Hardware in the loop simulation (HILS) has been investigated in the field of the multibody dynamics (MBD), which combined the MBD simulation with the actual mechanical system. The fast simulation is necessary for ...Hardware in the loop simulation (HILS) has been investigated in the field of the multibody dynamics (MBD), which combined the MBD simulation with the actual mechanical system. The fast simulation is necessary for the HILS system in order to require the real time simulation. This paper presents a fast simulation technique using the domain decomposition method with the iteration in the flexible multibody system in which flexible linkage system and electro-hydraulic drive system are coupled with each other. C 2013 The Chinese Society of Theoretical and Applied Mechanics.[doi:10.1063/2.1301301]展开更多
The dynamic cumulative damage of rigid-flexible coupling model of high-speed train with flexible bogie frame is performed by using the coupled scheme of elastic and multibody dynamics theories.The motion equations of ...The dynamic cumulative damage of rigid-flexible coupling model of high-speed train with flexible bogie frame is performed by using the coupled scheme of elastic and multibody dynamics theories.The motion equations of the present problem are firstly established by integrating the finite element method and floating frame of reference approach based on the virtual power principle and D'Alembert principle.The process of condensing the elastic DOFs of the obtained finite element model involving the incorporation of the substructure technique and sparse approximate inverse method is tentatively carried out.Then,the motion equations are further solved by virtue of the generalized α method and the Jacobian-free Newton-Krylov technologies.And the superiority of coupled scheme is proven by comparing with the traditional approach.Finally,besides the dynamic behaviors of the considered vehicle model,the time-variations of stresses on the elastic bogie frame's dangerous nodes and the distributions of stresses of bogie frame at some specified moments are synchronously calculated and analyzed.More importantly,the real-time and time-varying cumulative damages of some typical nodes on bogie frame are investigated.展开更多
The integrated systems of unmanned surface vehicles(USVs) and remotely operated vehicles(ROVs) have been extensively applied in marine exploration and seabed coverage. However, the simultaneous navigation of USV-ROV s...The integrated systems of unmanned surface vehicles(USVs) and remotely operated vehicles(ROVs) have been extensively applied in marine exploration and seabed coverage. However, the simultaneous navigation of USV-ROV systems is frequently limited by strong disturbances induced by waves or currents. This paper develops a novel rigidflexible coupling multibody dynamic model that incorporates disturbances of variable-length marine cables with geometrically nonlinear motion. A hybrid Lagrangian-Eulerian absolute nodal coordinate formulation(ANCF) element is developed to accurately model subsea cables which undergo significant overall motion, substantial deformation,and mass flow during the deployment of underwater equipment. Furthermore, the governing equations of the coupled USV-umbilical-ROV system are derived, considering wave-induced forces and current disturbances. A numerical solver based on the Newmark-beta method is proposed, along with an adaptive meshing technique near the release point. After validating three experimental cases, the cable disturbances at both the USV and ROV ends—caused by ocean currents, heave motion, and simultaneous navigation—are comprehensively compared and evaluated. Finally,it is demonstrated that a PD controller with disturbance compensation can enhance the simultaneous navigation performance of USV-ROV systems.展开更多
The launch dynamics theory for multibody systems emerges as an innovative and efficacious approach for the study of launch dynamics,capable of addressing the challenges of complex modeling,diminished computational eff...The launch dynamics theory for multibody systems emerges as an innovative and efficacious approach for the study of launch dynamics,capable of addressing the challenges of complex modeling,diminished computational efficiency,and imprecise analyses of system dynamic responses found in the dynamics research of intricate multi-rigid-flexible body systems,such as self-propelled artillery.This advancement aims to enhance the firing accuracy and launch safety of self-propelled artillery.Recognizing the shortfall of overlooking the band engraving process in existing theories,this study introduces a novel coupling calculation methodology for the launch dynamics of a self-propelled artillery multibody system.This method leverages the ABAQUS subroutine interface VUAMP to compute the dynamic response of the projectile and barrel during the launch process of large-caliber self-propelled artillery.Additionally,it examines the changes in projectile resistance and band deformation in relation to projectile motion throughout the band engraving process.Comparative analysis of the computational outcomes with experimental data evidences that the proposed method offers a more precise depiction of the launch process of self-propelled artillery,thereby enhancing the accuracy of launch dynamics calculations for self-propelled artillery.展开更多
The state estimation of the flexible multibody systems is a vital issue since it is the base of effective control and condition monitoring.The research on the state estimation method of flexible multibody system with ...The state estimation of the flexible multibody systems is a vital issue since it is the base of effective control and condition monitoring.The research on the state estimation method of flexible multibody system with large deformation and large rotation remains rare.In this investigation,a state estimator based on multiple nonlinear Kalman filtering algorithms was designed for the flexible multibody systems containing large flexibility components that were discretized by absolute nodal coordinate formulation(ANCF).The state variable vector was constructed based on the independent coordinates which are identified through the constraint Jacobian.Three types of Kalman filters were used to compare their performance in the state estimation for ANCF.Three cases including flexible planar rotating beam,flexible four-bar mechanism,and flexible rotating shaft were employed to verify the proposed state estimator.According to the different performances of the three types of Kalman filter,suggestions were given for the construction of the state estimator for the flexible multibody system.展开更多
