期刊文献+
共找到67篇文章
< 1 2 4 >
每页显示 20 50 100
Swarm-based Cost-sensitive Decision Tree Using Optimized Rules for Imbalanced Data Classification
1
作者 Mehdi Mansouri Mohammad H.Nadimi-Shahraki Zahra Beheshti 《Journal of Bionic Engineering》 2025年第3期1434-1458,共25页
Despite the widespread use of Decision trees (DT) across various applications, their performance tends to suffer when dealing with imbalanced datasets, where the distribution of certain classes significantly outweighs... Despite the widespread use of Decision trees (DT) across various applications, their performance tends to suffer when dealing with imbalanced datasets, where the distribution of certain classes significantly outweighs others. Cost-sensitive learning is a strategy to solve this problem, and several cost-sensitive DT algorithms have been proposed to date. However, existing algorithms, which are heuristic, tried to greedily select either a better splitting point or feature node, leading to local optima for tree nodes and ignoring the cost of the whole tree. In addition, determination of the costs is difficult and often requires domain expertise. This study proposes a DT for imbalanced data, called Swarm-based Cost-sensitive DT (SCDT), using the cost-sensitive learning strategy and an enhanced swarm-based algorithm. The DT is encoded using a hybrid individual representation. A hybrid artificial bee colony approach is designed to optimize rules, considering specified costs in an F-Measure-based fitness function. Experimental results using datasets compared with state-of-the-art DT algorithms show that the SCDT method achieved the highest performance on most datasets. Moreover, SCDT also excels in other critical performance metrics, such as recall, precision, F1-score, and AUC, with notable results with average values of 83%, 87.3%, 85%, and 80.7%, respectively. 展开更多
关键词 Decision tree cost-sensitive learning Artificial bee colony Swarm-based Imbalanced classification
在线阅读 下载PDF
Cost-Sensitive Dual-Stream Residual Networks for Imbalanced Classification
2
作者 Congcong Ma Jiaqi Mi +1 位作者 Wanlin Gao Sha Tao 《Computers, Materials & Continua》 SCIE EI 2024年第9期4243-4261,共19页
Imbalanced data classification is the task of classifying datasets where there is a significant disparity in the number of samples between different classes.This task is prevalent in practical scenarios such as indust... Imbalanced data classification is the task of classifying datasets where there is a significant disparity in the number of samples between different classes.This task is prevalent in practical scenarios such as industrial fault diagnosis,network intrusion detection,cancer detection,etc.In imbalanced classification tasks,the focus is typically on achieving high recognition accuracy for the minority class.However,due to the challenges presented by imbalanced multi-class datasets,such as the scarcity of samples in minority classes and complex inter-class relationships with overlapping boundaries,existing methods often do not perform well in multi-class imbalanced data classification tasks,particularly in terms of recognizing minority classes with high accuracy.Therefore,this paper proposes a multi-class imbalanced data classification method called CSDSResNet,which is based on a cost-sensitive dualstream residual network.Firstly,to address the issue of limited samples in the minority class within imbalanced datasets,a dual-stream residual network backbone structure is designed to enhance the model’s feature extraction capability.Next,considering the complexities arising fromimbalanced inter-class sample quantities and imbalanced inter-class overlapping boundaries in multi-class imbalanced datasets,a unique cost-sensitive loss function is devised.This loss function places more emphasis on the minority class and the challenging classes with high interclass similarity,thereby improving the model’s classification ability.Finally,the effectiveness and generalization of the proposed method,CSDSResNet,are evaluated on two datasets:‘DryBeans’and‘Electric Motor Defects’.The experimental results demonstrate that CSDSResNet achieves the best performance on imbalanced datasets,with macro_F1-score values improving by 2.9%and 1.9%on the two datasets compared to current state-of-the-art classification methods,respectively.Furthermore,it achieves the highest precision in single-class recognition tasks for the minority class. 展开更多
