In this paper, distributed event-triggered performance constraint control is proposed for Heterogeneous Multiagent Systems (HMASs) including quadrotor unmanned aerial vehicles and unmanned ground vehicles in the prese...In this paper, distributed event-triggered performance constraint control is proposed for Heterogeneous Multiagent Systems (HMASs) including quadrotor unmanned aerial vehicles and unmanned ground vehicles in the presence of unknown external disturbances. To tackle the problem of different dynamic characteristics and facilitate the controller design, the virtual variable is introduced in the z axis of the nonlinear model of unmanned ground vehicles. By using this approach, a universal model is established for the HMAS. Moreover, a distributed disturbance observer is established to cope with the adverse influence of the external disturbances. Then, an Appointed-Time Prescribed Performance Function (ATPPF) is designed to restrict the tracking error in the predefined regions. On this basis, the distributed performance constraint controller is proposed for the HMAS based on the ATPPF and the distributed disturbance observer. Furthermore, the improved event-triggered mechanism is proposed with a dynamic threshold, which depends on the distance between the tracking error and the boundary of the ATPPF. Finally, the effectiveness of the proposed control method is verified by the comparative experiments on an HMAS.展开更多
In this paper,a class of time-varying output group formation containment control problem of general linear hetero-geneous multiagent systems(MASs)is investigated under directed topology.The MAS is composed of a number...In this paper,a class of time-varying output group formation containment control problem of general linear hetero-geneous multiagent systems(MASs)is investigated under directed topology.The MAS is composed of a number of tracking leaders,formation leaders and followers,where two different types of leaders are used to provide reference trajectories for movement and to achieve certain formations,respectively.Firstly,compen-sators are designed whose states are estimations of tracking lead-ers,based on which,a controller is developed for each formation leader to accomplish the expected formation.Secondly,two event-triggered compensators are proposed for each follower to evalu-ate the state and formation information of the formation leaders in the same group,respectively.Subsequently,a control protocol is designed for each follower,utilizing the output information,to guide the output towards the convex hull generated by the forma-tion leaders within the group.Next,the triggering sequence in this paper is decomposed into two sequences,and the inter-event intervals of these two triggering conditions are provided to rule out the Zeno behavior.Finally,a numerical simulation is intro-duced to confirm the validity of the proposed results.展开更多
This paper is concerned with the consensus problem for high-order continuous-time multiagent systems with both state and input delays.A novel approach referred to as pseudopredictor feedback protocol is proposed.Unlik...This paper is concerned with the consensus problem for high-order continuous-time multiagent systems with both state and input delays.A novel approach referred to as pseudopredictor feedback protocol is proposed.Unlike the predictorbased feedback protocol which utilizes the open-loop dynamics to predict the future states,the pseudo-predictor feedback protocol uses the closed-loop dynamics of the multiagent systems to predict the future agent states.Full-order/reduced-order observer-based pseudo-predictor feedback protocols are proposed,and it is shown that the consensus is achieved and the input delay is compensated by the proposed protocols.Necessary and sufficient conditions guaranteeing the stability of the integral delay systems are provided in terms of the stability of the series of retarded-type time-delay systems.Furthermore,compared with the existing predictor-based protocols,the proposed pseudo-predictor feedback protocol is independent of the input signals of the neighboring agents and is easier to implement.Finally,a numerical example is given to demonstrate the effectiveness of the proposed approaches.展开更多
This paper addresses an improved distributed model predictive control (DMPC) scheme for multiagent systems with an attempt to improving its consistency. The deviation between what an agent is actually doing and what...This paper addresses an improved distributed model predictive control (DMPC) scheme for multiagent systems with an attempt to improving its consistency. The deviation between what an agent is actually doing and what its neighbors believe that agent is doing is penalized in the cost function of each agent. At each sampling instant the compatibility constraint of each agent is set tighter than the previous sampling instant. Like the traditional approach, the performance cost is utilized as the Lyapunov function to prove closed-looped stability. The closed-loop stability is guaranteed if the weight matrix for deviation in the cost function are sufficiently large. The proposed distributed control scheme is formulated as quadratic programming with quadratic constraints. A numerical example is given to illustrate the effectiveness of the proposed scheme.展开更多
The bipartite consensus problem is addressed for a class of nonlinear time-delay multiagent systems in this paper.Therein,the uncertain nonlinear dynamics of all agents satisfy a Lipschitz growth condition with unknow...The bipartite consensus problem is addressed for a class of nonlinear time-delay multiagent systems in this paper.Therein,the uncertain nonlinear dynamics of all agents satisfy a Lipschitz growth condition with unknown constants,and part of the state information cannot be measured.In this case,a time-varying gain compensator is constructed,which only utilizes the output information of the follower and its neighbors.Subsequently,a distributed output feedback control protocol is proposed on the basis of the compensator.According to Lyapunov stability theory,it is proved that the bipartite consensus can be guaranteed by means of the designed control protocol.Different from the existing literature,this paper studies the leader-follower consensus problem under a weaker connectivity condition,i.e.,the signed directed graph is structurally balanced and contains a directed spanning tree.Two simulation examples are carried out to show the feasibility of the proposed control strategy.展开更多