A multibody system including a drilling riser system,tensioners and a floating platform is key equipment for offshore oil and gas drilling.Most of the previous studies only focus on the drilling riser system rather th...A multibody system including a drilling riser system,tensioners and a floating platform is key equipment for offshore oil and gas drilling.Most of the previous studies only focus on the drilling riser system rather than the multibody system.Mechanical characteristics of the deepwater drilling riser system cannot be analyzed accurately in a simplified model.Therefore,a three-dimensional multibody analysis program is developed.The static and dynamic characteristics of the deepwater drilling riser system under different platform motions are analyzed based on the developed program.The results show that the static displacement of the riser system with tensioners is smaller than that without tensioners,which means the tensioners can suppress the deformation of the riser system.Under surge and sway motions of the platform,the dynamic displacement of the riser system with tensioners is also smaller than that without tensioners due to the tensioner suppression effect.Besides,the heave motion induces a uniform axial vibration of the riser system,while roll and pitch motions excite the riser system to vibrate laterally.Compared with the stress amplitude due to surge and sway motions,the stress amplitude of the riser system due to heave,roll and pitch motions is relatively small but cannot be neglected.展开更多
Multibody musculoskeletal modeling of human gait has been proved helpful in investigating the pathology of musculoskeletal disorders.However,conventional inverse dynamics methods rely on external force sensors and can...Multibody musculoskeletal modeling of human gait has been proved helpful in investigating the pathology of musculoskeletal disorders.However,conventional inverse dynamics methods rely on external force sensors and cannot capture the nonlinear muscle behaviors.Meanwhile,the forward dynamics approach is computationally demanding and only suited for relatively simple tasks.This study proposed an integrated simulation methodology to fulfill the requirements of estimating foot-ground reaction force,tendon elasticity,and muscle recruitment optimization.A hybrid motion capture system,which combines the marker-based infrared device and markerless tracking through deep convolutional neural networks,was developed to track lower limb movements.The foot-ground reaction forces were determined by a contact model for soft materials,and its parameters were estimated using a two-step optimization method.The muscle recruitment problem was first resolved via a static optimization algorithm,and the obtained muscle activations were used as initial values for further simulation.A torque tracking procedure was then performed by minimizing the errors of joint torques calculated by musculotendon equilibrium equations and inverse dynamics.The proposed approach was validated against the electromyography measurements of a healthy subject during gait.The simulation framework provides a robust way of predicting joint torques,musculotendon forces,and muscle activations,which can be beneficial for understanding the biomechanics of normal and pathological gait.展开更多
The prediction accuracy of a simulation method is limited by its theoretical background. This fact can lead to disadvantages regarding the simulation quality when investigating systems of high complexity, e.g. contain...The prediction accuracy of a simulation method is limited by its theoretical background. This fact can lead to disadvantages regarding the simulation quality when investigating systems of high complexity, e.g. containing components showing a fairly different behavior. To overcome this limitation, co-simulation approaches are used more and more, combining the advantages of different simulation disciplines. That is why we propose a new strategy for the dynamic simulation of cutting processes. The method couples Lagrangian particle methods, such as the smoothed particle hydrodynamics (SPH) method, and multibody system (MBS) tools using co-simulations. We demonstrate the capability of the new approach by providing simulation results of an orthogonal cutting process and comparing them with experimental data. @ 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1301305]展开更多
In this paper a computational methodology on impact dynamics of the flexible multibody system is presented. First, the floating frame of reference approach and nodal coordinates on the basis of finite element formulat...In this paper a computational methodology on impact dynamics of the flexible multibody system is presented. First, the floating frame of reference approach and nodal coordinates on the basis of finite element formulation are used to describe the kinematics of planar deformable bodies. According to the kinematic description of contact conditions, the contact constraint equations of planar flexible bodies are derived. Based on the varying topology technique the impact dynamic equations for a planar multibody system are established. Then the initial conditions of the equations in each contact stage are determined according to the discontinuity theory in continuum mechanics. The experiments between the aluminum rods are performed to check the correctness of the proposed method. Through the comparison between the numerical and experimental results the proposed method is validated. Experimental results also show that the impulse momentum method cannot accurately predict the complex impact dynamic phenomena and the continuous model may lead to a serious error when used to simulate the impact problems with significant wave propagation effects.展开更多
A new automatic constraint violation stabilization method for numerical integration of Euler_Lagrange equations of motion in dynamics of multibody systems is presented. The parameters α,β used in the traditional con...A new automatic constraint violation stabilization method for numerical integration of Euler_Lagrange equations of motion in dynamics of multibody systems is presented. The parameters α,β used in the traditional constraint violation stabilization method are determined according to the integration time step size and Taylor expansion method automatically. The direct integration method, the traditional constraint violation stabilization method and the new method presented in this paper are compared finally.展开更多
The solution of the dynamic problem of multibody systems subject to rheonomic and nonholonomic constraints is achieved by applying singular value decomposition of the constraint matrix and projections of the dynamic e...The solution of the dynamic problem of multibody systems subject to rheonomic and nonholonomic constraints is achieved by applying singular value decomposition of the constraint matrix and projections of the dynamic equations of the systems along the feasible and unfeasible directions of the constraints. Formula to solve the constraint reaction forces and a method to avoid the violation of the constraints are also given.The solution does not rely on coordinates used to describe the systems and is computational efficitive example is finally presnted.展开更多