关键词 Deep learning imbalanced data classification fault diagnosis cost-sensitivity
在线阅读 下载PDF
Model-Free Feature Screening Based on Gini Impurity for Ultrahigh-Dimensional Multiclass Classification
3
作者 Zhongzheng Wang Guangming Deng 《Open Journal of Statistics》 2022年第5期711-732,共22页
It is quite common that both categorical and continuous covariates appear in the data. But, most feature screening methods for ultrahigh-dimensional classification assume the covariates are continuous. And applicable ... It is quite common that both categorical and continuous covariates appear in the data. But, most feature screening methods for ultrahigh-dimensional classification assume the covariates are continuous. And applicable feature screening method is very limited;to handle this non-trivial situation, we propose a model-free feature screening for ultrahigh-dimensional multi-classification with both categorical and continuous covariates. The proposed feature screening method will be based on Gini impurity to evaluate the prediction power of covariates. Under certain regularity conditions, it is proved that the proposed screening procedure possesses the sure screening property and ranking consistency properties. We demonstrate the finite sample performance of the proposed procedure by simulation studies and illustrate using real data analysis. 展开更多
关键词 Ultrahigh-Dimensional Feature Screening MODEL-FREE Gini Impurity multiclass classification
在线阅读 下载PDF
Model-Free Feature Screening via Maximal Information Coefficient (MIC) for Ultrahigh-Dimensional Multiclass Classification
4
作者 Tingting Chen Guangming Deng 《Open Journal of Statistics》 2023年第6期917-940,共24页
It is common for datasets to contain both categorical and continuous variables. However, many feature screening methods designed for high-dimensional classification assume that the variables are continuous. This limit... It is common for datasets to contain both categorical and continuous variables. However, many feature screening methods designed for high-dimensional classification assume that the variables are continuous. This limits the applicability of existing methods in handling this complex scenario. To address this issue, we propose a model-free feature screening approach for ultra-high-dimensional multi-classification that can handle both categorical and continuous variables. Our proposed feature screening method utilizes the Maximal Information Coefficient to assess the predictive power of the variables. By satisfying certain regularity conditions, we have proven that our screening procedure possesses the sure screening property and ranking consistency properties. To validate the effectiveness of our approach, we conduct simulation studies and provide real data analysis examples to demonstrate its performance in finite samples. In summary, our proposed method offers a solution for effectively screening features in ultra-high-dimensional datasets with a mixture of categorical and continuous covariates. 展开更多
关键词 Ultrahigh-Dimensional Feature Screening MODEL-FREE Maximal Information Coefficient (MIC) multiclass classification
在线阅读 下载PDF
Solving large-scale multiclass learning problems via an efficient support vector classifier 被引量:1
5
作者 Zheng Shuibo Tang Houjun +1 位作者 Han Zhengzhi Zhang Haoran 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第4期910-915,共6页
Support vector machines (SVMs) are initially designed for binary classification. How to effectively extend them for multiclass classification is still an ongoing research topic. A multiclass classifier is constructe... Support vector machines (SVMs) are initially designed for binary classification. How to effectively extend them for multiclass classification is still an ongoing research topic. A multiclass classifier is constructed by combining SVM^light algorithm with directed acyclic graph SVM (DAGSVM) method, named DAGSVM^light A new method is proposed to select the working set which is identical to the working set selected by SVM^light approach. Experimental results indicate DAGSVM^light is competitive with DAGSMO. It is more suitable for practice use. It may be an especially useful tool for large-scale multiclass classification problems and lead to more widespread use of SVMs in the engineering community due to its good performance. 展开更多
关键词 support vector machines (SVMs) multiclass classification decomposition method SVM^light sequential minimal optimization (SMO).
