room temperature phosphorescence(RTP)materials,especially with tunable mechanical properties and shape memory is attractive and essential but rarely reported.Here,a strategy was reported to realize multi-functional RTP films with multicolor fluorescence,ultralong afterglow,adjustable mechanical properties,and shape memory through the synergistic dynamic interaction of lanthanide(Ln~Ⅲ)-terpyridine coordination,borate ester bonds,and hydrogen bondings in a poly(vinyl alcohol)(PVA)matrix.By varying the amount of borax,the mechanical properties of the films could be finely controlled due to the change of crosslinking degree of dynamic borate ester bonds in PVA.The assembly and disassembly of borate ester bonds upon the trigger of borax and acid were applied as reversible linkage to achieve programmable shape memory behavior.In addition,the films displayed both fascinating multicolor fluorescence and ultralong afterglow characteristics due to the presence of Ln III doping and confinement of terpyridine in PVA.This study provides a new avenue to impart modulable mechanical strength and shape memory to RTP materials.
基金supported by the National Natural Science Foundation of China(Nos.21804022,21964003 and 81773894)the Natural Science Foundation of Jiangxi Province(No.20202BABL213019)+1 种基金the Science and Technology Project of the Education Department of Jiangxi Province of China(No.GJJ190775)the Special Graduate Student Innovation Fund of Jiangxi Province(No.CX190013)。
文摘Aflatoxin B_(1)(AFB_(1))is one of the most toxic,mutagenic and carcinogenic mycotoxin,widely exists in contaminated food,grains and feedstuff products.In this study,a novel magnetic beads multicolor colorimetric immunoassay(MBMCIA)based on Au@Ag nanorods(Au@Ag NRs)is proposed to visual detect ultralow concentration of AFB_(1)with high-resolution by the naked-eye.To design the MBMCIA system,AFB_(1)-BSA conjugates were first coated on the surface of magnetic beads(MBs),then alkaline phosphatase(ALP)as a bridge between immunoassay a nd color reaction was used for catalytic hydrolysis of ascorbic acid-phosphate to generate reductive ascorbic acid.Finally,the yielded ascorbic acid could reduce silver ions to grow a silver coating on the surface of gold nanorods to generate Au@Ag NRs,which leads to the bule-shifted longitudinal absorption peak of Au NRs,accompanying with a series of perceptible color change.Under the optimal conditions,the proposed MBMCIA exhibited go od sensitivity and specificity for the detection of AFB_(1)with the detection limit as low as 5.7 pg/mL Meanwhile,the MBMCIA was also applied for the analysis of AFB_(1)in spiked wheat samples,the obtained recoveries range from 99.1%to 104.3%with relative standard deviation(RSD)less than 7.05%were acceptable.The proposed MBMCIA integrates separated,enriched,anti-interfe rence and signal read-out into one,which opens up a new avenue for an on-site visual food safety inspection or environmental monitoring.
基金Acknowledgements This study was supported by the National Science Foundation (No. 30630067);the State Key Basic Research Grant of China (No. 2004CB518705); the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT0416).
文摘Chromosome aberrations are distinctive features of human malignant tumors. Analysis of chromosomal changes can illuminate the molecular mechanisms underlying the development and progression of cancer. To establish the technique of multicolor fluorescence in situ hybridization (M-FISH) for identifying chromosome aberrations in esophageal carcinoma cell line KYSE 410-4, four pools of 6-color whole-chromosome painting probes have been designed and hybridized on the same metaphase spread by four rounds of repetitive FISH. Repetitive 6-color M-FISH was successfully established and the cytogenetic abnormalities in KYSE 410-4 cells were characterized. Chromosome gains occurred at 2q, 3, 8, 17p, and X. An isochromosome 3q was visualized in the cell line, which might be one intermediate mechanism leading to 3p losses and/or 3q gains. Furthermore, 16 structural arrangements were detected, including four derivative chromosomes. The rearrangement of the centromeric regions accounted for approximately 44% of all rearrangements. The results added a more complete and accurate information of the genetic alterations to the classical cytogenetic description of KYSE 410-4 and provided a detailed cytogenetic background data for appropriate use of the cell line. The established 6-color M-FISH was useful for analyzing chromosomes in the whole genome of human tumors.