The objectives of this work are the development and design of disturbance observers (DO’s) for a team of agents that accomplish consensus on agents’ states in the presence of exogenous disturbances. A pinning contro...The objectives of this work are the development and design of disturbance observers (DO’s) for a team of agents that accomplish consensus on agents’ states in the presence of exogenous disturbances. A pinning control strategy is designed for a part of agents of the multiagent systems without disturbances, and this pinning control can bring multiple agents’ states to reaching an expected consensus value. Under the effect of the disturbances, nonlinear disturbance observers are developed for disturbances generated by an exogenous system to estimate the disturbances. Asymptotical consensus of the multiagent systems with disturbances under the composite controller can be achieved. Finally, by applying an example of multiagent systems with switching topologies and exogenous disturbances, the design of the parameters of DO’s are illuminated.展开更多
In this paper,the static consensus problem and the dynamic consensus problem are considered for a class of high-order multiagent systems.With the proposed consensus protocols,necessary and sufficient conditions for th...In this paper,the static consensus problem and the dynamic consensus problem are considered for a class of high-order multiagent systems.With the proposed consensus protocols,necessary and sufficient conditions for the consensus problems are obtained.For the static consensus protocol,the desired consensus speed can be achieved by adjusting feedback gains.Simulations show the effectiveness of the proposed consensus protocols.展开更多
This paper addresses the distributed optimization problem of discrete-time multiagent systems with nonconvex control input constraints and switching topologies.We introduce a novel distributed optimization algorithm w...This paper addresses the distributed optimization problem of discrete-time multiagent systems with nonconvex control input constraints and switching topologies.We introduce a novel distributed optimization algorithm with a switching mechanism to guarantee that all agents eventually converge to an optimal solution point,while their control inputs are constrained in their own nonconvex region.It is worth noting that the mechanism is performed to tackle the coexistence of the nonconvex constraint operator and the optimization gradient term.Based on the dynamic transformation technique,the original nonlinear dynamic system is transformed into an equivalent one with a nonlinear error term.By utilizing the nonnegative matrix theory,it is shown that the optimization problem can be solved when the union of switching communication graphs is jointly strongly connected.Finally,a numerical simulation example is used to demonstrate the acquired theoretical results.展开更多
This work investigates the implementation of distributed prescribed-time neural network(NN)control for nonlinear multiagent systems(MASs)using a dynamic memory event-triggered mechanism(DMETM).First,it introduces a co...This work investigates the implementation of distributed prescribed-time neural network(NN)control for nonlinear multiagent systems(MASs)using a dynamic memory event-triggered mechanism(DMETM).First,it introduces a composite learning technique in NN control.This method leverages the prediction error within the NN update law to enhance the accuracy of the unknown nonlinearity estimation.Subsequently,by introducing a time-varying transformation,the study establishes a distributed prescribed-time control algorithm.The notable feature of this algorithm is its ability to predetermine the convergence time independently of initial conditions or control parameters.Moreover,the DMETM is established to reduce the actuation frequency of the controller.Unlike the conventional memoryless dynamic event-triggered mechanism,the DMETM incorporates a memory term to further increase triggering intervals.Utilizing a distributed estimator for the leader,the DMETM-based NN prescribed-time controller is designed in a fully distributed manner,which guarantees that all signals in the closed-loop system remain bounded within the prescribed time.Finally,simulation results are presented to validate the effectiveness of the proposed algorithm.展开更多
In this study,we investigate the self-triggered impulsive control for stochastic delayed multiagent systems with input saturation.We present a novel self-triggered mechanism using a comparison system method.The next t...In this study,we investigate the self-triggered impulsive control for stochastic delayed multiagent systems with input saturation.We present a novel self-triggered mechanism using a comparison system method.The next triggering instant is predicted on the basis of agent dynamics knowledge and data obtained from the last triggering instant without real-time monitoring;thus,Zeno behavior is naturally avoided.By applying this new self-triggering mechanism,we provide some sufficient conditions for the mean-square consensus based on the stochastic differential theory,Lyapunov function theory,and linear matrix inequalities.Finally,we demonstrate the feasibility of our method by presenting numerical simulation results.展开更多