在线阅读 下载PDF
Adaptive Window Based 3-D Feature Selection for Multispectral Image Classification Using Firefly Algorithm 被引量:1
6
作者 M.Rajakani R.J.Kavitha A.Ramachandran 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期265-280,共16页
Feature extraction is the most critical step in classification of multispectral image.The classification accuracy is mainly influenced by the feature sets that are selected to classify the image.In the past,handcrafte... Feature extraction is the most critical step in classification of multispectral image.The classification accuracy is mainly influenced by the feature sets that are selected to classify the image.In the past,handcrafted feature sets are used which are not adaptive for different image domains.To overcome this,an evolu-tionary learning method is developed to automatically learn the spatial-spectral features for classification.A modified Firefly Algorithm(FA)which achieves maximum classification accuracy with reduced size of feature set is proposed to gain the interest of feature selection for this purpose.For extracting the most effi-cient features from the data set,we have used 3-D discrete wavelet transform which decompose the multispectral image in all three dimensions.For selecting spatial and spectral features we have studied three different approaches namely overlapping window(OW-3DFS),non-overlapping window(NW-3DFS)adaptive window cube(AW-3DFS)and Pixel based technique.Fivefold Multiclass Support Vector Machine(MSVM)is used for classification purpose.Experiments con-ducted on Madurai LISS IV multispectral image exploited that the adaptive win-dow approach is used to increase the classification accuracy. 展开更多
关键词 Multispectral image modifiedfirefly algorithm 3-D feature extraction feature selection multiclass support vector machine classification
在线阅读 下载PDF
Pancreatic Cancer Data Classification with Quantum Machine Learning 被引量:1
7
作者 Amit Saxena Smita Saxena 《Journal of Quantum Computing》 2023年第1期1-13,共13页
Quantum computing is a promising new approach to tackle the complex real-world computational problems by harnessing the power of quantum mechanics principles.The inherent parallelism and exponential computational powe... Quantum computing is a promising new approach to tackle the complex real-world computational problems by harnessing the power of quantum mechanics principles.The inherent parallelism and exponential computational power of quantum systems hold the potential to outpace classical counterparts in solving complex optimization problems,which are pervasive in machine learning.Quantum Support Vector Machine(QSVM)is a quantum machine learning algorithm inspired by classical Support Vector Machine(SVM)that exploits quantum parallelism to efficiently classify data points in high-dimensional feature spaces.We provide a comprehensive overview of the underlying principles of QSVM,elucidating how different quantum feature maps and quantum kernels enable the manipulation of quantum states to perform classification tasks.Through a comparative analysis,we reveal the quantum advantage achieved by these algorithms in terms of speedup and solution quality.As a case study,we explored the potential of quantum paradigms in the context of a real-world problem:classifying pancreatic cancer biomarker data.The Support Vector Classifier(SVC)algorithm