基金Project supported by National Natural Science Foundation of China(60979003)New Century Educational Talent Plan of Chinese Education Ministry,China(NCET-10-0171)+2 种基金Fundamental Research Funds for the Central Universities(2011QN153,2012QN065,2012QN068,2012TD018,3132013103,3132013318,3132014088)Foundation of Liaoning Educational Committee(L2013201)the Doctor Startup Foundation of Liaoning Province(20121029)
文摘yD3+/Tm3+ co-doped and yD3+/Ho3+/Tm3+ tri-doped tellurite glasses were synthesized by fusing the mixture of TeO2, PbF2, AIF3, BaF2, Yb2O3, Tm203 and H0203 in a cortmdum crucible at 850 ℃ for 20 min. The synthesized glasses were characterized by upconversion emission spectra under the excitation of 980 nm laser, and the emission colors were investigated according to the CIE-1931 standards. The results indicated that yD3+/Tm3+ co-doped tellurite glass exhibited blue upconversion emission with favor- able color coordinates of (0.20, 0.07). Yb3+, HO3+ and Tm3+ tri-doped tellurite glasses presented white upconversion luminescence under a single 980 nm laser excitation. Moreover, a very wide range of emission colors could be tuned by altering Ho3+ concentration. Combining the contribution of adjusting Ho3+ concentration and pump power, near equal energy white light was obtained.
基金supported by National Natural Science Foundation of China(No.52073297)the Sino-German mobility program(No.M-0424)+1 种基金Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2019297)K.C.Wong Education Foundation(No.GJTD-2019-13)。
文摘Lanthanide coordinated multicolor fluorescent polymeric hydrogels(MFPHs)are quite promising for various applications because of their sharp fluorescence bands and high color purity.However,few attempts have been carried out to locally regulate their fluorescence switching or shape deforming behaviors,but such studies are very useful for patterned materials with disparate functions.Herein,the picolinate moieties that can sensitize Tb^(3+)/Eu^(3+)luminescence via antenna effect were chemically introduced into interpenetrating double networks to produce a robust kind of lanthanide coordinated MFPHs.Upon varying the doping ratio of Tb^(3+)/Eu^(3+),fluorescence colors of the obtained hydrogels were continuously regulated from green to orange and then red.Importantly,spatial fluorescence color control within the hydrogel matrix could be facilely realized by controlled diffusion of Tb^(3+)/Eu^(3+)ions,producing a number of 2D hydrogel objects with local multicolor fluorescent patterns.Furthermore,the differential swelling capacities between the fluorescent patterned and non-fluorescent parts led to interesting 2D-to-3D shape deformation to give well-defined multicolor fluorescent 3D hydrogel configurations.Based on these results,bio-inspired synergistic color/shape changeable actuators were demonstrated.The present study provided a promising strategy to achieve the local fluorescence and shape control within lanthanide coordinated hydrogels,and is expected to be expanded for fabricating useful patterned materials with disparate functions.
基金supported by the National Natural Scientific Foundation of China(No.21804074)China Postdoctoral Science Foundation(No.2020T130331)the Open Funds of the State Key Laboratory of Physical Chemistry of Solid Surfaces(No.202023).
文摘Electrochromic devices(ECDs)have exhibited promising applications in the fields of energy-saving intelligent buildings and next-generation displays because of their simple structure,low power consumption,and multicolor displays.W_(18)O_(49)/polyaniline(PANI)hybrid films are prepared and assembled to ECDs.Compared with pure PANI and W_(18)O_(49) films,the hybrid film exhibits superior electrochemical and electrochromic performance,including high optical modulation(70.2%),large areal capacity(79.6 mF/cm^(2)),and good capacitance retention.The excellent electrochemical and electrochromic performance is ascribed to the formation of the donor(PANI)-acceptor(W_(18)O_(49))pair,the porous structure in the nanowires,and the large surface area,which enhance electron delocalization of the W_(18)O_(49)/PANI,improve the ion diffusion rate,and increase the charge storage sites.Furthermore,benefitting from the outstanding optical,electrical,and multifunctional properties,the W_(18)O_(49)/PANI hybrid film-based ECD platform is expected to play an important role in electrochromism and energy storage.
基金supported by the National Natural Science Foundation of China(No.22106005)Natural Science Foundation of Anhui Province(No.1908085MB41)+1 种基金Natural Science Foundation of Anhui Province for Distinguished Young Scholars(No.2008085J11)Innovative Training Program for College Students(No.S202110360206).