In the distributed security control for air-sea heterogeneous multiagent systems(HMASs)with cooperative-antagonistic interactions,data security and transient-steady state performance of the system are two key problems...In the distributed security control for air-sea heterogeneous multiagent systems(HMASs)with cooperative-antagonistic interactions,data security and transient-steady state performance of the system are two key problems.To ensure data security,an intermittent privacy preservation(IPP)mechanism is proposed for the first time.A novel setting time initial mask function and a novel intermittent mask function are constructed.Users can implement intermittent preservation for the system according to actual requirements,which solves the irreversibility problem after conventional mask disappears and balances control accuracy and system security.To ensure transient-steady state performance,a novel error transformation function(ETF)is proposed and integrated into the predefined-time prescribed performance control strategy.Compared to conventional hyperbolic tangent type ETFs,the proposed ETF can improve the convergence accuracy of errors under the same conditions.Furthermore,a unified model of the air-sea HMASs is established,which improves the model accuracy compared with the simplified model.Finally,the proposed IPP security control strategy is applied to the air-sea delivery mission to verify its feasibility and effectiveness.展开更多
In this paper,the fixed-time consensus tracking control problem of multiagent systems(MASs)subject to unknown nonlinearities and performance constraints is investigated.Initially,an improved fixed-time performance fun...In this paper,the fixed-time consensus tracking control problem of multiagent systems(MASs)subject to unknown nonlinearities and performance constraints is investigated.Initially,an improved fixed-time performance function is designed,which enables the consensus tracking errors to converge to the preset region in fixed time,and alleviates the initial error conditions by setting the parameters appropriately.Moreover,the unknown nonlinearities of MASs are approximated by the radial basis function neural network(RBF NN).Subsequently,a fixed-time prescribed performance controller is designed,which excludes the fractional power of tracking error to prevent potential singularity problems existing in stability proof.Additionally,a fixed-time dynamic surface filter is formulated to eliminate the“explosion of complexity”issue,meanwhile,the filter errors are bounded in fixed time.Utilizing the Lyapunov stability theory,it can be guaranteed that all signals in MASs exhibit practically fixed-time stability,and the consensus errors all approach a small region centered on origin within the prescribed bounds.Finally,simulations are presented to verify the validity of the proposed control strategy.展开更多
There are mainly two different ways of learning for animals and humans: trying on yourself through interactions or imitating/copying others through communication/observation. How these two learning strategies differ ...There are mainly two different ways of learning for animals and humans: trying on yourself through interactions or imitating/copying others through communication/observation. How these two learning strategies differ and what roles they are playing in achieving coordination among individuals are two challenging problems for researchers from various disciplines. In multiagent systems, most existing work simply focuses on individual learning for achieving coordination among agents. The social learning perspective has been largely neglected. Against this background, this article contributes by proposing an integrated solution to decision making between social learning and individual learning in multiagent systems. Two integration modes have been proposed that enable agents to choose in between these two learning strategies, either in a t'Lxed or in an adaptive manner. Experimental evaluations have shown that these two kinds of leaning strategies have different roles in maintaining efficient coordination among agents. These differences can reveal some significant insights into the manipulation and control of agent behaviors in multiagent systems, and also shed light on understanding the social factors in shaping coordinated behaviors in humans and animals.展开更多
This paper focuses on the leader-following consensus control problem for nonlinear multiagent systems subject to deferred asymmetric time-varying state constraints.A distributed eventtriggered adaptive neural control ...This paper focuses on the leader-following consensus control problem for nonlinear multiagent systems subject to deferred asymmetric time-varying state constraints.A distributed eventtriggered adaptive neural control approach is advanced.By virtue of a distributed sliding-mode estimator,the leader-following consensus control problem is converted into multiple simplified tracking control problems.Afterwards,a shifting function is utilized to transform the error variables such that the initial tracking condition can be totally unknown and the state constraints can be imposed at a specified time instant.Meanwhile,the deferred asymmetric time-varying full state constraints are addressed by a class of asymmetric barrier Lyapunov function.In order to reduce the burden of communication,a relative threshold event-triggered mechanism is incorporated into controller and Zeno behavior is excluded.Based on Lyapunov stability theorem,all closed-loop signals are proved to be semi-globally uniformly ultimately bounded.Finally,a practical simulation example is given to verify the presented control scheme.展开更多
Dear Editor,This letter studies output consensus problem of heterogeneous linear multiagent systems over directed graphs. A novel adaptive dynamic event-triggered controller is presented based only on the feedback com...Dear Editor,This letter studies output consensus problem of heterogeneous linear multiagent systems over directed graphs. A novel adaptive dynamic event-triggered controller is presented based only on the feedback combination of the agent's own state and neighbors' output,which can achieve exponential output consensus through intermittent communication. The controller is obtained by solving two linear matrix equations, and Zeno behavior is excluded.展开更多