was employed for the classical approach while the QSVM algorithm was executed on a quantum simulator provided by the Qiskit quantum computing framework.The classical approach as well as the quantum-based techniques reported similar accuracy.This uniformity suggests that these methods effectively captured similar underlying patterns in the dataset.Remarkably,quantum implementations exhibited substantially reduced execution times demonstrating the potential of quantum approaches in enhancing classification efficiency.This affirms the growing significance of quantum computing as a transformative tool for augmenting machine learning paradigms and also underscores the potency of quantum execution for computational acceleration. 展开更多
关键词 Quantum computing quantum machine learning quantum support vector machine multiclass classification
在线阅读 下载PDF
HCL Net: Deep Learning for Accurate Classification of Honeycombing Lung and Ground Glass Opacity in CT Images
8
作者 Hairul Aysa Abdul Halim Sithiq Liyana Shuib +1 位作者 Muneer Ahmad Chermaine Deepa Antony 《Computers, Materials & Continua》 2026年第1期999-1023,共25页
Honeycombing Lung(HCL)is a chronic lung condition marked by advanced fibrosis,resulting in enlarged air spaces with thick fibrotic walls,which are visible on Computed Tomography(CT)scans.Differentiating between normal... Honeycombing Lung(HCL)is a chronic lung condition marked by advanced fibrosis,resulting in enlarged air spaces with thick fibrotic walls,which are visible on Computed Tomography(CT)scans.Differentiating between normal lung tissue,honeycombing lungs,and Ground Glass Opacity(GGO)in CT images is often challenging for radiologists and may lead to misinterpretations.Although earlier studies have proposed models to detect and classify HCL,many faced limitations such as high computational demands,lower accuracy,and difficulty distinguishing between HCL and GGO.CT images are highly effective for lung classification due to their high resolution,3D visualization,and sensitivity to tissue density variations.This study introduces Honeycombing Lungs Network(HCL Net),a novel classification algorithm inspired by ResNet50V2 and enhanced to overcome the shortcomings of previous approaches.HCL Net incorporates additional residual blocks,refined preprocessing techniques,and selective parameter tuning to improve classification performance.The dataset,sourced from the University Malaya Medical Centre(UMMC)and verified by expert radiologists,consists of CT images of normal,honeycombing,and GGO lungs.Experimental evaluations across five assessments demonstrated that HCL Net achieved an outstanding classification accuracy of approximately 99.97%.It also recorded strong performance in other metrics,achieving 93%precision,100%sensitivity,89%specificity,and an AUC-ROC score of 97%.Comparative analysis with baseline feature engineering methods confirmed the superior efficacy of HCL Net.The model significantly reduces misclassification,particularly between honeycombing and GGO lungs,enhancing diagnostic precision and reliability in lung image analysis. 展开更多
关键词 Deep learning honeycombing lung ground glass opacity Resnet50v2 multiclass classification
在线阅读 下载PDF
基于用电量曲线和深度学习的非技术性损失检测与识别
9
作者 王云静 肖克宇 +3 位作者 曲正伟 韩晓明 董海艳 Popov Maxim Georgievitch 《电测与仪表》 北大核心 2025年第6期202-211,共10页