The transformation from multibody models to lumped-parameter models is a crucial aspect of vehicle dynamics research.The velocity transformation method is adopted in this research,and the suspension multibody model is...The transformation from multibody models to lumped-parameter models is a crucial aspect of vehicle dynamics research.The velocity transformation method is adopted in this research,and the suspension multibody model is described using only one degree of freedom.It is found that the equivalent mass of the system is time-dependent during the simulation process,as observed in numerical simulations.Further symbolic calculations are conducted to derive the analytical form of the equivalent mass,and the results show that once the static parameters are determined,the equivalent mass of the suspension system is determined solely by the vertical position of the suspension upright,which reveals the kinematics characteristic of the equivalent mass of the suspension system.It is found that the equivalent mass experiences smaller changes when the suspension is compressed from the middle position,but larger changes when the suspension is extended.Furthermore,by comparing the multibody model,the lumped-parameter model with static mass,and the proposed lumped-parameter model considering the kinematics characteristic of the equivalent unsprung mass,the proposed model produces simulation results that more closely match the original multibody model than the model with static mass.The improvements in accuracy can be up to 20%under certain evaluation metrics.展开更多
This paper focuses on the use of rotary-percussive drilling for hard rocks.In order to improve efficiency and reduce costs,it is essential to understand how operational parameters,bit wear,and drilling performance are...This paper focuses on the use of rotary-percussive drilling for hard rocks.In order to improve efficiency and reduce costs,it is essential to understand how operational parameters,bit wear,and drilling performance are related.A model is presented therein that combines multibody dynamics and discrete element method(DEM)to investigate the influences of operational parameters and bit wear on the rate of penetration and wear characteristics.The model accurately captures the motion of the bit and recreates rock using the cutting sieving result.Field experimental results validate the rod dynamic behavior,rock recreating model,and coupling model in the simulation.The findings indicate that hammer pressure significantly influences the rate of penetration and wear depth of the bit,and there is an optimal range for economical hammer pressure.The wear coefficient has a major effect on the rate of penetration,when wear coefficient is between 1/3 and 2/3.Increasing the wear coefficient can reduce drill bit button pressure and wear depth at the same drill distance.Gauge button loss increases the rate of penetration due to higher pressure on the remaining buttons,which also accelerates destruction of the bit.Furthermore,a more evenly distributed button on the bit enhances the rate of penetration(ROP)when the same number of buttons is lost.展开更多
Rotation-free shell formulation is a simple and effective method to model a shell with large deformation. Moreover, it can be compatible with the existing theories of finite element method. However, a rotation-free sh...Rotation-free shell formulation is a simple and effective method to model a shell with large deformation. Moreover, it can be compatible with the existing theories of finite element method. However, a rotation-free shell is seldom employed in multibody systems. Using a derivative of rigid body motion, an efficient nonlinear shell model is proposed based on the rotation-free shell element and corotational frame. The bending and membrane strains of the shell have been simplified by isolating deformational displacements from the detailed description of rigid body motion. The consistent stiffness matrix can be obtained easily in this form of shell model. To model the multibody system consisting of the presented shells, joint kinematic constraints including translational and rotational constraints are deduced in the context of geometric nonlinear rotation-free element. A simple node-to-surface contact discretization and penalty method are adopted for contacts between shells. A series of analyses for multibody system dynamics are presented to validate the proposed formulation. Furthermore,the deployment of a large scaled solar array is presented to verify the comprehensive performance of the nonlinear shell model.展开更多
Defects in kinematic joints can sometimes highly influence the simulation response of the whole multibody system within which these joints are included. For instance, the clearance, the friction, the lubrication and t...Defects in kinematic joints can sometimes highly influence the simulation response of the whole multibody system within which these joints are included. For instance, the clearance, the friction, the lubrication and the flexibility affect the transient behaviour, reduce the component life and produce noise and vibration for classical joints such as prismatics, cylindrics or universal joints.In this work, a new 3D cylindrical joint model which accounts for the clearance, the misalignment and the friction is presented. This formulation has been used to represent the link between the planet gears and the planet carrier in an automotive differential model. C 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1301303]展开更多
Impact processes between flexible bodies often lead to local stress concentration and wave propagation of high frequency. Therefore, the modeling of flexible multibody systems involving impact should consider the loca...Impact processes between flexible bodies often lead to local stress concentration and wave propagation of high frequency. Therefore, the modeling of flexible multibody systems involving impact should consider the local plastic deformation and the strict requirements of the spatial discretization. Owing to the nonlinearity of the stiffness matrix, the reduction of the element number is extremely important. For the contact-impact problem, since different regions have different requirements regarding the element size, a new subregion mesh method is proposed to reduce the number of the unnecessary elements. A dynamic model for flexible multibody systems with elastic-plastic contact impact is established based on a floating frame of reference formulation and complete Lagrange incremental nonlinear finite-element method to investigate the effect of the elastic-plastic deformation as well as spatial discretization. Experiments on the impact between two bodies are carried out to validate the correctness of the elastic-plastic model. The proposed formulation is applied to a slider-crank system with elastic-plastic impact.展开更多