In this paper, the containment control problem in nonlinear multi-agent systems(NMASs) under denial-of-service(DoS) attacks is addressed. Firstly, a prediction model is obtained using the broad learning technique to t...In this paper, the containment control problem in nonlinear multi-agent systems(NMASs) under denial-of-service(DoS) attacks is addressed. Firstly, a prediction model is obtained using the broad learning technique to train historical data generated by the system offline without DoS attacks. Secondly, the dynamic linearization method is used to obtain the equivalent linearization model of NMASs. Then, a novel model-free adaptive predictive control(MFAPC) framework based on historical and online data generated by the system is proposed, which combines the trained prediction model with the model-free adaptive control method. The development of the MFAPC method motivates a much simpler robust predictive control solution that is convenient to use in the case of DoS attacks. Meanwhile, the MFAPC algorithm provides a unified predictive framework for solving consensus tracking and containment control problems. The boundedness of the containment error can be proven by using the contraction mapping principle and the mathematical induction method. Finally, the proposed MFAPC is assessed through comparative experiments.展开更多
Multi-agent systems(MASs)are typically composed of multiple smart entities with independent sensing,communication,computing,and decision-making capabilities.Nowadays,MASs have a wide range of applications in smart gri...Multi-agent systems(MASs)are typically composed of multiple smart entities with independent sensing,communication,computing,and decision-making capabilities.Nowadays,MASs have a wide range of applications in smart grids,smart manufacturing,sensor networks,and intelligent transportation systems.Control of the MASs are often coordinated through information interaction among agents,which is one of the most important factors affecting coordination and cooperation performance.However,unexpected physical faults and cyber attacks on a single agent may spread to other agents via information interaction very quickly,and thus could lead to severe degradation of the whole system performance and even destruction of MASs.This paper is concerned with the safety/security analysis and synthesis of MASs arising from physical faults and cyber attacks,and our goal is to present a comprehensive survey on recent results on fault estimation,detection,diagnosis and fault-tolerant control of MASs,and cyber attack detection and secure control of MASs subject to two typical cyber attacks.Finally,the paper concludes with some potential future research topics on the security issues of MASs.展开更多
In complex environments, many distributed multiagent systems are described with the fractional-order dynamics.In this paper, containment control of fractional-order multiagent systems with multiple leader agents are s...In complex environments, many distributed multiagent systems are described with the fractional-order dynamics.In this paper, containment control of fractional-order multiagent systems with multiple leader agents are studied. Firstly,the collaborative control of fractional-order multi-agent systems(FOMAS) with multiple leaders is analyzed in a directed network without delays. Then, by using Laplace transform and frequency domain theorem, containment consensus of networked FOMAS with time delays is investigated in an undirected network, and a critical value of delays is obtained to ensure the containment consensus of FOMAS. Finally, numerical simulations are shown to verify the results.展开更多
This paper investigates the formation control of a class of multi-agent systems moving on a circle, whose topology is a cyclic graph, and presents several new results for the following two cases: Case I, the agents wi...This paper investigates the formation control of a class of multi-agent systems moving on a circle, whose topology is a cyclic graph, and presents several new results for the following two cases: Case I, the agents with single-integrator kinematics,and Case II, the agents with double-integrator kinematics. Firstly,for Case I, two control protocols are proposed under which the multiagent systems keep a uniformly-spaced formation. Secondly,we study Case II, and a control protocol is designed for this case, then the stability of the formation is proved. Finally, three simulations are studied by using our presented results. The study of illustrative examples with simulations shows that our results as well as designed control protocols work very well in studying the formation control of this class of multi-agent systems.展开更多
With the rapid development of network technology and control technology,a networked multi-agent control system is a key direction of modern industrial control systems,such as industrial Internet systems.This paper stu...With the rapid development of network technology and control technology,a networked multi-agent control system is a key direction of modern industrial control systems,such as industrial Internet systems.This paper studies the tracking control problem of networked multi-agent systems with communication constraints,where each agent has no information on the dynamics of other agents except their outputs.A networked predictive proportional integral derivative(PPID)tracking scheme is proposed to achieve the desired tracking performance,compensate actively for communication delays,and simplify implementation in a distributed manner.This scheme combines the past,present and predictive information of neighbour agents to form a tracking error signal for each agent,and applies the proportional,integral,and derivative of the agent tracking error signal to control each individual agent.The criteria of the stability and output tracking consensus of multi-agent systems with the networked PPID tracking scheme are derived through detailed analysis on the closed-loop systems.The effectiveness of the networked PPID tracking scheme is illustrated via an example.展开更多
基金supported in part by the National Natural Science Foundation of China(Nos.U23B2036,U2013201).