电网中的非技术性损失不仅对电力公司经济效益造成显著影响,同时也给系统的电能质量和运行安全带来严重威胁。而不法用户牟取利益的技术手段也日益复杂,使得传统的非技术性损失检测方式逐渐陷入局限。文章研究了基于用电量曲线实施用电... 电网中的非技术性损失不仅对电力公司经济效益造成显著影响,同时也给系统的电能质量和运行安全带来严重威胁。而不法用户牟取利益的技术手段也日益复杂,使得传统的非技术性损失检测方式逐渐陷入局限。文章研究了基于用电量曲线实施用电篡改行为的操作手段,总结了一系列用于生成虚假用电数据的篡改策略。基于用电量曲线提取获得电力用户的用电行为特征之后,采用双向长短期记忆网络将其与实施用电篡改行为的结果相关联。最后通过构建多层级的神经网络架构,利用深度学习解决用电特征序列的多分类问题。根据某区域实际用电数据进行的算例仿真显示,文章研究内容能够实现对非技术性损失的有效检测以及具体篡改策略的分类识别。 展开更多
关键词 非技术性损失 深度学习 用电量曲线 双向长短期记忆网络 多分类问题
在线阅读 下载PDF
Robust Multiclass Classification for Learning from Imbalanced Biomedical Data 被引量:6
10
作者 Piyaphol Phoungphol Yanqing Zhang Yichuan Zhao 《Tsinghua Science and Technology》 SCIE EI CAS 2012年第6期619-628,共10页
tmbalanced data is a common and serious problem in many biomedical classification tasks. It causes a bias on the training of classifiers and results in lower accuracy of minority classes prediction. This problem has a... tmbalanced data is a common and serious problem in many biomedical classification tasks. It causes a bias on the training of classifiers and results in lower accuracy of minority classes prediction. This problem has attracted a lot of research interests in the past decade. Unfortunately, most research efforts only concentrate on 2-class problems. In this paper, we study a new method of formulating a multiclass Support Vector Machine (SVM) problem for imbalanced biomedical data to improve the classification performance. The proposed method applies cost-sensitive approach and ramp loss function to the Crammer and Singer multiclass SVM formulation. Experimental results on multiple biomedical datasets show that the proposed solution can effectively cure the problem when the datasets are noisy and highly imbalanced. 展开更多
关键词 multiclass classification imbalanced data ramp-loss Support Vector Machine (SVM) biomedical data
原文传递
Multiclass classification based on a deep convolutional network for head pose estimation 被引量:3
11
作者 Ying CAI Meng-long YANG Jun LI 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2015年第11期930-939,共10页
Head pose estimation has been considered an important and challenging task in computer vision. In this paper we propose a novel method to estimate head pose based on a deep convolutional neural network (DCNN) for 2D... Head pose estimation has been considered an important and challenging task in computer vision. In this paper we propose a novel method to estimate head pose based on a deep convolutional neural network (DCNN) for 2D face images. We design an effective and simple method to roughly crop the face from the input image, maintaining the individual-relative facial features ratio. The method can be used in various poses. Then two convolutional neural networks are set up to train the head pose classifier and then compared with each other. The simpler one has six layers. It performs well on seven yaw poses but is somewhat unsatisfactory when mixed in two pitch poses. The other has eight layers and more pixels in input layers. It has better performance on more poses and more training samples. Before training the network, two reasonable strategies including shift and zoom are executed to prepare training samples. Finally, feature extraction filters are optimized together with the weight of the classification component through training, to minimize the classification error. Our method has been evaluated on the CAS-PEAL-R1, CMU PIE, and CUBIC FacePix databases. It has better performance than state-of-the-art methods for head pose estimation. 展开更多
