期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
An Improved YOLO Detection Approach for Pinpointing Cucumber Diseases and Pests
1
作者 Ji-Yuan Ding Wang-Su Jeon +1 位作者 Sang-Yong Rhee Chang-Man Zou 《Computers, Materials & Continua》 SCIE EI 2024年第12期3989-4014,共26页
In complex agricultural environments,cucumber disease identification is confronted with challenges like symptom diversity,environmental interference,and poor detection accuracy.This paper presents the DM-YOLO model,wh... In complex agricultural environments,cucumber disease identification is confronted with challenges like symptom diversity,environmental interference,and poor detection accuracy.This paper presents the DM-YOLO model,which is an enhanced version of the YOLOv8 framework designed to enhance detection accuracy for cucumber diseases.Traditional detection models have a tough time identifying small-scale and overlapping symptoms,especially when critical features are obscured by lighting variations,occlusion,and background noise.The proposed DM-YOLO model combines three innovative modules to enhance detection performance in a collective way.First,the MultiCat module employs a multi-scale feature processing strategy with adaptive pooling,which decomposes input features into large,medium,and small scales.This approach ensures that high-level features are extracted and fused effectively,effectively improving the detection of smaller and complex patterns that are often missed by traditional methods.Second,the ADC2f module incorporates an attention mechanism and deep separable convolution,which allows the model to focus on the most relevant regions of the input features while reducing computational load.The identification and localization of diseases like downy mildew and powdery mildew can be enhanced by this combination in conditions of lighting changes and occlusion.Finally,the C2fe module introduces a Global Context Block that uses attention mechanisms to emphasize essential regions while suppressing those that are not relevant.This design enables the model to capture more contextual information,which improves detection performance in complex backgrounds and small-object scenarios.A custom cucumber disease dataset and the PlantDoc dataset were used for thorough evaluations.Experimental results showed that DM-YOLO achieved a mean Average Precision(mAP50)improvement of 1.2%p on the custom dataset and 3.2%p on the PlantDoc dataset over the baseline YOLOv8.These results highlight the model’s enhanced ability to detect small-scale and overlapping disease symptoms,demonstrating its effectiveness and robustness in diverse agricultural monitoring environments.Compared to the original algorithm,the improved model shows significant progress and demonstrates strong competitiveness when compared to other advanced object detection models. 展开更多
关键词 ADC2f C2fe cucumber diseases YOLOv8n multicat pest detection
在线阅读 下载PDF
基于关键节点和多播节点的多播路由算法 被引量:1
2
作者 余燕平 赵问道 +1 位作者 孟利民 仇佩亮 《电路与系统学报》 CSCD 2003年第2期43-47,共5页
在视频会议等多播应用中,降低多播树网络费用非常重要。本文提出了基于关键节点和目的节点的多播路由KDDMC算法。由于在算法中优先考虑采用关键节点,实现更多链路的共享,从而降低网络费用。在随机网络上的仿真结果表明,KDDMC算法的多播... 在视频会议等多播应用中,降低多播树网络费用非常重要。本文提出了基于关键节点和目的节点的多播路由KDDMC算法。由于在算法中优先考虑采用关键节点,实现更多链路的共享,从而降低网络费用。在随机网络上的仿真结果表明,KDDMC算法的多播树网络费用优于SPH算法。同时证明了KDDMC算法的复杂度为O(n3),且利用所提出的路由表算法易于分布式实现。 展开更多
关键词 多播路由算法 STEINER树
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部