文摘In this paper, distributed event-triggered performance constraint control is proposed for Heterogeneous Multiagent Systems (HMASs) including quadrotor unmanned aerial vehicles and unmanned ground vehicles in the presence of unknown external disturbances. To tackle the problem of different dynamic characteristics and facilitate the controller design, the virtual variable is introduced in the z axis of the nonlinear model of unmanned ground vehicles. By using this approach, a universal model is established for the HMAS. Moreover, a distributed disturbance observer is established to cope with the adverse influence of the external disturbances. Then, an Appointed-Time Prescribed Performance Function (ATPPF) is designed to restrict the tracking error in the predefined regions. On this basis, the distributed performance constraint controller is proposed for the HMAS based on the ATPPF and the distributed disturbance observer. Furthermore, the improved event-triggered mechanism is proposed with a dynamic threshold, which depends on the distance between the tracking error and the boundary of the ATPPF. Finally, the effectiveness of the proposed control method is verified by the comparative experiments on an HMAS.
基金supported in part by the National Key Research and Development Program of China(2018YFA0702200)the National Natural Science Foundation of China(52377079,62203097,62373196)。
文摘In this paper,a class of time-varying output group formation containment control problem of general linear hetero-geneous multiagent systems(MASs)is investigated under directed topology.The MAS is composed of a number of tracking leaders,formation leaders and followers,where two different types of leaders are used to provide reference trajectories for movement and to achieve certain formations,respectively.Firstly,compen-sators are designed whose states are estimations of tracking lead-ers,based on which,a controller is developed for each formation leader to accomplish the expected formation.Secondly,two event-triggered compensators are proposed for each follower to evalu-ate the state and formation information of the formation leaders in the same group,respectively.Subsequently,a control protocol is designed for each follower,utilizing the output information,to guide the output towards the convex hull generated by the forma-tion leaders within the group.Next,the triggering sequence in this paper is decomposed into two sequences,and the inter-event intervals of these two triggering conditions are provided to rule out the Zeno behavior.Finally,a numerical simulation is intro-duced to confirm the validity of the proposed results.
基金supported in part by the National Natural Science Foundation of China(61903282,61625305)China Postdoctoral Science Foundation(2020T130488)9。
文摘This paper is concerned with the consensus problem for high-order continuous-time multiagent systems with both state and input delays.A novel approach referred to as pseudopredictor feedback protocol is proposed.Unlike the predictorbased feedback protocol which utilizes the open-loop dynamics to predict the future states,the pseudo-predictor feedback protocol uses the closed-loop dynamics of the multiagent systems to predict the future agent states.Full-order/reduced-order observer-based pseudo-predictor feedback protocols are proposed,and it is shown that the consensus is achieved and the input delay is compensated by the proposed protocols.Necessary and sufficient conditions guaranteeing the stability of the integral delay systems are provided in terms of the stability of the series of retarded-type time-delay systems.Furthermore,compared with the existing predictor-based protocols,the proposed pseudo-predictor feedback protocol is independent of the input signals of the neighboring agents and is easier to implement.Finally,a numerical example is given to demonstrate the effectiveness of the proposed approaches.
基金supported by the National Natural Science Foundation of China(No.60874046,60974090)the Ph.D.Programs Foundation of the Ministry of Education of China(No.200806110021)the Natural Science Foundation of Chongqing of China(CSTS No.2008BB2049)
文摘This paper addresses an improved distributed model predictive control (DMPC) scheme for multiagent systems with an attempt to improving its consistency. The deviation between what an agent is actually doing and what its neighbors believe that agent is doing is penalized in the cost function of each agent. At each sampling instant the compatibility constraint of each agent is set tighter than the previous sampling instant. Like the traditional approach, the performance cost is utilized as the Lyapunov function to prove closed-looped stability. The closed-loop stability is guaranteed if the weight matrix for deviation in the cost function are sufficiently large. The proposed distributed control scheme is formulated as quadratic programming with quadratic constraints. A numerical example is given to illustrate the effectiveness of the proposed scheme.
基金supported by the National Natural ScienceFoundation ofChina(Nos.61973189,62073190)the Research Fund for the Taishan Scholar Project of Shandong Province of China(No.ts20190905)the Natural Science Foundation of Shandong Province of China(No.ZR2020ZD25).
文摘The bipartite consensus problem is addressed for a class of nonlinear time-delay multiagent systems in this paper.Therein,the uncertain nonlinear dynamics of all agents satisfy a Lipschitz growth condition with unknown constants,and part of the state information cannot be measured.In this case,a time-varying gain compensator is constructed,which only utilizes the output information of the follower and its neighbors.Subsequently,a distributed output feedback control protocol is proposed on the basis of the compensator.According to Lyapunov stability theory,it is proved that the bipartite consensus can be guaranteed by means of the designed control protocol.Different from the existing literature,this paper studies the leader-follower consensus problem under a weaker connectivity condition,i.e.,the signed directed graph is structurally balanced and contains a directed spanning tree.Two simulation examples are carried out to show the feasibility of the proposed control strategy.