关键词 Head pose estimation Deep convolutional neural network multiclass classification
原文传递
Anomaly Diagnosis Using Machine Learning Method in Fiber Fault Diagnosis
12
作者 Xiaoping Yang Jinku Qiu +5 位作者 Xifa Gong Jin Ye Fei Yao Jiaqiao Chen Xianzan Luo Da Qin 《Computers, Materials & Continua》 2025年第10期1515-1539,共25页
In contemporary society,rapid and accurate optical cable fault detection is of paramount importance for ensuring the stability and reliability of optical networks.The emergence of novel faults in optical networks has ... In contemporary society,rapid and accurate optical cable fault detection is of paramount importance for ensuring the stability and reliability of optical networks.The emergence of novel faults in optical networks has introduced new challenges,significantly compromising their normal operation.Machine learning has emerged as a highly promising approach.Consequently,it is imperative to develop an automated and reliable algorithm that utilizes telemetry data acquired from Optical Time-Domain Reflectometers(OTDR)to enable real-time fault detection and diagnosis in optical fibers.In this paper,we introduce a multi-scale Convolutional Neural Network–Bidirectional Long Short-Term Memory(CNN-BiLSTM)deep learning model for accurate optical fiber fault detection.The proposed multi-scale CNN-BiLSTM comprises three variants:the Independent Multi-scale CNN-BiLSTM(IMC-BiLSTM),the Combined Multi-scale CNN-BiLSTM(CMC-BiLSTM),and the Shared Multi-scale CNN-BiLSTM(SMC-BiLSTM).These models employ convolutional kernels of varying sizes to extract spatial features from time-series data,while leveraging BiLSTM to enhance the capture of global event characteristics.Experiments were conducted using the publicly available OTDR_data dataset,and comparisons with existing methods demonstrate the effectiveness of our approach.The results show that(i)IMC-BiLSTM,CMC-BiLSTM,and SMC-BiLSTM achieve F1-scores of 97.37%,97.25%,and 97.1%,(ii)respectively,with accuracy of 97.36%,97.23%,and 97.12%.These performances surpass those of traditional techniques. 展开更多
关键词 Multiscale BiLSTM OTDR multiclass classification machine learning fiber fault
在线阅读 下载PDF
AdaBoost算法研究进展与展望 被引量:298
13
作者 曹莹 苗启广 +1 位作者 刘家辰 高琳 《自动化学报》 EI CSCD 北大核心 2013年第6期745-758,共14页
AdaBoost是最优秀的Boosting算法之一,有着坚实的理论基础,在实践中得到了很好的推广和应用.算法能够将比随机猜测略好的弱分类器提升为分类精度高的强分类器,为学习算法的设计提供了新的思想和新的方法.本文首先介绍Boosting猜想提出... AdaBoost是最优秀的Boosting算法之一,有着坚实的理论基础,在实践中得到了很好的推广和应用.算法能够将比随机猜测略好的弱分类器提升为分类精度高的强分类器,为学习算法的设计提供了新的思想和新的方法.本文首先介绍Boosting猜想提出以及被证实的过程,在此基础上,引出AdaBoost算法的起源与最初设计思想;接着,介绍AdaBoost算法训练误差与泛化误差分析方法,解释了算法能够提高学习精度的原因;然后,分析了AdaBoost算法的不同理论分析模型,以及从这些模型衍生出的变种算法;之后,介绍AdaBoost算法从二分类到多分类的推广.同时,介绍了AdaBoost及其变种算法在实际问题中的应用情况.本文围绕AdaBoost及其变种算法来介绍在集成学习中有着重要地位的Boosting理论,探讨Boosting理论研究的发展过程以及未来的研究方向,为相关研究人员提供一些有用的线索.最后,对今后研究进行了展望,对于推导更紧致的泛化误差界、多分类问题中的弱分类器条件、更适合多分类问题的损失函数、更精确的迭代停止条件、提高算法抗噪声能力以及从子分类器的多样性角度优化AdaBoost算法等问题值得进一步深入与完善. 展开更多
关键词 集成学习 BOOSTING ADABOOST 泛化误差 分类间隔 多分类
在线阅读 下载PDF
支持向量机多类分类算法研究 被引量:90
14
作者 唐发明 王仲东 陈绵云 《控制与决策》 EI CSCD 北大核心 2005年第7期746-749,754,共5页
提出一种新的基于二叉树结构的支持向量(SVM)多类分类算法.该算法解决了现有主要算法所存在的不可分区域问题.为了获得较高的推广能力,必须让样本分布广的类处于二叉树的上层节点,才能获得更大的划分空间.所以,该算法采用最小超立方体... 提出一种新的基于二叉树结构的支持向量(SVM)多类分类算法.该算法解决了现有主要算法所存在的不可分区域问题.为了获得较高的推广能力,必须让样本分布广的类处于二叉树的上层节点,才能获得更大的划分空间.所以,该算法采用最小超立方体和最小超球体类包含作为二叉树的生成算法.实验结果表明,该算法具有一定的优越性. 展开更多