Soft machine refers to a kind of mechanical system made of soft materials to complete sophisticated missions, such as handling a fragile object and crawling along a narrow tunnel corner, under low cost control and act...Soft machine refers to a kind of mechanical system made of soft materials to complete sophisticated missions, such as handling a fragile object and crawling along a narrow tunnel corner, under low cost control and actuation. Hence, soft machines have raised great challenges to computational dynamics. In this review article, recent studies of the authors on the dynamic modeling, numerical simulation, and experimental validation of soft machines are summarized in the framework of multibody system dynamics. The dynamic modeling approaches are presented first for the geometric nonlinearities of coupled overall motions and large deformations of a soft component, the physical nonlinearities of a soft component made of hyperelastic or elastoplastic materials, and the frictional contacts/impacts of soft components, respectively. Then the computation approach is outlined for the dynamic simulation of soft machines governed by a set of differential-algebraic equations of very high dimensions, with an emphasis on the efficient computations of the nonlinear elastic force vector of finite elements. The validations of the proposed approaches are given via three case studies, including the locomotion of a soft quadrupedal robot, the spinning deployment of a solar sail of a spacecraft, and the deployment of a mesh reflector of a satellite antenna, as well as the corresponding experimental studies. Finally, some remarks are made for future studies.展开更多
The study of soil and rigid body system interactions is very important for the exploration of the Moon and Mars worldwide.The discrete element method(DEM)is a relatively accurate simulation method to study dry sand so...The study of soil and rigid body system interactions is very important for the exploration of the Moon and Mars worldwide.The discrete element method(DEM)is a relatively accurate simulation method to study dry sand soil mechanical properties.However,it is not suitable for bodies that are in mutual contact,connected due to constraints or have complex inertia properties due to their geometry.An efficient combination of the two-dimensional discrete element and multibody dynamic modeling method is proposed to solve the problem,in which the contacts and frictions among the granular spheres and the multibody system,including the smooth and rough rigid bodies,are taken into account.In this work,the soil field is modeled by a two-dimensional DEM,and the dynamics of the constrained rigid body system are modeled by the Cartesian method.A detection algorithm is developed to address the interactions between spherical discrete elements and roughly shaped rigid bodies.The advantage of this coupled method is that it enables the simultaneous capture of both responses.Finally,the program is verified by simulation experiments of the three-ball collision and the collision among the rectangular bars and the three balls.Based on this,the movement of the toothed wheel in the granular matter is analyzed,and the results show that the wheel with six teeth and 30°inclination has the fastest forward speed.In extraterrestrial objects,the wheel grip worsens,but the forward speed first increases and then decreases with decreasing gravity acceleration and loads on wheels,which proves that the coupled two-dimensional DEM and multibody dynamic program is effective in solving engineering problems.展开更多
A virtual prototype of high-rise building window cleaning gondola based on multibody system dynamics software MS(2. ADAMS is presented. The rigid bodies are modeled by CAD software and flexible bodies are modeled by ...A virtual prototype of high-rise building window cleaning gondola based on multibody system dynamics software MS(2. ADAMS is presented. The rigid bodies are modeled by CAD software and flexible bodies are modeled by discrete beam method. The whole machine's natural characteristics are analyzed and changed to frequency field. According to the results, the dangerous frequencies are avoided and the design can be optimized and the performance can be improved.展开更多
A machine learning model for regression of interrupted Surface Electromyography(sEMG)signals to future control-oriented signals(e.g.,robot’s joint angle and assistive torque)of an active biomechatronic device for hig...A machine learning model for regression of interrupted Surface Electromyography(sEMG)signals to future control-oriented signals(e.g.,robot’s joint angle and assistive torque)of an active biomechatronic device for high-level myoelectric-based hierarchical control is proposed.A Recurrent Neural Network(RNN)was trained using output data,initially obtained from offline optimization of the biomechatronic(human–robot)device and shifted by the prediction horizon.The input of the RNN consisted of interrupted sEMG signals(to mimic signal disconnections)and previous kinematic signals of the assistive system.The RNN with a 0.1-s prediction horizon could predict the control-oriented joint angle and assistive torque with 92%and 86.5%regression accuracy,respectively,for the test dataset.This proposed approach permits a fast,predictive,and direct estimation of control-oriented signals instead of an iterative process that optimizes assistive torque in the inverse dynamic simulation of a multibody human–robot system.Training with these interrupted input signals significantly improves the regression accuracy in the case of sEMG signal disconnection.This Robust Predictive Control-oriented Machine Learning(Robust-MuscleNET)model can support volitional high-level myoelectric-based control of biomechatronic devices,such as exoskeletons,prostheses,and assistive/resistive robots.Future work should study the application to prosthesis control as well as the repeatability of the high-level controller with electrode shift.The low-level hierarchical controller that manages the human–robot interaction,the assistance/resistance strategy,and the actuator coordination should also be studied.展开更多
文摘Hardware in the loop simulation (HILS) has been investigated in the field of the multibody dynamics (MBD), which combined the MBD simulation with the actual mechanical system. The fast simulation is necessary for the HILS system in order to require the real time simulation. This paper presents a fast simulation technique using the domain decomposition method with the iteration in the flexible multibody system in which flexible linkage system and electro-hydraulic drive system are coupled with each other. C 2013 The Chinese Society of Theoretical and Applied Mechanics.[doi:10.1063/2.1301301]
基金support for the research:National Natural Science Foundation of China(Grant No.11872257 and 11572358)Key Project of Natural Science Foundation of Hebei Province(Grant No.A2020210008)Hebei Provincial Department of Education Youth Top Talents Project(Grant No.BJK2023018).