基金supported by the National Natural Science Foundation of China (No.60875039, 60774016, 60904022, 60805039)
文摘The objectives of this work are the development and design of disturbance observers (DO’s) for a team of agents that accomplish consensus on agents’ states in the presence of exogenous disturbances. A pinning control strategy is designed for a part of agents of the multiagent systems without disturbances, and this pinning control can bring multiple agents’ states to reaching an expected consensus value. Under the effect of the disturbances, nonlinear disturbance observers are developed for disturbances generated by an exogenous system to estimate the disturbances. Asymptotical consensus of the multiagent systems with disturbances under the composite controller can be achieved. Finally, by applying an example of multiagent systems with switching topologies and exogenous disturbances, the design of the parameters of DO’s are illuminated.
基金supported by the National Natural Science Foundation of China(No.10701042)
文摘In this paper,the static consensus problem and the dynamic consensus problem are considered for a class of high-order multiagent systems.With the proposed consensus protocols,necessary and sufficient conditions for the consensus problems are obtained.For the static consensus protocol,the desired consensus speed can be achieved by adjusting feedback gains.Simulations show the effectiveness of the proposed consensus protocols.
基金Project supported by the National Engineering Research Center of Rail Transportation Operation and Control System,Beijing Jiaotong University(Grant No.NERC2019K002)。
文摘This paper addresses the distributed optimization problem of discrete-time multiagent systems with nonconvex control input constraints and switching topologies.We introduce a novel distributed optimization algorithm with a switching mechanism to guarantee that all agents eventually converge to an optimal solution point,while their control inputs are constrained in their own nonconvex region.It is worth noting that the mechanism is performed to tackle the coexistence of the nonconvex constraint operator and the optimization gradient term.Based on the dynamic transformation technique,the original nonlinear dynamic system is transformed into an equivalent one with a nonlinear error term.By utilizing the nonnegative matrix theory,it is shown that the optimization problem can be solved when the union of switching communication graphs is jointly strongly connected.Finally,a numerical simulation example is used to demonstrate the acquired theoretical results.
基金partially supported by the National Natural Science Foundation of China(Grant Nos.62033003,62373113,62203119)the Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2023A1515011527,2023B1515120010)。
文摘This work investigates the implementation of distributed prescribed-time neural network(NN)control for nonlinear multiagent systems(MASs)using a dynamic memory event-triggered mechanism(DMETM).First,it introduces a composite learning technique in NN control.This method leverages the prediction error within the NN update law to enhance the accuracy of the unknown nonlinearity estimation.Subsequently,by introducing a time-varying transformation,the study establishes a distributed prescribed-time control algorithm.The notable feature of this algorithm is its ability to predetermine the convergence time independently of initial conditions or control parameters.Moreover,the DMETM is established to reduce the actuation frequency of the controller.Unlike the conventional memoryless dynamic event-triggered mechanism,the DMETM incorporates a memory term to further increase triggering intervals.Utilizing a distributed estimator for the leader,the DMETM-based NN prescribed-time controller is designed in a fully distributed manner,which guarantees that all signals in the closed-loop system remain bounded within the prescribed time.Finally,simulation results are presented to validate the effectiveness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(Grant Nos.62433018,62033003,62276214)。
文摘In this study,we investigate the self-triggered impulsive control for stochastic delayed multiagent systems with input saturation.We present a novel self-triggered mechanism using a comparison system method.The next triggering instant is predicted on the basis of agent dynamics knowledge and data obtained from the last triggering instant without real-time monitoring;thus,Zeno behavior is naturally avoided.By applying this new self-triggering mechanism,we provide some sufficient conditions for the mean-square consensus based on the stochastic differential theory,Lyapunov function theory,and linear matrix inequalities.Finally,we demonstrate the feasibility of our method by presenting numerical simulation results.