文摘Room temperature phosphorescence(RTP)films have recently attracted increasing attention due to their excellent luminescent properties for information encryption,optoelectronic devices,and sensors.However,polyvinyl alcohol(PVA)films with abundant hydrogen bonds to suppress triplet energy dissipation suffered from the humidity induced phosphorescence quenching under storage in the air for a long time.In this work,poly(acrylic acid)(PAA)was selected to crosslink PVA matrix through esterification reactions for preparing water resistant RTP films.The blue,cyan,and orange emissive RTP films were successfully obtained by incorporating three different organic compounds into PVA-PAA crosslinking films.Crosslinking strategy significantly improved the phosphorescence emissions of the doped films,and effectively blocked the absorption of water molecular,leading to the excellent photostability of the developed films.As a proof of concept,the white light phosphorescence film and anti-counterfeiting applications were successfully demonstrated.
基金supported by the National Natural Science Foundation of China(No.31900984)the Fundamental Research Funds for the Central Universities(No.D5000210899)Innovation and Entrepreneurship Fund from the Student Affairs Department of the Party Committee of Northwestern Polytechnic University(No.2021-CXCY-019)。
文摘The biocompatibility and biodegradability of peptide self-assembled materials makes them suitable for many biological applications,such as targeted drug delivery,bioimaging,and tracking of therapeutic agents.According to our previous research,self-assembled fluorescent peptide nanoparticles can overcome the intrinsic optical properties of peptides.However,monochromatic fluorescent nanomaterials have many limitations as luminescent agents in biomedical applications.Therefore,combining different fluorescent species into one nanostructure to prepare fluorescent nanoparticles with multiple emission wavelengths has become a very attractive research area in the bioimaging field.In this study,the tetrapeptide Trp-Trp-Trp-Trp(WWWW)was self-assembled into multicolor fluorescent nanoparticles(TPNPs).The results have demonstrated that TPNPs have the blue,green,red and near infrared(NIR)fluorescence emission wavelength.Moreover,TPNPs have shown excellent performance in multicolor bioimaging,biocompatibility,and photostability.The facile preparation and multicolor fluorescence features make TPNPs potentially useful in multiplex bioanalysis and diagnostics.
基金The authors greatly acknowledge the Natural Science Foundation of Jiangsu Province(No.BK20220351)Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.22KJB150027)for financial support.
文摘Carbon dots(CDs)with room-temperature phosphorescence(RTP)have attracted dramatically growing interest in optical functional materials.However,the photoluminescence mechanism of CDs is still a vital and challenging topic.In this work,we prepared CD-based RTP materials via melting boric acid with various lengths of alkyl amine compounds as precursors.The spatial effect on the structure and the RTP properties of CDs were systematically investigated.With the increase in carbon chain length,the interplanar spacing of the carbon core expands and crosslink-enhanced emission weakens,resulting in a decrease in the phosphorescence intensity and lifetimes.Meanwhile,based on triplet-to-singlet resonance energy transfer,we employed intense and long-lived phosphorescence CDs as the donor and short-lived fluorescent dyes as the acceptor to achieve long-lived multicolor afterglow.By the triplet-to-singlet resonance energy transfer,the afterglow color can change from green to orange.The afterglow lifetimes are more than 0.9 s.Thanks to the outstanding afterglow properties,the composites were used for timeresolved and multiple-color advanced anticounterfeiting.This work will promote the design of multicolor and long-lived afterglow materials and expand their applications.
基金supported by the National Natural Science Foundation of China (No. 51602108)the Guangdong Basic and Applied Basic Research Foundation (Nos. 2020A1515011210, 2017A030313256)Guangzhou Science and Technology Project (Nos. 202007020005, 202102080288)。
文摘As one of the most promising fluorescent nanomaterials, carbon dots(CDs) have been extensively studied for their fluorescent properties in solution. However, research on the synthesis of multicolor solid-state fluorescence(SSF) CDs(from blue to red) is rarely reported. Herein, we used o-phenylenediamine, mphenylenediamine and p-phenylenediamine with dithiosalicylic acid(DTSA) in the solvothermal reaction using acetic acid as a solvent to obtain aggregation-induced emissive(AIE) CDs of red(620 nm), green(520 nm), and blue(478 nm), respectively. XPS spectra and TEM image show that with the red-shift of luminescence, the particle size and content of C=O of the CDs gradually increases. Finally, based on the non-matrix solid-state multicolor luminescence characteristics of CDs, the application of white light LED devices is realized. Besides, based on the fat-soluble properties of CDs, fingerprint detection applications are realized.