文摘The dynamic cumulative damage of rigid-flexible coupling model of high-speed train with flexible bogie frame is performed by using the coupled scheme of elastic and multibody dynamics theories.The motion equations of the present problem are firstly established by integrating the finite element method and floating frame of reference approach based on the virtual power principle and D'Alembert principle.The process of condensing the elastic DOFs of the obtained finite element model involving the incorporation of the substructure technique and sparse approximate inverse method is tentatively carried out.Then,the motion equations are further solved by virtue of the generalized α method and the Jacobian-free Newton-Krylov technologies.And the superiority of coupled scheme is proven by comparing with the traditional approach.Finally,besides the dynamic behaviors of the considered vehicle model,the time-variations of stresses on the elastic bogie frame's dangerous nodes and the distributions of stresses of bogie frame at some specified moments are synchronously calculated and analyzed.More importantly,the real-time and time-varying cumulative damages of some typical nodes on bogie frame are investigated.
基金financially supported in part by the General Program of the National Natural Science Foundation of China (Grant No.12272221)the State Key Laboratory of Ocean Engineering (Shanghai Jiao Tong University)(Grant No. GKZD010087)。
文摘The integrated systems of unmanned surface vehicles(USVs) and remotely operated vehicles(ROVs) have been extensively applied in marine exploration and seabed coverage. However, the simultaneous navigation of USV-ROV systems is frequently limited by strong disturbances induced by waves or currents. This paper develops a novel rigidflexible coupling multibody dynamic model that incorporates disturbances of variable-length marine cables with geometrically nonlinear motion. A hybrid Lagrangian-Eulerian absolute nodal coordinate formulation(ANCF) element is developed to accurately model subsea cables which undergo significant overall motion, substantial deformation,and mass flow during the deployment of underwater equipment. Furthermore, the governing equations of the coupled USV-umbilical-ROV system are derived, considering wave-induced forces and current disturbances. A numerical solver based on the Newmark-beta method is proposed, along with an adaptive meshing technique near the release point. After validating three experimental cases, the cable disturbances at both the USV and ROV ends—caused by ocean currents, heave motion, and simultaneous navigation—are comprehensively compared and evaluated. Finally,it is demonstrated that a PD controller with disturbance compensation can enhance the simultaneous navigation performance of USV-ROV systems.
基金supported by the National Natural Science Foundation of China (Grant Number:12372093)。
文摘The launch dynamics theory for multibody systems emerges as an innovative and efficacious approach for the study of launch dynamics,capable of addressing the challenges of complex modeling,diminished computational efficiency,and imprecise analyses of system dynamic responses found in the dynamics research of intricate multi-rigid-flexible body systems,such as self-propelled artillery.This advancement aims to enhance the firing accuracy and launch safety of self-propelled artillery.Recognizing the shortfall of overlooking the band engraving process in existing theories,this study introduces a novel coupling calculation methodology for the launch dynamics of a self-propelled artillery multibody system.This method leverages the ABAQUS subroutine interface VUAMP to compute the dynamic response of the projectile and barrel during the launch process of large-caliber self-propelled artillery.Additionally,it examines the changes in projectile resistance and band deformation in relation to projectile motion throughout the band engraving process.Comparative analysis of the computational outcomes with experimental data evidences that the proposed method offers a more precise depiction of the launch process of self-propelled artillery,thereby enhancing the accuracy of launch dynamics calculations for self-propelled artillery.
基金supported by the National Natural Science Foundation of China(Grant Nos.12272123 and 12302047)the Natural Science Foundation of Jiangsu Province(Grant No.BK20231185)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.SJCX24_0192).
文摘The state estimation of the flexible multibody systems is a vital issue since it is the base of effective control and condition monitoring.The research on the state estimation method of flexible multibody system with large deformation and large rotation remains rare.In this investigation,a state estimator based on multiple nonlinear Kalman filtering algorithms was designed for the flexible multibody systems containing large flexibility components that were discretized by absolute nodal coordinate formulation(ANCF).The state variable vector was constructed based on the independent coordinates which are identified through the constraint Jacobian.Three types of Kalman filters were used to compare their performance in the state estimation for ANCF.Three cases including flexible planar rotating beam,flexible four-bar mechanism,and flexible rotating shaft were employed to verify the proposed state estimator.According to the different performances of the three types of Kalman filter,suggestions were given for the construction of the state estimator for the flexible multibody system.