基金partially supported by the National Natural Science Foundation of China(Grant No.62322307)the Sichuan Science and Technology Program(Grant No.2023NSFSC1968)+1 种基金the Basic Research Project of the Educational Department of Liaoning Province(Grant No.LJ232410167028)the Revitalization of Liaoning Talents Program(Grant No.XLYC2203201)。
文摘In the distributed security control for air-sea heterogeneous multiagent systems(HMASs)with cooperative-antagonistic interactions,data security and transient-steady state performance of the system are two key problems.To ensure data security,an intermittent privacy preservation(IPP)mechanism is proposed for the first time.A novel setting time initial mask function and a novel intermittent mask function are constructed.Users can implement intermittent preservation for the system according to actual requirements,which solves the irreversibility problem after conventional mask disappears and balances control accuracy and system security.To ensure transient-steady state performance,a novel error transformation function(ETF)is proposed and integrated into the predefined-time prescribed performance control strategy.Compared to conventional hyperbolic tangent type ETFs,the proposed ETF can improve the convergence accuracy of errors under the same conditions.Furthermore,a unified model of the air-sea HMASs is established,which improves the model accuracy compared with the simplified model.Finally,the proposed IPP security control strategy is applied to the air-sea delivery mission to verify its feasibility and effectiveness.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.62033003,62373113 and 62203119)the Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2023A1515011527 and 2023B1515120010)。
文摘In this paper,the fixed-time consensus tracking control problem of multiagent systems(MASs)subject to unknown nonlinearities and performance constraints is investigated.Initially,an improved fixed-time performance function is designed,which enables the consensus tracking errors to converge to the preset region in fixed time,and alleviates the initial error conditions by setting the parameters appropriately.Moreover,the unknown nonlinearities of MASs are approximated by the radial basis function neural network(RBF NN).Subsequently,a fixed-time prescribed performance controller is designed,which excludes the fractional power of tracking error to prevent potential singularity problems existing in stability proof.Additionally,a fixed-time dynamic surface filter is formulated to eliminate the“explosion of complexity”issue,meanwhile,the filter errors are bounded in fixed time.Utilizing the Lyapunov stability theory,it can be guaranteed that all signals in MASs exhibit practically fixed-time stability,and the consensus errors all approach a small region centered on origin within the prescribed bounds.Finally,simulations are presented to verify the validity of the proposed control strategy.
文摘There are mainly two different ways of learning for animals and humans: trying on yourself through interactions or imitating/copying others through communication/observation. How these two learning strategies differ and what roles they are playing in achieving coordination among individuals are two challenging problems for researchers from various disciplines. In multiagent systems, most existing work simply focuses on individual learning for achieving coordination among agents. The social learning perspective has been largely neglected. Against this background, this article contributes by proposing an integrated solution to decision making between social learning and individual learning in multiagent systems. Two integration modes have been proposed that enable agents to choose in between these two learning strategies, either in a t'Lxed or in an adaptive manner. Experimental evaluations have shown that these two kinds of leaning strategies have different roles in maintaining efficient coordination among agents. These differences can reveal some significant insights into the manipulation and control of agent behaviors in multiagent systems, and also shed light on understanding the social factors in shaping coordinated behaviors in humans and animals.
基金partially supported by the China Postdoctoral Science Foundation under Grant Nos.2019M662813,2020M682614 and 2020T130124the Guangdong Basic and Applied Basic Research Foundation under Grant No.2020A1515110974+2 种基金the Local Innovative and Research Teams Project of Guangdong Special Support Program under Grant No.2019BT02X353the Innovative Research Team Program of Guangdong Province Science Foundation under Grant No.2018B030312006the Science and Technology Program of Guangzhou under Grant No.201904020006。
文摘This paper focuses on the leader-following consensus control problem for nonlinear multiagent systems subject to deferred asymmetric time-varying state constraints.A distributed eventtriggered adaptive neural control approach is advanced.By virtue of a distributed sliding-mode estimator,the leader-following consensus control problem is converted into multiple simplified tracking control problems.Afterwards,a shifting function is utilized to transform the error variables such that the initial tracking condition can be totally unknown and the state constraints can be imposed at a specified time instant.Meanwhile,the deferred asymmetric time-varying full state constraints are addressed by a class of asymmetric barrier Lyapunov function.In order to reduce the burden of communication,a relative threshold event-triggered mechanism is incorporated into controller and Zeno behavior is excluded.Based on Lyapunov stability theorem,all closed-loop signals are proved to be semi-globally uniformly ultimately bounded.Finally,a practical simulation example is given to verify the presented control scheme.
基金supported by the National Science and Technology Innovation 2030-Major Program(2022ZD 0115403)the National Natural Science Foundation of China(61991414)+1 种基金Chongqing Natural Science Foundation(CSTB2023NSCQJQX0018)Beijing Natural Science Foundation(L221005)
文摘Dear Editor,This letter studies output consensus problem of heterogeneous linear multiagent systems over directed graphs. A novel adaptive dynamic event-triggered controller is presented based only on the feedback combination of the agent's own state and neighbors' output,which can achieve exponential output consensus through intermittent communication. The controller is obtained by solving two linear matrix equations, and Zeno behavior is excluded.