关键词 支持向量机 多类分类 二叉树 多类支持向量机
在线阅读 下载PDF
一种新的二叉树多类支持向量机算法 被引量:50
15
作者 唐发明 王仲东 陈绵云 《计算机工程与应用》 CSCD 北大核心 2005年第7期24-26,共3页
采用二叉树结构对多个二值支持向量机(SVM)子分类器组合,可实现多类问题的分类,并且还可克服传统多类SVM算法存在的不可分区域的情况。针对现有二叉树多类SVM方法未采用有效的二叉树生成算法,该文采用聚类分析中的类距离思想,提出了一... 采用二叉树结构对多个二值支持向量机(SVM)子分类器组合,可实现多类问题的分类,并且还可克服传统多类SVM算法存在的不可分区域的情况。针对现有二叉树多类SVM方法未采用有效的二叉树生成算法,该文采用聚类分析中的类距离思想,提出了一种新的基于二叉树的多类SVM分类方法。实验结果表明,新算法具有较高的推广性能。 展开更多
关键词 多类支持向量机 聚类 二叉树 多类分类
在线阅读 下载PDF
基于双支持向量机的偏二叉树多类分类算法 被引量:28
16
作者 谢娟英 张兵权 汪万紫 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第4期354-363,共10页
提出一种基于双支持向量机的偏二叉树多类分类算法,偏二叉树双支持向量机多类分类算法.该算法综合了二叉树支持向量机和双支持向量机的优势,实现了在不降低分类性能的前提下,大大缩短训练时间.理论分析和UCI(University of California I... 提出一种基于双支持向量机的偏二叉树多类分类算法,偏二叉树双支持向量机多类分类算法.该算法综合了二叉树支持向量机和双支持向量机的优势,实现了在不降低分类性能的前提下,大大缩短训练时间.理论分析和UCI(University of California Irvine)机器学习数据库数据集上的实验结果共同证明,偏二叉树双支持向量机多类分类算法在训练时间上具有绝对的优势,尤其在处理稍大数据集的多类分类问题时,这一优势尤为突出;实验仿真结果还证明,在采用非线性核时,该算法取得了比基于经典支持向量机的一对其余多类分类算法及二叉树支持向量机更好的分类效果;同时该算法还解决了后两种算法可能存在的样本不平衡问题,以及基于经典支持向量机的一对其余多类分类算法可能存在的不可分区域问题. 展开更多
关键词 双支持向量机 偏二叉树支持向量机 支持向量机 多类分类
在线阅读 下载PDF
基于超椭球的多类文本分类算法研究 被引量:3
17
作者 秦玉平 陈一荻 +1 位作者 王春立 王秀坤 《计算机科学》 CSCD 北大核心 2011年第8期242-244,共3页
提出一种基于超椭球的多类文本分类算法。对每一类样本,在特征空间求得一个包围该类尽可能多样本的最小超椭球,使得各类样本之间通过超椭球隔开。对待分类样本,通过判断其是否被超椭球包围来确定类别。实验结果表明,与超球方法相比,该... 提出一种基于超椭球的多类文本分类算法。对每一类样本,在特征空间求得一个包围该类尽可能多样本的最小超椭球,使得各类样本之间通过超椭球隔开。对待分类样本,通过判断其是否被超椭球包围来确定类别。实验结果表明,与超球方法相比,该方法具有较高的分类精度和分类速度。 展开更多
关键词 超椭球 多类分类 缩放因子
在线阅读 下载PDF
基于伪Zernike矩不变量分析的视觉测力 被引量:4
18
作者 胡文 刘洪涛 +3 位作者 胡春 范明霞 莫锦秋 王石刚 《上海交通大学学报》 EI CAS CSCD 北大核心 2013年第4期589-593,共5页
提出了一种基于伪Zernike矩不变量分析的视觉测力方法.该方法利用伪Zernike矩不变量所构成的特征向量来描述微装配过程中微夹爪变形之后的形状,并由此建立了矩不变量特征向量与受力之间的函数关系;建立训练集,输入为矩不变量特征向量,... 提出了一种基于伪Zernike矩不变量分析的视觉测力方法.该方法利用伪Zernike矩不变量所构成的特征向量来描述微装配过程中微夹爪变形之后的形状,并由此建立了矩不变量特征向量与受力之间的函数关系;建立训练集,输入为矩不变量特征向量,输出为已知受力;通过支持向量机比较测试集与训练集中的特征向量,对测试集的输入进行多类分类,从而估计未知受力.对4种不同规格的微悬臂梁进行了实验,结果验证了该方法的有效性. 展开更多
关键词 视觉测力 伪Zernike矩不变量 支持向量机 多类分类
在线阅读 下载PDF
多类文本分类算法GS-SVDD 被引量:4
19
作者 吴德 刘三阳 梁锦锦 《计算机科学》 CSCD 北大核心 2016年第8期190-193,共4页
传统多类文本多分类算法存在计算量大和训练时间长的问题,为此利用黄金分割(Golden Selection,GS)和支持向量域描述(Support Vector Domain Description,SVDD)对多类文本构造一种分类算法。GS-SVDD首先利用词频逆向文件频率(Term Freque... 传统多类文本多分类算法存在计算量大和训练时间长的问题,为此利用黄金分割(Golden Selection,GS)和支持向量域描述(Support Vector Domain Description,SVDD)对多类文本构造一种分类算法。GS-SVDD首先利用词频逆向文件频率(Term Frequency-Inverse Document Frequency,TF-IDF)公式计算词条的相对词频,根据该值将词条降序排列,并对得到的文本向量进行归一化;其次采用黄金分割法对文本向量进行维数约简,使得冗余的样本特征数不超过一个;最后根据支持向量域描述进行多类分类,判断待测文本归属相对类距离之值较小的类。不同数据集的数值实验表明,GS-SVDD比"一对一"和"一对多"支持向量机具有更好的稳定性、更高的分类精度和更短的训练时间,从而更适用于海量文本的多分类。 展开更多
关键词 文本多分类 黄金分割 支持向量域描述 维数约简 海量文本
在线阅读 下载PDF
一种面向多类不平衡协议流量的改进AdaBoost.M2算法 被引量:4
20
作者 张仁斌 张杰 吴佩 《计算机应用研究》 CSCD 北大核心 2019年第6期1863-1867,共5页
针对AdaBoost.M2算法在解决多类不平衡协议流量的分类问题时存在不足,提出一种适用于因特网协议流量多类不平衡分类的集成学习算法RBWS-ADAM2,本算法在AdaBoost.M2每次迭代过程中设计了基于权重的随机平衡重采样策略对训练数据进行预处... 针对AdaBoost.M2算法在解决多类不平衡协议流量的分类问题时存在不足,提出一种适用于因特网协议流量多类不平衡分类的集成学习算法RBWS-ADAM2,本算法在AdaBoost.M2每次迭代过程中设计了基于权重的随机平衡重采样策略对训练数据进行预处理,该策略利用随机设置采样平衡点的重采样方式来更改多数类和少数类的样本数目占比,以构建多个具有差异性的训练集,并将样本权重作为样本筛选的依据,尽可能保留高权重样本,以加强对此类样本的学习。在国际公开的协议流量数据集上将RBWS-ADAM2算法与其他类似算法进行实验比较表明,相比于其他算法,该算法不仅对部分少数类的F-measure有较大提升,更有效提高了集成分类器的总体G-mean和总体平均F-measure,明显增强了集成分类器的整体性能。 展开更多
关键词 流量分类 集成学习算法 多类不平衡 泛化性能
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部