基金This work was financially supported by National Natural Science Foundation of China(Grant No.51809279)Major National Science and Technology Program(Grant No.2016ZX05028-001-05)+3 种基金National Key R&D Program of China(Grant No.2017YFC0804500)Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT14R58)the Fundamental Research Funds for the Central Universities(Grant No.20CX02302A)the Opening Fund of National Engineering Laboratory of Offshore Geophysical and Exploration Equipment(Grant No.20CX02302A)。
文摘A multibody system including a drilling riser system,tensioners and a floating platform is key equipment for offshore oil and gas drilling.Most of the previous studies only focus on the drilling riser system rather than the multibody system.Mechanical characteristics of the deepwater drilling riser system cannot be analyzed accurately in a simplified model.Therefore,a three-dimensional multibody analysis program is developed.The static and dynamic characteristics of the deepwater drilling riser system under different platform motions are analyzed based on the developed program.The results show that the static displacement of the riser system with tensioners is smaller than that without tensioners,which means the tensioners can suppress the deformation of the riser system.Under surge and sway motions of the platform,the dynamic displacement of the riser system with tensioners is also smaller than that without tensioners due to the tensioner suppression effect.Besides,the heave motion induces a uniform axial vibration of the riser system,while roll and pitch motions excite the riser system to vibrate laterally.Compared with the stress amplitude due to surge and sway motions,the stress amplitude of the riser system due to heave,roll and pitch motions is relatively small but cannot be neglected.
基金the National Natural Science Foundations of China(Grant Nos.12102035 and 12125201)the China Postdoctoral Science Foundation(Grant No.2020TQ0042)the Beijing Natural Science Foundation(Grant No.L212008).
文摘Multibody musculoskeletal modeling of human gait has been proved helpful in investigating the pathology of musculoskeletal disorders.However,conventional inverse dynamics methods rely on external force sensors and cannot capture the nonlinear muscle behaviors.Meanwhile,the forward dynamics approach is computationally demanding and only suited for relatively simple tasks.This study proposed an integrated simulation methodology to fulfill the requirements of estimating foot-ground reaction force,tendon elasticity,and muscle recruitment optimization.A hybrid motion capture system,which combines the marker-based infrared device and markerless tracking through deep convolutional neural networks,was developed to track lower limb movements.The foot-ground reaction forces were determined by a contact model for soft materials,and its parameters were estimated using a two-step optimization method.The muscle recruitment problem was first resolved via a static optimization algorithm,and the obtained muscle activations were used as initial values for further simulation.A torque tracking procedure was then performed by minimizing the errors of joint torques calculated by musculotendon equilibrium equations and inverse dynamics.The proposed approach was validated against the electromyography measurements of a healthy subject during gait.The simulation framework provides a robust way of predicting joint torques,musculotendon forces,and muscle activations,which can be beneficial for understanding the biomechanics of normal and pathological gait.
基金supported by the German Research Foundation (DFG) under the Priority Program SPP 1480 'Modelling, Simulation and Compensation of Thermal Effects for Complex Machining Processes'Subproject 'Modelling and Compensation of Thermal Effects for Short Hole Drilling' (EB 195/12-1)the support of the Institute for Machine Tools as well as the Materials Testing Institute of the University of Stuttgart,providing thern with necessary experimental data
文摘The prediction accuracy of a simulation method is limited by its theoretical background. This fact can lead to disadvantages regarding the simulation quality when investigating systems of high complexity, e.g. containing components showing a fairly different behavior. To overcome this limitation, co-simulation approaches are used more and more, combining the advantages of different simulation disciplines. That is why we propose a new strategy for the dynamic simulation of cutting processes. The method couples Lagrangian particle methods, such as the smoothed particle hydrodynamics (SPH) method, and multibody system (MBS) tools using co-simulations. We demonstrate the capability of the new approach by providing simulation results of an orthogonal cutting process and comparing them with experimental data. @ 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1301305]
基金supported by the National Natural Science Foundation of China (10772113)
文摘In this paper a computational methodology on impact dynamics of the flexible multibody system is presented. First, the floating frame of reference approach and nodal coordinates on the basis of finite element formulation are used to describe the kinematics of planar deformable bodies. According to the kinematic description of contact conditions, the contact constraint equations of planar flexible bodies are derived. Based on the varying topology technique the impact dynamic equations for a planar multibody system are established. Then the initial conditions of the equations in each contact stage are determined according to the discontinuity theory in continuum mechanics. The experiments between the aluminum rods are performed to check the correctness of the proposed method. Through the comparison between the numerical and experimental results the proposed method is validated. Experimental results also show that the impulse momentum method cannot accurately predict the complex impact dynamic phenomena and the continuous model may lead to a serious error when used to simulate the impact problems with significant wave propagation effects.