基金supported in part by the National Natural Science Foundation of China(62403396,62433018,62373113)the Guangdong Basic and Applied Basic Research Foundation(2023A1515011527,2023B1515120010)the Postdoctoral Fellowship Program of CPSF(GZB20240621)
文摘In this paper, the containment control problem in nonlinear multi-agent systems(NMASs) under denial-of-service(DoS) attacks is addressed. Firstly, a prediction model is obtained using the broad learning technique to train historical data generated by the system offline without DoS attacks. Secondly, the dynamic linearization method is used to obtain the equivalent linearization model of NMASs. Then, a novel model-free adaptive predictive control(MFAPC) framework based on historical and online data generated by the system is proposed, which combines the trained prediction model with the model-free adaptive control method. The development of the MFAPC method motivates a much simpler robust predictive control solution that is convenient to use in the case of DoS attacks. Meanwhile, the MFAPC algorithm provides a unified predictive framework for solving consensus tracking and containment control problems. The boundedness of the containment error can be proven by using the contraction mapping principle and the mathematical induction method. Finally, the proposed MFAPC is assessed through comparative experiments.
基金partially supported by the National Natural Science Foundation of China(61873237)the Fundamental Research Funds for the Central Universities+2 种基金the Fundamental Research Funds for the Provincial Universities of Zhejiang(RF-A2019003)the Research Grants Council of the Hong Kong Special Administrative Region of China(City U/11204315)the Hong Kong Scholars Program(XJ2016030)。
文摘Multi-agent systems(MASs)are typically composed of multiple smart entities with independent sensing,communication,computing,and decision-making capabilities.Nowadays,MASs have a wide range of applications in smart grids,smart manufacturing,sensor networks,and intelligent transportation systems.Control of the MASs are often coordinated through information interaction among agents,which is one of the most important factors affecting coordination and cooperation performance.However,unexpected physical faults and cyber attacks on a single agent may spread to other agents via information interaction very quickly,and thus could lead to severe degradation of the whole system performance and even destruction of MASs.This paper is concerned with the safety/security analysis and synthesis of MASs arising from physical faults and cyber attacks,and our goal is to present a comprehensive survey on recent results on fault estimation,detection,diagnosis and fault-tolerant control of MASs,and cyber attack detection and secure control of MASs subject to two typical cyber attacks.Finally,the paper concludes with some potential future research topics on the security issues of MASs.
基金supported by the National Natural Science Foundation of China(61273200,61273152,61202111,61304052,51407088)the Science Foundation of Education Office of Shandong Province of China(ZR2011FM07,BS2015DX018)
文摘In complex environments, many distributed multiagent systems are described with the fractional-order dynamics.In this paper, containment control of fractional-order multiagent systems with multiple leader agents are studied. Firstly,the collaborative control of fractional-order multi-agent systems(FOMAS) with multiple leaders is analyzed in a directed network without delays. Then, by using Laplace transform and frequency domain theorem, containment consensus of networked FOMAS with time delays is investigated in an undirected network, and a critical value of delays is obtained to ensure the containment consensus of FOMAS. Finally, numerical simulations are shown to verify the results.
基金supported by the National Natural Science Foundation of China(G61374065,61373081,61303007,61401260,61503225,61572298)the Research Fund for the Taishan Scholar Project of Shandong Province of Chinathe Natural Science Foundation of Shandong Province(ZR2015FQ003)
文摘This paper investigates the formation control of a class of multi-agent systems moving on a circle, whose topology is a cyclic graph, and presents several new results for the following two cases: Case I, the agents with single-integrator kinematics,and Case II, the agents with double-integrator kinematics. Firstly,for Case I, two control protocols are proposed under which the multiagent systems keep a uniformly-spaced formation. Secondly,we study Case II, and a control protocol is designed for this case, then the stability of the formation is proved. Finally, three simulations are studied by using our presented results. The study of illustrative examples with simulations shows that our results as well as designed control protocols work very well in studying the formation control of this class of multi-agent systems.
文摘With the rapid development of network technology and control technology,a networked multi-agent control system is a key direction of modern industrial control systems,such as industrial Internet systems.This paper studies the tracking control problem of networked multi-agent systems with communication constraints,where each agent has no information on the dynamics of other agents except their outputs.A networked predictive proportional integral derivative(PPID)tracking scheme is proposed to achieve the desired tracking performance,compensate actively for communication delays,and simplify implementation in a distributed manner.This scheme combines the past,present and predictive information of neighbour agents to form a tracking error signal for each agent,and applies the proportional,integral,and derivative of the agent tracking error signal to control each individual agent.The criteria of the stability and output tracking consensus of multi-agent systems with the networked PPID tracking scheme are derived through detailed analysis on the closed-loop systems.The effectiveness of the networked PPID tracking scheme is illustrated via an example.