文摘A new automatic constraint violation stabilization method for numerical integration of Euler_Lagrange equations of motion in dynamics of multibody systems is presented. The parameters α,β used in the traditional constraint violation stabilization method are determined according to the integration time step size and Taylor expansion method automatically. The direct integration method, the traditional constraint violation stabilization method and the new method presented in this paper are compared finally.
文摘The solution of the dynamic problem of multibody systems subject to rheonomic and nonholonomic constraints is achieved by applying singular value decomposition of the constraint matrix and projections of the dynamic equations of the systems along the feasible and unfeasible directions of the constraints. Formula to solve the constraint reaction forces and a method to avoid the violation of the constraints are also given.The solution does not rely on coordinates used to describe the systems and is computational efficitive example is finally presnted.
基金This work was supported by the National Natural Science Foundation of China(Grant No.12272141)The financial support is gratefully acknowledged.
文摘The transformation from multibody models to lumped-parameter models is a crucial aspect of vehicle dynamics research.The velocity transformation method is adopted in this research,and the suspension multibody model is described using only one degree of freedom.It is found that the equivalent mass of the system is time-dependent during the simulation process,as observed in numerical simulations.Further symbolic calculations are conducted to derive the analytical form of the equivalent mass,and the results show that once the static parameters are determined,the equivalent mass of the suspension system is determined solely by the vertical position of the suspension upright,which reveals the kinematics characteristic of the equivalent mass of the suspension system.It is found that the equivalent mass experiences smaller changes when the suspension is compressed from the middle position,but larger changes when the suspension is extended.Furthermore,by comparing the multibody model,the lumped-parameter model with static mass,and the proposed lumped-parameter model considering the kinematics characteristic of the equivalent unsprung mass,the proposed model produces simulation results that more closely match the original multibody model than the model with static mass.The improvements in accuracy can be up to 20%under certain evaluation metrics.
基金supported by the National Natural Science Foundation of China Youth Science Foundation of China(Grant No.52308388)the Key Project of High-speed Rail Joint Fund of National Natural Science Foundation of China(Grant No.U1934210).
文摘This paper focuses on the use of rotary-percussive drilling for hard rocks.In order to improve efficiency and reduce costs,it is essential to understand how operational parameters,bit wear,and drilling performance are related.A model is presented therein that combines multibody dynamics and discrete element method(DEM)to investigate the influences of operational parameters and bit wear on the rate of penetration and wear characteristics.The model accurately captures the motion of the bit and recreates rock using the cutting sieving result.Field experimental results validate the rod dynamic behavior,rock recreating model,and coupling model in the simulation.The findings indicate that hammer pressure significantly influences the rate of penetration and wear depth of the bit,and there is an optimal range for economical hammer pressure.The wear coefficient has a major effect on the rate of penetration,when wear coefficient is between 1/3 and 2/3.Increasing the wear coefficient can reduce drill bit button pressure and wear depth at the same drill distance.Gauge button loss increases the rate of penetration due to higher pressure on the remaining buttons,which also accelerates destruction of the bit.Furthermore,a more evenly distributed button on the bit enhances the rate of penetration(ROP)when the same number of buttons is lost.
基金supported by the National Natural Science Foundation of China (Grants 11772188, 11132007)
文摘Rotation-free shell formulation is a simple and effective method to model a shell with large deformation. Moreover, it can be compatible with the existing theories of finite element method. However, a rotation-free shell is seldom employed in multibody systems. Using a derivative of rigid body motion, an efficient nonlinear shell model is proposed based on the rotation-free shell element and corotational frame. The bending and membrane strains of the shell have been simplified by isolating deformational displacements from the detailed description of rigid body motion. The consistent stiffness matrix can be obtained easily in this form of shell model. To model the multibody system consisting of the presented shells, joint kinematic constraints including translational and rotational constraints are deduced in the context of geometric nonlinear rotation-free element. A simple node-to-surface contact discretization and penalty method are adopted for contacts between shells. A series of analyses for multibody system dynamics are presented to validate the proposed formulation. Furthermore,the deployment of a large scaled solar array is presented to verify the comprehensive performance of the nonlinear shell model.
基金the Belgian National Fund for Scientific research (FRIA) for its financial support
文摘Defects in kinematic joints can sometimes highly influence the simulation response of the whole multibody system within which these joints are included. For instance, the clearance, the friction, the lubrication and the flexibility affect the transient behaviour, reduce the component life and produce noise and vibration for classical joints such as prismatics, cylindrics or universal joints.In this work, a new 3D cylindrical joint model which accounts for the clearance, the misalignment and the friction is presented. This formulation has been used to represent the link between the planet gears and the planet carrier in an automotive differential model. C 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1301303]
基金supported by the National Natural Science Foundation of China (Grants 11132007, 11272203)
文摘Impact processes between flexible bodies often lead to local stress concentration and wave propagation of high frequency. Therefore, the modeling of flexible multibody systems involving impact should consider the local plastic deformation and the strict requirements of the spatial discretization. Owing to the nonlinearity of the stiffness matrix, the reduction of the element number is extremely important. For the contact-impact problem, since different regions have different requirements regarding the element size, a new subregion mesh method is proposed to reduce the number of the unnecessary elements. A dynamic model for flexible multibody systems with elastic-plastic contact impact is established based on a floating frame of reference formulation and complete Lagrange incremental nonlinear finite-element method to investigate the effect of the elastic-plastic deformation as well as spatial discretization. Experiments on the impact between two bodies are carried out to validate the correctness of the elastic-plastic model. The proposed formulation is applied to a slider-crank system with elastic-plastic impact.
基金supported in part by the National Natural Science Foundation of China (Grants 11290150 and 11290151)
文摘Soft machine refers to a kind of mechanical system made of soft materials to complete sophisticated missions, such as handling a fragile object and crawling along a narrow tunnel corner, under low cost control and actuation. Hence, soft machines have raised great challenges to computational dynamics. In this review article, recent studies of the authors on the dynamic modeling, numerical simulation, and experimental validation of soft machines are summarized in the framework of multibody system dynamics. The dynamic modeling approaches are presented first for the geometric nonlinearities of coupled overall motions and large deformations of a soft component, the physical nonlinearities of a soft component made of hyperelastic or elastoplastic materials, and the frictional contacts/impacts of soft components, respectively. Then the computation approach is outlined for the dynamic simulation of soft machines governed by a set of differential-algebraic equations of very high dimensions, with an emphasis on the efficient computations of the nonlinear elastic force vector of finite elements. The validations of the proposed approaches are given via three case studies, including the locomotion of a soft quadrupedal robot, the spinning deployment of a solar sail of a spacecraft, and the deployment of a mesh reflector of a satellite antenna, as well as the corresponding experimental studies. Finally, some remarks are made for future studies.
基金supported by the Key Program of National Natural Science Foundation of China(Grant No.11932001)the General Program of National Natural Science Foundation of China(Grant Nos.11772186 and 11772188)for which the authors are grateful.This research was also supported by the Key Laboratory of Hydrodynamics(Ministry of Education).
文摘The study of soil and rigid body system interactions is very important for the exploration of the Moon and Mars worldwide.The discrete element method(DEM)is a relatively accurate simulation method to study dry sand soil mechanical properties.However,it is not suitable for bodies that are in mutual contact,connected due to constraints or have complex inertia properties due to their geometry.An efficient combination of the two-dimensional discrete element and multibody dynamic modeling method is proposed to solve the problem,in which the contacts and frictions among the granular spheres and the multibody system,including the smooth and rough rigid bodies,are taken into account.In this work,the soil field is modeled by a two-dimensional DEM,and the dynamics of the constrained rigid body system are modeled by the Cartesian method.A detection algorithm is developed to address the interactions between spherical discrete elements and roughly shaped rigid bodies.The advantage of this coupled method is that it enables the simultaneous capture of both responses.Finally,the program is verified by simulation experiments of the three-ball collision and the collision among the rectangular bars and the three balls.Based on this,the movement of the toothed wheel in the granular matter is analyzed,and the results show that the wheel with six teeth and 30°inclination has the fastest forward speed.In extraterrestrial objects,the wheel grip worsens,but the forward speed first increases and then decreases with decreasing gravity acceleration and loads on wheels,which proves that the coupled two-dimensional DEM and multibody dynamic program is effective in solving engineering problems.
文摘A virtual prototype of high-rise building window cleaning gondola based on multibody system dynamics software MS(2. ADAMS is presented. The rigid bodies are modeled by CAD software and flexible bodies are modeled by discrete beam method. The whole machine's natural characteristics are analyzed and changed to frequency field. According to the results, the dangerous frequencies are avoided and the design can be optimized and the performance can be improved.
基金supported by funding from the Canada Research Chairs Program and the Natural Sciences and Engineering Research Council of Canada.The authors wish to thank Ekso Bionics Holdings Inc.for providing the Ekso EVO passive shoulder exoskeleton.
文摘A machine learning model for regression of interrupted Surface Electromyography(sEMG)signals to future control-oriented signals(e.g.,robot’s joint angle and assistive torque)of an active biomechatronic device for high-level myoelectric-based hierarchical control is proposed.A Recurrent Neural Network(RNN)was trained using output data,initially obtained from offline optimization of the biomechatronic(human–robot)device and shifted by the prediction horizon.The input of the RNN consisted of interrupted sEMG signals(to mimic signal disconnections)and previous kinematic signals of the assistive system.The RNN with a 0.1-s prediction horizon could predict the control-oriented joint angle and assistive torque with 92%and 86.5%regression accuracy,respectively,for the test dataset.This proposed approach permits a fast,predictive,and direct estimation of control-oriented signals instead of an iterative process that optimizes assistive torque in the inverse dynamic simulation of a multibody human–robot system.Training with these interrupted input signals significantly improves the regression accuracy in the case of sEMG signal disconnection.This Robust Predictive Control-oriented Machine Learning(Robust-MuscleNET)model can support volitional high-level myoelectric-based control of biomechatronic devices,such as exoskeletons,prostheses,and assistive/resistive robots.Future work should study the application to prosthesis control as well as the repeatability of the high-level controller with electrode shift.The low-level hierarchical controller that manages the human–robot interaction,the assistance/resistance strategy,and the actuator coordination should also be studied.